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ABSTRACT

Most people who have tried to learn a foreign language would
have experienced difficulties understanding or speaking with
a native speaker’s accent. For native speakers, understanding
or speaking a new accent is likewise a difficult task. An accent
conversion system that changes a speaker’s accent but pre-
serves that speaker’s voice identity, such as timbre and pitch,
has the potential for a range of applications, such as com-
munication, language learning, and entertainment. Existing
accent conversion models tend to change the speaker identity
and accent at the same time. Here, we use adversarial learn-
ing to disentangle accent dependent features while retaining
other acoustic characteristics. What sets our work apart from
existing accent conversion models is the capability to con-
vert an unseen speaker’s utterance to multiple accents while
preserving its original voice identity. Subjective evaluations
show that our model generates audio that sound closer to the
target accent and like the original speaker.

Index Terms— accent conversion, adversarial learning,
voice conversion, speech synthesis

1. INTRODUCTION

For many people, their own or others’ accents present a severe
obstacle to communication. For some other people, watching
a movie set in America with British accented speakers creates
a dissonance that takes them out of the immersive experience.
Therefore, a system that converts a speaker’s accent yet still
preserves the original voice identity can have a great impact
in a wide range of situations including communication, lan-
guage learning, and entertainment.

The main challenge in voice-preserving accent conver-
sion is the need to disentangle features related to a speaker’s
voice, accent, and linguistic contents. Usually, each speaker
in a data set only speaks with one accent, and there is rel-
ative scarcity in the available number of speakers and audio
recordings for non-native accents. Previous works have used
adversarial learning to disentangle features [1, 2], where both
apply a discriminator to wipe-out speaker dependent informa-
tion from content embeddings. Other works, such as [3, 4],
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achieve disentanglement via quantization of different features
to obscure undesired information.

Conventional accent conversion approaches require the
availability of reference utterances with the same text with
target accents, during synthesis [5, 6, 7, 8]. The applications
of these approaches are very limited, as we often do not have
access to reference utterances with the same linguistic con-
tent in a different accent. Recently, [9, 10, 11] have proposed
systems that convert accents without needing a reference ut-
terance during inference. The systems proposed in both [9]
and [10], however, are not zero-shot accent conversion sys-
tems because they require further training on the input ut-
terances. In the case of [9], the ASR component needed to
be fine-tuned with the input speaker’s utterances, and in the
case of [10], a dedicated model for each new speaker must be
trained on parallel speech. The authors of [9] also acknowl-
edge that their converted utterances were perceived to have a
different voice from that of the original utterance. Our pro-
posed system differs from the zero-shot, reference-free ac-
cent conversion system from [11] in that our system allows
for synchronous accent conversion, and to multiple native and
non-native accents.

Our proposed system is most similar to the accent con-
version models proposed in [9], [11], and [2]. Unlike these
works, our model converts unseen utterances with arbitrary
accent to utterances with multiple target accents. Listeners
from our perceptual tests agree that our model is good at pre-
serving the original speaker’s voice characteristics. In our
model, we utilize a pre-trained model checkpoint to extract
speaker and accent independent text predictions prior to train-
ing. We further disentangle the accent-dependent features
from other features with an accent discriminator. Finally,
the processed, disentangled features are re-combined and fed
to a HiFiGAN decoder to reconstruct the audio waveform.
Our work make contributions in three major ways: 1) To
the best of our knowledge, our model is the first to convert
arbitrary accented, unseen speech to multiple target accents
while preserving non-accent related voice characteristics. 2)
We do not require text labels associated with accented speech
or speaker ID labels during training, although we use an exist-
ing ASR model checkpoint trained on native accented English
speech to extract linguistic features. 3) We convert accent
while keeping the output synchronized to input, allowing for
applications such as dubbing a video with different accents.
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2. PROPOSED SYSTEM

Our proposed system during training and inference is shown
in Fig. 1. Unlike [2] and [9], we do not train an accented ASR
model with text labels corresponding to accented speech. In-
stead, we use an off-the-shelf wav2vec2.0 checkpoint1 that
has been pre-trained using self-supervised learning and fine-
tuned on ASR task using 960 hours of LibriSpeech data[12].

Let x denote the input audio waveform, x̂ the output au-
dio, and M the function that transforms a waveform into the
corresponding 80-dimensional mel-spectrogram. We train
our model to minimize the reconstruction loss in (1)

Lmel = Ex∈X [||M(x)−M(x̂)||1] (1)

Fig. 1. (a) Training (b) During inference, we convert accent
by feeding in the target accent ID to the pronunciation en-
coder.

2.1. Pronunciation Encoder

Inspired by many early works that have used phonetic pos-
teriograms (PPG) to capture accent-dependent features, we
use a pronunciation encoder, as shown in Fig. 2, to syn-
thesize accent-dependent pronunciation sequence given text
predictions and accent ID [6, 13]. For each accent ID, the
pronunciation encoder learns a unique embedding, which is
concatenated with every frame of character-level wav2vec2.0
prediction. The four transformer layers with 8-head attention

1Specifically, we downloaded the checkpoint corresponding to
”Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH)” from the link
https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec.

mechanism accounts for how context affects pronunciations.
Applying a dropout of 0.3 promotes the decoder to rely more
on the acoustic encoder for non-accent related voice features.

Fig. 2. The pronunciation encoder.

2.2. Acoustic Encoder

The acoustic encoder maps the mel-frequency cepstrum co-
efficients (MFCC) and periodicity features to a single 256-
dimensional vector. The acoustic encoder consists of four
convolution layers with kernel sizes (5, 3, 3, 1) and dila-
tions (1, 2, 1, 1), a self-attention layer, and finally an aver-
age pooling layer over time to output a single vector. Instead
of using an absolute positional embedding, we use the con-
volution layers to act as relative positional embedding for the
self-attention layer as in [12].

We use adversarial training to remove accent information
from the output of the acoustic encoder. All the accents are
labeled as either native or foreign. The accent discriminator,
consisting of two fully connected layers, learns to predict 1
if the source audio accent is native and 0 if foreign, while
the acoustic encoder tries to force the accent discriminator to
predict 1 all of the time. Mathematically, N the set of audios
with native English accent, F the set with foreign accents,
and X = N ∪ F the entire set of training data. Let z be
the output of the acoustic encoder. The accent discriminator
(AD) attempts to minimize LAD from (2) while the acoustic
encoder tries to minimize LAD,adv from (3).

LAD = −EN [log(AD(z))]− EF [log(1−AD(z))] (2)

LAD,adv = −EF [log(AD(z))] (3)

2.3. HiFiGAN-based Voice Decoder

Finally, we re-combine the accent-dependent pronunciation
encodings, the acoustic features, and F0 sequence. We use
a modified HiFiGAN to invert the processed features back to
audio waveform [14]. Our modifications to the HiFiGAN ar-
chitecture include adding an additional convolution layer with
kernel size 11, modifying the number of input channels to Hi-
FiGAN, and modifying the upsampling rates so that the out-
put length matches the source audio length.

We use the same multi-scale discriminator (MSD) and
multi-period discriminator (MPD) as in [14] to encourage the
synthesis of natural sounding audio. Mathematically, if we



consider the HiFiGAN discriminators, MSD and MPD, as one
discriminator HD, the HiFiGAN discriminators try to mini-
mize LHD in (4).

LHD = EX [(HD(x)− 1)2 + (HD(x̂))2] (4)

As in [14], the adversarial loss LHD,adv , and the feature
mapping loss functions, LFM applied to the rest of the model
in (5) and (6).

LHD,adv = EX (HD(x̂)− 1)2] (5)

LFM = EX [

T∑
i=1

1

Ni
||HDi(x)−HDi(x̂)||] (6)

where HDi, Ni denote the features and the number of
features in the ith layer of the HiFiGAN discriminators.

3. EXPERIMENTS

3.1. Data Sets

Our training data is summarized in Table 1. Our training
data set includes 8 different accents: American (AM), Ara-
bic (AR), British (BR), Hindi (HI), Korean (KO), Mandarin
(MA), Spanish (SP), and Vietnamese (VI). We consider AM
and BR accents as native and the rest foreign. Since our data
set is highly unbalanced across different accents, we assign
different weights to each subset. A weight of n assigned to
a subset means that audio clips from that subset will appear
around n times during one epoch of training. The weights can
also be found in Table 1.

3.2. Feature Processing

All audios are re-sampled at 16kHz and divided into 1.12s
segments for training. We use the YAAPT algorithm to ex-
tract the F0 sequence at a frame shift of 5ms and window
length of 20ms [20]. We up-sampled the outputs of the
pronunciation encoder by repeating each time frame 4 times
since text predictions from wav2vec2.0 are extracted at a
20ms frame shift.

3.3. Training Configurations

We trained our model with learning rate=0.0002 and decayed
our learning rate by factor of 0.999 every 1000 iterations. We
used the AdamW optimizer with β1 = 0.8 and β2 = 0.99.
For adversarial training, we optimized the accent discrimina-
tor for the first 50000 iterations before applying the adversar-
ial loss to the acoustic encoder. The model was trained for a
total of 3 million iterations using batch size 16.

3.4. Evaluation Set-up

We conducted mean opinion score (MOS) tests to evaluate
the performance of the proposed model on audio naturalness
and speaker similarity and an XAB test to evaluate the results
of accent conversion. A different set of 100 listeners partici-
pated in each listening test, and we recruited an additional 24
“experts” to evaluate accent conversion results. As in [9], all
audios were shuffled before being presented to the listeners.

We trained an ablation model by disabling the accent dis-
criminator. We used the same 20 prompt examples from the
VCTK dataset used by [9] for evaluation. In our case, instead
of using all examples from the Hindi accented female speaker
p248, we replaced the first 10 examples with the correspond-
ing ones from a male British accented speaker p226. We ex-
cluded audios from p248 and p226 from our training set so
that they are unseen speakers. Using our proposed model (P)
and the ablation model (AB), we converted the 20 audio clips
to American (AM), Hindi (HI), and Korean (KO) accents.

4. RESULTS

4.1. Audio Quality

The listeners were asked to rate the audio quality for the orig-
inal (O) and the converted (AB, P) clips on a five-point scale
(1-bad, 5-excellent). As seen in Table 2, the proposed model
maintains a comparable quality to the original audio. We hy-
pothesize it does better than the ablation model because ac-
cent invariance in the acoustic encoder improves generaliza-
tion.

4.2. Speaker Similarity

The raters first listen to a reference audio from each speaker
with different text content. For each audio clip, the listen-
ers were asked to rate how close did the voice sound to that
of the reference audio’s on a five-point scale. The listeners
were instructed to disregard the accent and recording condi-
tions. Table 2 demonstrates that most listeners believed that
the voice in the audios converted using the models sound al-
most as similar to the reference audio as other original audios
from the same speaker.

4.3. Accent Conversion

The listeners first listened to some reference audio clips with
the target accent. Then, for each pair containing an origi-
nal audio clip and its converted audio clip, the listeners were
asked to choose the one that has a closer accent to the ref-
erence audio. As seen from the results in Fig. 3, for every
target accent, the proposed model performs better than the ab-
lation model. Significantly more listeners preferred the con-
verted audios as sounding more American than the original
audios. However, the listeners seemed unsure about whether



Table 1. Training Data Descriptions [15, 16, 17, 18, 19]
Data Set Accents Duration(hrs) Speakers Prompts Weight
LibriTTS AM 585 2456 LibriSpeech text 1
VCTK BR 42 109 Newspaper clippings 6
SAA BR 3.7 579 “Please call Stella...” 10
L2-Arctic AR, HI, KO,

MA, SP, VI
24 24 (2 male and 2 female

per accent)
ARCTIC prompts 15

Indic TTS HI 20.06 2 (1 male and 1 female) ARCTIC prompts, Fairy
tales

2

Table 2. MOS Study Results (with 95% confidence interval)
Samples Audio Quality Speaker Similarity
Original 3.87± 0.07 4.28± 0.06
Ablation 3.27± 0.12 3.89± 0.10
Proposed 3.62± 0.09 4.05± 0.09

the converted audios sounded more Korean or Hindi, likely
because it is difficult to identify an accent after listening to
only a few audio clips. The goal of conversion to other for-
eign accents is to help a non-native listener understand some-
one with a different foreign accent or to create a better enter-
tainment value for the people knowledgeable of the desired
accent. Therefore, we recruited 24 additional “expert” partic-
ipants who were born and raised in USA, India, and Korea, to
judge the corresponding accents. The results shown in Fig. 4
indicate that the listeners who are very familiar with the tar-
get accent were confident that the proposed model converted
audios to sound like the target accent.

Fig. 3. Preference results from 100 random listeners. Incon-
clusiveness on accents other than American suggests that rec-
ognizing attributes of a specific accent may need more expo-
sure than obtained from listening to a couple reference clips.

Fig. 4. Preference results from raters having substantial expo-
sure to respective accents (4 raters per accent). With the ex-
ception of HI-to-HI conversion for p248, the listeners strongly
preferred the audios converted by our proposed model. Pref-
erence is stronger when converting from native to non-native
accents or vice versa.

5. CONCLUSION

In this paper, we presented a novel accent conversion model
that converts an unseen speaker’s utterance with an arbitrary
accent to utterances with multiple different target accents2.
The model is able to noticeably convert the accent of input
audios while preserving speaker identity and audio quality.
Future work may improve the perceptive accent accuracy of
the converted audio by predicting pitch based on the accent.
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