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ABSTRACT

In the current method for the sound field translation tasks based on
spherical harmonic (SH) analysis, the solution based on the additive
theorem usually faces the problem of singular values caused by large
matrix condition numbers. The influence of different distances and
frequencies of the spherical radial function on the stability of the
translation matrix will affect the accuracy of the SH coefficients at
the selected point. Due to the problems mentioned above, we pro-
pose a neural network scheme based on the dual-path transformer.
More specifically, the dual-path network is constructed by the self-
attention module along the two dimensions of the frequency and or-
der axes. The transform-average-concatenate layer and upscaling
layer are introduced in the network, which provides solutions for
multiple sampling points and upscaling. Numerical simulation re-
sults indicate that both the working frequency range and the distance
range of the translation are extended. More accurate higher-order
SH coefficients are obtained with the proposed dual-path network.

Index Terms— Spherical harmonic analysis, dual-path trans-
former, translation matrix, sound field reproduction.

1. INTRODUCTION

With sound field recording, processing, and reproduction techniques,
spatial audio enables the reconstruction of an acoustic environment
[1]. The high-order ambisonics (HOA) can realize the expression of
the three-dimensional sound field within a specific range [2]. The
higher-order coefficients can be acquired through spherical micro-
phone array (SMA) recordings [3]. Virtual reality applications de-
mand additional translation degrees of freedom, often referred to as
six degrees of freedom (6DoF).

A common way to implement 6DoF is to use multiple SMAs
distributed in three-dimensional space. The commonly used method
uses the mathematical properties of SH to convert the SH coefficients
obtained at the sampling points into the higher-order SH coefficients
at the selected point. In [4], Laborie et al. present the theoreti-
cal principle for estimating the SH coefficients, including the spatial
sampling and encoding aspects. Based on the translation theorem,
Samarasinghe et al. provide the solution for the global coefficients
using higher-order microphones (HOM) [5]. In [6, 7], according to
the category and location information of the sound source, Rafaely
et al. summarize the translation equation corresponding to different
situations. However, the numerical method is relatively complex and
suffers from the problem of ill-conditioned matrices under higher-
order conditions. Based on the idea of plane wave decomposition,
Wang et al. propose a solution without using the translation theorem

[8]. Ueno et al. formulate an estimate of the harmonic coefficients
based on infinite-order analysis by applying Bayes’ theorem [9, 10].
Both methods have achieved better results in cylindrical coordinates,
but the effect needs to be improved as the frequency increases. Fur-
thermore, there is a lack of experimental validation for the case in
the 3D space.

The ability of deep learning to model complex relationships be-
tween different representations has been applied to SH-based sound
field problems recently. To achieve higher bandwidth SH coeffi-
cients and alleviate spatial aliasing problems, networks are used to
model SH bases [11]. In the previous work, a U-Net-based genera-
tor is used to realize the upscaling of SH coefficients [12]. Given the
limitations of the traditional numerical solution, a neural-network-
based SH coefficient translation is proposed to achieve a more ac-
curate SH representation at different distances, different frequency
bands, and under complex sound source conditions in our work. The
experimental results show that the proposed network-based method
extends the working frequency range and obtains more precise trans-
lation coefficients under complex environmental conditions.

The rest of the paper is organized as follows: Section 2 intro-
duces the theory of translation matrix in the SH domain, and Section
3 describes the proposed dual-path transformer model. Experimen-
tal setup and results are reported in Section 4 and Section 5. Finally,
we conclude in Section 6.

2. THEORY OF TRANSLATION MATRIX

Consider the external far-field sound source situations. The sound
pressure in the spherical coordinate system can be decomposed into
the expansion of SH coefficients as

p(k, r) =
∞∑

n=0

jn(kr)

n∑
m=−n

Bm
n Y

m
n (θ, φ), (1)

where k is the wave number, r ≡ (r, θ, φ) is the spherical coordinate
system denoted by elevation and azimuth angles, θ and φ, together
with the radial distance r, p(k, r) represents the sound pressure at
r, jn(kr) is the spherical Bessel function, Y m

n (θ, φ) is the basis
function of SH, and Bm

n is the corresponding SH coefficient. Con-
sider the translation from a global origin to a local translated origin
r
′′
≡ (r

′′
, θ

′′
, φ

′′
), such that

r = r
′′
+ r

′
, (2)

where r and r
′
≡ (r

′
, θ

′
, φ

′
) represent the position relative to the

original global origin and the new coordinate center, respectively.
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According to the addition theorems [13], the translation from the
spherical Bessel functions to spherical Bessel functions is described
as

jn(kr)Y
m
n =

∞∑
n
′
=0

n
′∑

m
′
=−n

′

jn′ (kr
′
)jn′ (kr

′
)Y m

′

n
′ (θ

′
, φ

′
)

×
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n
′′
=0

jn′′ (kr
′′
)Y m−m

′

n
′′ (θ

′′
, φ

′′
)Cnmn

′′

n
′
m

′ ,

(3)

where Cnmn
′′

n
′
m

′ contains the multiplication of two Wigner 3-j opera-
tors. See [6] for details.

For each translation position r
′′

, the sound pressure is expressed
by a set of SH coefficients with r

′′
as the local coordinate center.

Assuming that the SH coefficients of the Q local coordinate systems
are truncated to order N

′′
, and the coefficients of the global origin

are truncated to order N . According to the addition theorems, the
relationship between the two types of coefficients can be established
through the translation matrix of the SH coefficients. The derivation
of this part is described in detail in [6]. The formula is expressed as

(b
′′
)T = Ttransb

T , (4)

where b
′′
= [B0

0(0), B
−1
1(0), B

0
1(0), ..., B

m
n(q), ...B

N
′′

N
′′
(Q−1)

] is a 1 ×
(Q(N

′′
+1)2) vector,Bm

n(q) represents the local spherical coefficient
of the order n and degree m for the q-th local coordinate system,
b = [B0

0 , B
−1
1 , B0

1 , ..., B
m
n ..., B

N
N ] is a 1 × (N + 1)2 vector, Bm

n

represents the global coefficient. The shape of the translation matrix
Ttrans is Q(N

′′
+1)2× (N +1)2. Each row element of the matrix

is expanded according to the order of the global origin system.

3. PROPOSED METHOD

In the traditional method, the relationship of SH coefficients of the
different coordinate centers is established through the translation
matrix. Theoretically, the coefficients of the global origin can be re-
alized by matrix inversion operation. However, in practice, due to the
problem of Bessel nulls [5], the matrix has a large condition number,
which seriously affects the results of numerical calculation. Ridge
regression can alleviate the problem of matrix singularity to a certain
extent [14], but in practical applications, different distance condi-
tions bring errors to the coefficients at different orders. We propose
a dual-path transformer-based SH coefficient translation network to
solve the above problems in our work.

3.1. Model Description

Fig. 1. Single-layer architecture of TT-Net.

A dual-path transformer-based network for translation named
TT-Net is proposed. More specifically, we take a sample at one lo-
cation as an example to illustrate our proposed network architecture
in detail. One layer of the TT-Net is shown in Fig. 1. The input
and output of the network are SH coefficients of different orders. In
our work, the input feature of SH coefficients is a K × (N + 1)2

matrix, where K is the total number of the frequency bins, and N is
the order of the SH. The transformer mentioned in the paper refers
to the encoder part. As mentioned in Eq. (3), for the SH transla-
tion, both radial spherical Bessel functions and angle-dependent SH
functions contribute to the translation process. Due to the decou-
pling of distance and angle, two mapping networks named J and Y
are constructed to replace the expression of Jn(kr) and Y m

n (θ, φ),
respectively. Y m

n (θ, φ) is only related to order and orientation, not
frequency. Therefore, the same constraints are used for the Y net-
work, the input is the angle information, and the output is the N -
order vector after the reshaping operation. Similar structural con-
straints are applied to the J network so that the output dimension
of the J network is consistent with the dimension of the spherical
Bessel function, that is, k × (N + 1). The output of the Dual-
Path Transformer (DPT) remains the same shape as the input SH
coefficients. The output of the DPT module serves as the input to
a transform-average-concatenate (TAC) layer [15] and a fully con-
nected (FC) layer. The TAC layer is used to integrate different SH
coefficients, while the FC layer is used for upscaling the coefficients
[16]. A residual connection is added between the TAC layer and the
Upscaling Layer to help the training of the network [17].

The network is connected by the structure shown in Fig. 1. The
order of the output of every single layer is larger than the input. The
last layer of the network no longer uses the residual connection and
upscaling, and the output of TAC from the last layer is used as the
final output of the entire model.

3.2. Dual-path Transformer Module

Fig. 2. Dual-path Transformer Module.

Dual-path transformer module has recently attracted much at-
tention and has achieved good performance in speech separation
[18, 19] and noise reduction [20]. The dual-path module used in our
work is shown in Fig. 2. The input conditions represented by dif-
ferent colors are consistent with Fig. 1. Taking the spherical Bessel
function as an example, for the same frequency bin k, Jn(kr) of dif-
ferent orders is related to the SH coefficients of the same frequency
bin. The coupling of coefficients and radial spherical functions at
the same frequency bin is achieved through the self-attention mech-
anism. Compared with the standard encoder part in the transformer,
a fully-connected layer is added to the last layer of the encoder to
integrate the SH coefficient and the J function. It also plays a role
in constraining the same input and output dimensions. The output
of the intermediate layer is transposed and concatenated with the



Y function, and a similar self-attention operation is performed, fol-
lowed by the FC layer.

4. EXPERIMENTAL SETUP

4.1. Datasets And Training Settings

During the translation process, information such as location, fre-
quency, and the number of sampling points will affect the results.
Therefore, different situations are taken into account in the simula-
tion data. For our subsequent applications, we use the fourth-order
SH coefficients as input, which means N = 4. The frequency bin
ranges from 100Hz to 3000Hz with an interval of 100Hz, which
means K=30. The coefficient of the global origin is N

′′
= 8. The

distance between the set sampling point and the global origin is ran-
domly sampled between 0.2m and 2.0m. In our experiment, plane
waves from 1 to 4 directions are randomly generated as the signal
source. The amplitude of the signal is randomly chosen from 0.1 to
1.0. Since the low-frequency system noise brings difficulties to the
solution of SH coefficients [21], noises of different signal-to-noise
ratios (SNR) are added to enhance the noise immunity of the model.
SNR varies from 10 to 30dB. The number of spatial sampling points
is set from 4 to 10. The minimum setting is four sampling points to
ensure the full rank of the translation matrix.

Networks are trained with mean squared error (MSE) loss. The
order of the output of each dual-path transformer module is one
greater than the input. Multi-head attention is introduced, and the
number of heads is the same as the current order plus one. For stable
learning, gradients are clipped to [-1.0, 1.0]. All models are trained
distributedly with 2 TITAN RTX with batch size 32. The learning
rate is initialized to be 3e-4 and halved with Adam optimizer training
[22]. For training stability, each data is normalized, and the number
of data sampling points in each batch is ensured to be the same. The
training data are trained sequentially from 10 to 4.

4.2. Evaluation Metrics

The evaluation is based on the similarity of the SH coefficients and
the sound field. Euclidean distance metric (EDM) and cosine simi-
larity (COSS) metrics are used to judge the difference between the
recovered and the ideal coefficients, respectively, where EDM gives
judgments from Euclidean space, and COSS provides judgments of
structural similarity.

EDM =
1

N

N∑
i=1

|ŷi − yi|2, (5)

COSS =
1

N

N∑
i=1

ŷi · yi
|ŷi| × |yi|

, (6)

N is the total number of test data, y is the SH coefficients of the
global origin, and ŷ is the estimated result. Besides, signal-to-
distortion ratio (SDR) is for evaluating the sound field based on the
SH coefficients. SDR is defined as [9],

SDR =
1

N

N∑
i=1

10 log10

∫
r∈V ui(r)

2dr∫
r∈V |ui(r)− ûi(r)|2dr

, (7)

whereN is the total number of test data, u and û represent the sound
pressure reconstructed with the ideal SH coefficients and the esti-
mated coefficients. SDR is calculated within a radius of 1.00m at
0.02m intervals. k representing frequency is omitted.

5. EVALUATION RESULTS AND DISCUSSION

5.1. Ablation Study

Table 1. Average results of 8 spatial sampling points.
Method Strategy COSS EDM SDR(dB)

LSM Regularization 0.101 0.068 -0.074
TT-Net(1) Lrg2Sml L2 0.334 0.058 0.827
TT-Net(2) Lrg2Sml L2 0.528 0.049 1.357
TT-Net(4) Lrg2Sml L2 0.732 0.043 2.037
TT-Net(4) Lrg2Sml L1 0.472 0.052 1.397
TT-Net(4) Sml2Lrg L2 0.411 0.056 0.793

The results of the ablation study are shown in Table 1. The test
data uses eight randomly selected spatial sampling points in the 3D
space with a 1m distance. The direction of the single sound source is
randomly generated in the 3D space. The number of test datasets is
600. The result is the average metrics of all frequencies. The method
of solving by inversion of the translation matrix in [7] is abbreviated
as the least square method (LSM). One-layer and two-layer architec-
tures shown in Fig. 1 are used for comparison to verify the optimal
effect of increasing the dual-path module step by step. Correspond-
ingly, the upscaling parts implement the mapping from order 4 to 8
or from other 4 to 6 with eight behind. The numbers in parenthe-
ses are the layers of the architecture. The number 4 indicates the
scheme is that the order increases sequentially from 4 to 8. Lrg2Sml
means that the network is trained with the number of spatial sam-
pling points from 10 to 4, while Sml2Lrg is the opposite. L1 loss
is chosen for comparison. The results show that Lrg2Sml helps the
training. Results also show that the performance decreases if fewer
DPT module is used. Although L1 loss function performs better in
some regression tasks [23], this is not the case in our work. The final
average results show that our proposed method is effective regarding
SH coefficients and the recovered sound field.

5.2. Experiments Results

5.2.1. Results for different SNRs

The results for different SNRs are shown in Fig. 3(a). From left
to right are the results of SDR, EDM, and COSS. Horizontal is the
frequency information. The TT-Net(4) with the best results is used,
and we use TT-Net for short. LSM is compared with our optimal
scheme. From the SDR results, it can be seen that the performance of
the LSM is degraded as the SNR decreases. In contrast, our method
performs consistently on SDR. The metrics of EDM and COSS show
that the results of the coefficients are in line with the previous discus-
sion. The noises cause outliers to be added to the numerical solution
results, which seriously degrades the results. On the contrary, our
proposed method results in noise immunity.

5.2.2. Results for different distances

The results for different distances of spatial sampling points are
shown in Fig. 3(b). Each test data uses eight randomly distributed
sampling points on an equidistant sphere. The number of test sam-
ples per distance is 100. COSS shows that the traditional method
works well at low frequencies. As the frequency increases, the
results turn worse due to the increase of kr, which is related to the
properties of spherical Bessel functions. The network method has



(a) Comparison for different SNRs. (b) Comparison for different distances.

(c) Comparison for different sampling nums. (d) Comparison for multiple sound sources.

Fig. 3. Experiments results under different conditions.

stable performance under a shorter than 1.00m condition. How-
ever, the performance degrades under long-distance conditions, and
there exists singularity in the frequency band below 1kHz and above
2kHz. According to the analysis of the SDR results, the recon-
structed sound field results remain the same, which indicates that the
results of singular values are located in the higher-order part leading
to little effect on the sound field near the origin.

5.2.3. Results for different nums of spatial sampling points

For experiments with different spatial sampling points, 4 to 13 spa-
tial sampling points are selected, and the number of test samples for
each condition is 100. We select four cases, with the number of 4, 7,
10, and 13 spatial sampling points for visualization. In LSM, using
more spatial sampling points reduces the singularity of the transla-
tion matrix, which is reflected in all three metrics, as shown in Fig.
3(c). As the number increases, the network also has a consistent
trend. Under the test conditions, the number outside the training set
achieves better results. The results show that the proposed method
can increase the stability as the number increases and confirms the
TAC module’s role.

5.2.4. Results for multiple sound sources

The results for the multi-sources condition are shown in Fig. 3(d).
In LSM, the influence of sound sources in different directions only
affects the SH coefficients, which does not affect the solution of the
translation matrix. Therefore, the traditional method is consistent.
That is, the number of sound sources has little effect. The network
is tested with 2 to 6 different numbers of sound sources. The results
show that the SH coefficients of different numbers of sound sources
tend to be consistent. The performance of our method does not de-
grade as the number of sound sources increases. The test sets with
more than four sound sources are consistent with the other results
on the metrics of EDM and COSS. It should be noted that there are
specific differences in the results of the proposed method at different
frequencies, which will be further analyzed in the follow-up work.

Fig. 4 visualizes an example of the sound pressure at 1000 Hz
and 1800 Hz. The figure shows the sound pressure distribution on a
horizontal plane of 2m×2m. Two sound sources in this example are
oriented at 0◦ and 225◦. Sound pressures expanded by the output of

(a) 1000Hz.

(b) 1800Hz.

Fig. 4. Visualization of the sound pressure in the x-y plane.

TT-Net, LSM, and ideal SH coefficients are shown from left to right
in each case. The results show that the network’s performance is
stable and better under different frequency conditions.

6. CONCLUSION

We propose a sound field recording method based on a dual-path
transformer network. The method applies to the translation of SH
coefficients. This work continues our exploration of optimizing SH
analysis using neural networks. The proposed method reduces the
occurrence of singular solutions in solving SH coefficients. The sim-
ulation results of different frequency ranges, SNRs, and under more
complex sound source conditions show that the method is more ac-
curate than the traditional method to recover the SH coefficients. Un-
der the same conditions, the proposed method brings a 3dB improve-
ment in the SDR metrics. Detailed studies remain as future work for
applications in real-world scenarios containing multiple scattering
rigid balls. Future work will be tested in real scenarios to provide a
feasible solution for the realization of 6DoF.
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