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ABSTRACT

Instrument playing technique (IPT) is a key element of musical
presentation. However, most of the existing works for IPT detection
only concern monophonic music signals, yet little has been done to
detect IPTs in polyphonic instrumental solo pieces with overlapping
IPTs or mixed IPTs. In this paper, we formulate it as a frame-
level multi-label classification problem and apply it to Guzheng,
a Chinese plucked string instrument. We create a new dataset,
Guzheng Tech99, containing Guzheng recordings and onset, offset,
pitch, IPT annotations of each note. Because different IPTs vary a
lot in their lengths, we propose a new method to solve this problem
using multi-scale network and self-attention. The multi-scale net-
work extracts features from different scales, and the self-attention
mechanism applied to the feature maps at the coarsest scale further
enhances the long-range feature extraction. Our approach outper-
forms existing works by a large margin, indicating its effectiveness
in IPT detection.

Index Terms— Playing technique detection, multi-scale net-
work, self-attention, music information retrieval

1. INTRODUCTION

Instrument playing technique (IPT) is a key element in enhancing
the vividness of musical performance. As shown by the Guzheng
numbered musical notation (a musical notation system widely used
in China) in Fig.1, a complete automatic music transcription (AMT)
system should contain IPT information in addition to pitch and onset
information. IPT detection aims to classify the types of IPTs and
locate the associated IPT boundaries in audio. IPT detection and
modeling can be utilized in many applications of music information
retrieval (MIR), like performance analysis [1] and AMT [2].

The research on IPT detection is still in its early stage. Existing
works mostly used machine learning methods, combined with hand-
crafted features [3, 4]. Early studies in this field mainly focused on
the IPT classification of isolated notes [5, 6]. However, there are al-
ways multiple notes with varying IPTs in an audio sequence and we
not only need to classify the IPTs but also locate their boundaries. In
[2, 7], a two-step method was proposed to detect IPTs in 42 electric
guitar solo tracks. Firstly, the positions of IPT candidates were lo-
cated in the extracted melody contours. Then, hand-crafted features
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Fig. 1: The spectrogram, staff notation, numbered musical no-
tation and IPT annotation of a Guzheng phrase. “IPT”, “UP”,
“DP”, “PN” denote “Instrument playing technique”, “Upward Por-
tamento”, “Downward Portamento” and “Point Note” respectively.

of the candidates were fed to classifiers such as support vector ma-
chine. However, the robustness of the method may be degraded by
errors caused in melody extraction, the intermediate step.

With the advancements in deep learning, deep neural networks
have been increasingly used in more recent work [8, 9]. In [10], a
convolutional recurrent neural network (CRNN) based model was
proposed to classify IPTs in audio sequences concatenated by cello
notes from 5 sound banks. To alleviate the computational redun-
dancy caused by the sliding window in [10], Wang et al. [11] pro-
posed a fully convolutional network (FCN) based end-to-end method
to detect IPTs in segments concatenated by isolated Erhu notes. In
[12], an additional onset detector was used, and its output was fused
with IPT prediction in a post-processing step to improve the accuracy
of IPT detection from monophonic audio sequences concatenated by
isolated Guzheng notes. However, Guzheng is a polyphonic instru-
ment. In Guzheng performance, notes with different IPTs are usually
overlapped (region (i), (j) of Fig.1) and mixed IPTs that can be de-
composed into multiple independent IPTs are usually used (region
(k) of Fig.1). Thus, the frame-level single-label IPT detection model
can hardly be applied directly to music with overlapping IPTs or
mixed IPTs, like harp or Guzheng solo pieces.

Annotating IPTs in music containing overlapping or mixed IPTs
is labor-intensive, so most existing work on IPT detection typically
uses datasets with monophonic instrumental solo pieces [2, 3, 8] or
audio sequences concatenated by individual IPT clips [10, 11, 12].
However, these datasets lack the complexity present in music with
overlapping IPTs or mixed IPTs. The randomly generated sequences

ar
X

iv
:2

30
3.

13
27

2v
1 

 [
cs

.S
D

] 
 2

3 
M

ar
 2

02
3



are even not natural enough, as they ignore music theory, rests, and
variations in timbre and intensity in real recordings. As shown in
[11, 13], models that perform well on such sequences may have in-
sufficient generalization capabilities when applied to real recordings.

To overcome the limitations mentioned above, we formulate
the problem as a frame-level multi-label classification problem.
Our study focuses on Guzheng, a plucked 21-string Chinese instru-
ment with diverse playing techniques, but our proposed methods
can be applied to other instruments as well. We create a new
dataset, Guzheng Tech99, containing 99 Guzheng solo pieces of
various genres recorded by professional Guzheng players, along
with 63,352 annotated labels indicating the onset, offset, pitch and
playing techniques of every note in each recording. The lengths
of different IPTs vary a lot. Long-range features are crucial for
long IPTs, while high-resolution features are necessary for short
IPTs due to subtle variation. From this characteristic of IPTs, we
propose a method using multi-scale convolution and self-attention.
The multi-scale network extracts features from different scales, and
self-attention blocks at the coarsest scale enhance the extraction
of long-range features. This is the first approach, to our knowl-
edge, to detect IPTs in instrumental solo pieces with overlapping
or mixed IPTs, a more complex and general scenario for IPT de-
tection. More details about the code and datasets can be found at
https://lidcc.github.io/GuzhengTech99/.

2. DATASET

In this section, we introduce the Guzheng playing techniques con-
sidered in our work and the process of making the dataset.

2.1. Playing Technique Descriptions

Traditional Guzheng playing techniques can be categorized into two
classes: plucking strings with the right hand and pressing strings
with the left hand [14]. In practice, left-hand and right-hand IPTs
are often used simultaneously. As shown in Fig.1, this can occur in
two cases: when notes with different IPTs are overlapped (region(i),
(j) of Fig.1) or when a note is played with a mixed IPT (region(k)
of Fig.1) that can be decomposed into multiple independent IPTs
based on the Guzheng numbered musical notation. Additionally, we
consider several notes played simultaneously with the same IPT as
a single IPT (region(h) of Fig.1). Consequently, we consider seven
independent IPTs (see Table 1) in our work.

We categorize left-hand playing techniques into four types that
produce different pitch variations. Vibrato (chanyin颤音) produces
periodic pitch changes based on a base pitch. The pitch of Point
Note (dianyin点音, PN for short hereinafter) is raised briefly right
after the note beginning and then restored instantly. Upward Por-
tamento (shanghuayin上滑音, UP for short hereinafter) slides the
pitch continuously from low to high, while Downward Portamento
(xiahuayin下滑音, DP for short hereinafter) slides the pitch contin-
uously from high to low. As regards to the three right-hand playing
techniques, we define Plucks (gou勾, da打, mo抹, tuo托, cuo撮,
etc.) as normally plucking one or more strings without special play-
ing techniques. Glissando (guazou刮奏, huazhi花指, etc.) is a rapid
slide across discrete pitches in pentatonic scales. Tremolo (yaozhi摇
指) is a rapid reiteration of a single note.

2.2. Data Collection and Labelling

The proposed dataset, Guzheng Tech99, consists of 99 audio record-
ings of Guzheng solo compositions recorded by two professional

IPT num length (seconds)
sum mean max min

vibrato 1994 1650.31 0.83 4.37 0.21
UP 756 544.12 0.72 3.84 0.10
DP 208 126.56 0.61 3.44 0.19
PN 209 153.12 0.73 3.24 0.23

glissando 734 67.54 0.09 0.39 0.03
tremolo 77 152.75 1.98 4.67 0.21
plucks 11860 7066.19 0.60 6.82 0.07

Table 1: Detailed statistics of each IPT in the dataset. The columns
of “num”, “sum”, “mean”, “max”, “min” indicate the note number,
the total length, average length, maximum length, minimum length.

Guzheng players in a professional recording studio. The Guzheng
for recording is a modern, full-sized Guzheng with 21 nylon-coated
steel strings and the bass strings wound in copper. The audio ex-
cerpts in the dataset cover most of the genres of Guzheng music that
vary in composing and performing styles, including Henan, Shan-
dong, Chaozhou, Zhejiang, Shaanxi, and so on. The audio record-
ings in the dataset are 9064.6 seconds long in total.

We label the onset, offset, pitch and playing techniques of every
note in each recording by Sonic Visualiser [15]. We treat the se-
ries of discrete tones in glissando as several independent notes while
treating the rapid reiteration of a single tone of tremolo as a whole
note according to the Guzheng numbered musical notation. As a re-
sult, the dataset consists of 63,352 annotated labels in total. Table
1 shows the detailed statistics of each IPT in the dataset. The time
scope that is not covered by our annotation is the rests in music or
the blank parts at the beginning and end of the recording. Finally, the
track-level information (audio id, audio name, mode, time signature,
performer, genre, and audio length) is collected in a metadata file.

The dataset is split into 79, 10, 10 songs respectively for the
training set, the validation set, and the test set (roughly 7330 seconds
of audio for training, 819 seconds for validation, and 916 seconds for
testing). When splitting, we control the distribution of IPT types and
performers in the three sets to be as similar as possible.

3. METHOD

The overall framework of our proposed model is illustrated in Fig.2.
The multi-scale network forms the overall architecture. The residual
block and the self-attention block are the main modules.

3.1. Input Representation

Constant-Q Transform (CQT) is used as the input feature represen-
tation of audio in our experiments. The frequency scale of CQT is
musically and perceptually motivated [16]. Raw audio was clipped
to 3-second pieces and resampled to 44.1 kHz. We use librosa [17]
to compute CQT with sampling rate of 44,100, hop length of 512,
bins per octave of 12, fmin of 27.5 Hz, frequency bins number of 88.

3.2. Multi-Scale Network

Inspired by the success of convolutional neural networks (CNN) in
many MIR tasks [9, 18], we apply CNN in our task. However, the
kernels of CNNs are designed to capture local information, thus a
single convolution layer has a limited receptive field. As shown in
Table 1, different Guzheng playing techniques vary a lot in their

https://lidcc.github.io/GuzhengTech99/


Fig. 2: The overall multi-scale network architecture of our proposed model (a), the detailed structure of the self-attention block (b) and the
residual block (c). The numbers in dashed boxes on the top row of (a) is the output channel number of the residual blocks in that column. The
numbers in parentheses in (a), (b) indicate the shape of the feature maps at the corresponding positions, and the numbers in parentheses in (c)
denote the kernel size of the convolution layer, in which “n” equals to the number of the last dimension of the residual block input. “F”, “T”
denote the length of the frequency axis and time axis of the input. “N” is the number of the IPT types.

lengths (the mean length of glissando notes is 0.09 seconds, while
that of tremolo notes is 1.98 seconds) and there are also large dif-
ferences in length within the same kind of playing techniques (the
maximum and minimum length of plucks is 6.82 and 0.07 seconds).
If only a certain part of an IPT is considered, it tends to misjudge one
IPT as another. For example, a portamento note will be misjudged
as a normal pluck note if its inflection point in the spectrogram is out
of the receptive field of the model. As solutions, the receptive field
is usually enlarged by directly stacking multiple convolution layers
or use large-size convolution kernels. But these methods both result
in an excess of parameters. Simply increasing the receptive field will
also lead to a loss in details for the subtle change of short IPTs.

To address the issue, we introduce the multi-scale network,
which was firstly proposed in computer vision tasks [19]. As shown
in Fig.2(a), our proposed model is composed of three horizontal
branches for different scales in the time axis. The resolution of the
feature in the branches from top to bottom is from high to low. The
middle branch with the medium resolution is used as a transition for
the fusing between high-resolution features and long-range features.
By downsampling/upsampling the feature to different scales, long-
range features can be fused with high-resolution features repeatedly.

To convert the spectral information into the channel domain, we
first process the CQT input (1, F, T) into a sequence with the shape
of (88, T, 1) by reshaping and batch normalization. Through the
whole architecture, multi-scale fusion was repeated by rescaling and
concatenation. The rescaling procedure is achieved by max-pooling
layers and transposed convolution layers with kernel size of 3 × 1.
After rescaling the feature maps from different resolutions to a uni-
fied scale, they are concatenated along the last dimension.

Fig.2(c) is the structure of the residual block. It is based on
[18, 20], but a convolution layer is added as the first layer to adjust
the last dimension of the input to 1. The skip connection in the
residual block is designed to help the model learn deeper.

After the feature processing, we obtain a feature map with the
shape of (88, T, 1). Then, a 3 × 1 convolution layer followed by
a sigmoid layer outputs a prediction with the shape of (7, T) for
representing the likelihood of the presence of each IPT per frame. To

decide the existence of an IPT, we pick a threshold of 0.5 to binarize
the result. We use the weighted binary cross entropy (BCE) proposed
in [21] as the loss function to counter class imbalance. We fine-tune
the model using stochastic gradient descend (SGD) with momentum
0.9, an initial learning rate of 0.01, a batch size of 10, a gradient
clipping L2-norm of 3, and a cosine learning rate scheduler.

3.3. Self-Attention Block

Since temporal modeling is crucial in IPT detection task, we ap-
ply self-attention mechanism, which has been proven effective in
many sequence modeling tasks [22, 23]. As shown in Fig.2, the
self-attention blocks applied to the feature maps at the coarsest scale
further enhance the extraction of global features by capturing inter-
actions between different frames on the feature maps. For an in-
put audio sequence X = (x1, x2, . . . , xT ) of length T , with xt ∈
Rdm . The input X is transformed into namely “queries” Q ∈ RTdk ,
“keys” K ∈ RTdk and “values” V ∈ RTdk . Each element of them
is calculated as Eq.1.

qi = xiWQ,

ki = xiWK ,

vi = xiWV .

(1)

WQ, Wk, Wv ∈ Rdmdk are three trainable parameters to calculate
the “queries”, “keys” and “values”, respectively. As shown in Eq.2,
each element of the output sequence O = (o1, o2, . . . , oT ), where
oi ∈ Rdk , is computed as a weighted sum of the “values” elements,
and the results are fed to a softmax computation. The weight of each
“values” element is computed by a scaled dot-product between the
corresponding “queries” element and “keys” element.

oi = softmax(

T∑
j=1

qik
T
j√
dk

vj). (2)

The output of the self-attention module was reshaped, added
with the input and then passed through a batch normalization layer
to get the final output of the self-attention block.



Method precision recall F1-score
w/o self-att 85.43 82.64 84.01

w/o res 86.38 83.45 84.89
Single-scale 79.04 75.02 76.98

Proposed 87.62 85.48 86.54

Table 2: Ablation studies with frame-level precision, recall and F1-
score on Guzheng Tech99 dataset.

Method precision recall F1-score
GZFNO [12] 69.49 68.00 68.73
EHFCN [11] 69.55 67.77 68.65

CNN+Res [20] 75.97 66.23 70.77
Proposed 87.62 85.48 86.54

Table 3: Results of the proposed and baseline methods with frame-
level precision, recall and F1-score on Guzheng Tech99 dataset.

4. EXPERIMENTS

We use precision P = TP
TP+FP

, recall R = TP
TP+FN

, and F1-score
F1 = 2PR

P+R
as the evaluation metrics, where TP , FP , FN denote

true positives, false positives, and false negatives, respectively. The
output of the model is compared to the ground truth labels per frame.

4.1. Ablation Study

We perform an ablation study to evaluate the effectiveness of each
part in our proposed model. Firstly, we remove the self-attention
blocks in the model. As shown in the first row (w/o self-att)
of Table 2, the precision, recall, and F1-score decreased by 2.19%,
2.84%, and 2.53%, respectively, demonstrating that the self-attention
mechanism effectively captures long-range dependencies to improve
the performance of the model. Then, we remove the skip-connection
in the residual blocks. As shown in the second row (w/o res) of
Table 2, the precision, recall, and F1-score were reduced by 1.24%,
2.03%, and 1.65%, respectively, proving the effectiveness of the
residual blocks in our model. Finally, we alter the architecture to a
single-scale one by removing the whole downsampled subnetworks
and only retaining the one with the highest resolution (the topmost
branch in Fig.2(a)). As shown in the third row (Single-scale)
of Table 2, the precision, recall and F1-score all drop drastically:
8.58%, 10.46% and 9.56% respectively, indicating the multi-scale
network can better fuse long-range features with high-resolution fea-
tures and improves the classification ability of our model.

4.2. Comparing with Existing Methods

Our proposed method is the first (to the best of our knowledge)
to achieve IPT detection from instrumental solo pieces with over-
lapping IPTs or mixed IPTs, which is considered as a frame-level
multi-label classification problem. To evaluate its performance in
this task, we choose three models that achieved high performance
in similar tasks as baseline methods: GZFNO [12], EHFCN [11] and
CNN+Res [20]. Among them, GZFNO and EHFCN are models that
achieved great performance in frame-level single-label IPT detection
task. CNN+Res shows great performance in sound event detection
[20] and instrument recognition [18], both of which are frame-level
multi-label detection tasks. For GZFNO and EHFCN, we change the

Fig. 3: The confusion matrix of IPT detection using our model on
Guzheng Tech99 dataset. “NTL” and “NPL” denote “No True La-
bel” and “No Predicted Label”, read [24] for details.

activation function of the last layer from softmax to sigmoid be-
cause softmax is used in multi-class single-label classification tasks
while sigmoid is usually used in multi-label classification tasks.
For GZFNO, we also remove the post-processing that is only useful
for single-label detection tasks. Except for the changes mentioned
above, we retain all implementation details from the respective
papers and run the models on the Guzheng Tech99 dataset.

Table 3 shows the frame-level precision, recall and F1-score
of each method trained and tested on the Guzheng Tech99 dataset.
Compared with the baseline methods, the proposed method achieves
the highest scores in all metrics, confirming the effectiveness of our
proposed model in the frame-level multi-label IPT detection task.

4.3. Comparing between Each IPT

To analyze individual IPT types in depth, we create a 2D confusion
matrix using mlcm [24]. The number on the main diagonal indicates
the proportion of true positives for the label class. A high value in a
row indicates that the particular pair of IPTs was frequently confused
by our model. As shown in Fig.3, plucks has the highest true posi-
tive proportion, vibrato, UP, DP, and PN are often misclassified as
plucks, and PN is particularly prone to misclassification as vibrato.
Misclassifying DP as plucks also occurs frequently in other instru-
ments [3, 8]. It is mainly caused by the data imbalance, as plucks is
more frequently used than other IPTs (see Table 1). Besides, DP can
be overlapped with plucks or mixed with tremolo (see Fig.1), which
can make accurate classification difficult. Furthermore, as shown in
the spectrogram (Fig.1), PN can be regarded as a special type of vi-
brato with only one pitch change, and there may be little differences
in some players’ performance between vibrato and PN when the note
is extremely short. This similarity between PN and vibrato increases
the likelihood of misclassifying PN as vibrato by our model.

5. CONCLUSION

In this paper, we formulate the IPT detection task as a frame-
level multi-label classification problem. We create a new dataset,
Guzheng Tech99, containing Guzheng recordings and onset, offset,
pitch, IPT annotations of each note. A multi-scale network and a
self-attention mechanism applied to the feature maps at the coarsest
scale are designed to extract features from different scales and en-
hance the long-range feature extraction respectively. Our approach
achieves 86.54% in frame-level F1-score, outperforming the exist-
ing works by a large margin, which indicates its effectiveness in
IPT detection. Although this work focuses only on Guzheng, the
methodology can be applicable to other instruments. Future work
will further verify its applicability on other instruments with rich
IPTs, such as violin [1] and Chinese bamboo flute [4]. We will also
expand the model to the note-level IPT detection further.
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