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ABSTRACT

Audio-driven talking face has attracted broad interest from academia
and industry recently. However, data acquisition and labeling in
audio-driven talking face are labor-intensive and costly. The lack of
data resource results in poor synthesis effect. To alleviate this issue,
we propose to use TTS (Text-To-Speech) for data augmentation to
improve few-shot ability of the talking face system. The misalign-
ment problem brought by the TTS audio is solved with the intro-
duction of soft-DTW, which is first adopted in the talking face task.
Moreover, features extracted by HuBERT are explored to utilize un-
derlying information of audio, and found to be superior over other
features. The proposed method achieves 17%, 14%, 38% dominance
on MSE score, DTW score and user study preference repectively
over the baseline model, which shows the effectiveness of improving
few-shot learning for talking face system with TTS augmentation.

Index Terms— few-shot, soft-DTW, HuBERT, low-resource

1. INTRODUCTION

Recent years have witnessed digital human becoming a popular topic
in academia and industry. It has numerous applications in the media
and entertainment industry, including virtual news reporters, virtual
YouTubers, virtual idols, and so on. In order to generate a high-
quality digital human, it is crucial to synthesize natural face motions,
i.e., talking face generation. There are two main categories of talk-
ing face, video-driven and audio-driven. Video-driven talking face,
also known as facial reenactment, focuses on driving a portrait with
a reference video [1, 2, 3]. However, video-driven talking face some-
times suffers from the unstable reenactment of face motions. Audio-
driven talking face aims to synthesize face motions corresponding to
the given audio and is more stable in face motion synthesis [4, 5, 6].

Face motion representation in audio-driven talking face is a key
factor at the system level. Commonly used face motion representa-
tions in the pipeline include landmark-based formats like face mesh
[7, 8] or motion-based formats like blendshape [5]. Acquiring these
types of corpus is challenging, as they are recorded by professional
devices, which hinders their wide application. Although some mo-
bile devices can record such type of data in a convenient way, the
collected data is not accurate because of the limited accuracy of de-
vices. As a result, data need to be artificially refined before training,
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Fig. 1. The overall architecture of the proposed TTS-augmented
audio-driven talking face.

which consumes high labor costs. Training with few-shot learning
remains to be investigated.

With the development of text-to-speech (TTS) [9, 10, 11], off-
the-shelf TTS systems are able to synthesize high-quality audio, and
are frequently utilized for data augmentation to improve speaker
diversity in various speech-related tasks, such as speech recogni-
tion [12] and speaker verification [13]. Besides, pre-trained mod-
els (PTMs) trained on large amounts of unlabeled audio data shows
promising potential for audio feature extraction. Therefore, combin-
ing TTS data augmentation and PTMs is a feasible method to boost
low-resource talking face generation.

In this paper, to alleviate the issues above and improve the ro-
bustness of the talking face, we adopt a TTS augmentation strategy
to produce extra training data and combine them with a few labeled
data. To address the misalignment issue that existed in the newly-
generated data, we introduce soft-DTW [14], a differentiable for-
mulation of dynamic time warping (DTW) [15] algorithm, to align
the training data. To the best of our knowledge, this loss function
is first introduced to the talking face task. Then, we investigate a
robust audio feature utilizing HuBERT [16] model. The weighted
sum of features is adopted to fully utilize the underlying information
of audio. Experiments show that our method achieves significant
improvements on a small training corpus of ten randomly picked ut-
terances for about one minute. Code and demo are released, and we
hope our method will contribute to the community.
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2. RELATED WORKS

2.1. Audio-driven Talking Face

Audio-driven talking face aims to generate face motions aligned with
the input speech signal. There are two types of audio-driven talking
face systems in the literature. One is the modularized system, and
the other is the end-to-end system. Although there are active re-
search efforts and promising research progress reported in the end-
to-end talking face system [17], the modularized is still the main-
stream system used in practice so far, which is also the main focus
of this paper. A typical pipeline of the modularized system con-
sists of two modules, first mapping the acoustic features to some
face motion representations and then rendering video from the pre-
dicted face motion representation. There are various options for the
acoustic features and face motion representations in previous works.
Thies et al. [4] utilized DeepSpeech [18] to extract the audio feature,
and a CNN-based model was followed to map the audio feature to
the 3D Morphable Model (3DMM) features, which was then used to
generate the neural texture, finally image2image translation method
was adopted to render photo-realistic videos. Chen et al. [5] used
phonetic posteriorgrams (PPGs) along with pitch and energy as au-
dio features, which were mapped to blendshapes with a mixture-of-
experts (MOE) Transformer, and finally rendered into animation by a
rendering engine. Zhou et al. [6] disentangled linguistic information
and speaker information of the audio by a voice conversion model
AutoVC [19] and applied the LSTM network to predict facial land-
marks, and finally synthesize photo-realistic videos by image2image
translation or synthesize animation by face warping.

2.2. HuBERT

With the explosive growth of the amount of raw audio data on the In-
ternet, the effective utilization of these unlabeled data has become a
research hotspot. Pre-trained models (PTMs) using self-supervised
learning have achieved tremendous success in a range of speech-
related tasks [20, 21, 22, 16, 23, 24]. Among them, HuBERT is one
of the best-performing models in the field of speech representation
learning. In the pre-training stage, HuBERT is trained by predicting
discrete target labels with a BERT-like prediction loss. Discrete la-
bels are obtained by performing K-means clustering on raw audio it-
self without the use of any labeled data. In the fine-tuning phase, su-
pervised learning is used to adapt the model to a specific downstream
task, such as automatic speech recognition (ASR). The recent SU-
PERB benchmark [25] demonstrates that the features extracted from
self-supervised pre-training models exhibit universal superior per-
formance over traditional handcraft acoustic features such as MFCC
on various downstream tasks.

2.3. Dynamic Time Warping

Dynamic Time Warping (DTW) [15] is a dynamic programming al-
gorithm that decides the best alignment of two sequential data and
quantifies the degree of similarity. DTW is able to calculate the min-
imum distance of two sequences with different lengths by warping
the time axis of the series and performing a dynamic programming
algorithm. It was originally designed to tackle the problem of speak-
ing rate variation under the same speaking pattern in spoken word
recognition tasks [15], and successfully quantified the similarity of
the length variable speech sequence with the word template. Donald
et al. [26] used DTW in pattern-matching problems and found that
DTW shows excellent potential in finding patterns in time series.

3. METHODS

3.1. Model Architecture for TTS-augmented system

As shown in Figure 1, the source audio and TTS audio are fed to
the feature extractor module for acoustic feature extraction, followed
by a lightweight BiLSTM-based backbone network for face motions
prediction. We use blendshape format as the face motions represen-
tation in this work. Finally, UE4 (Unreal Engine 4) is adopted to
render the predicted blendshapes sequence into animation 1.

Augmented Audio-animation Pairs Generation. The aug-
mented audio-animation pair is generated by converting the script of
the source audio to the TTS audio with an off-the-shelf TTS system
and taking the blendshapes matching with the source audio as the la-
bel of the TTS audio. However, the TTS model has its own duration
predictor, which results in the duration variation between the source
audio and the TTS audio at the word and the sequence level, and
brings difficulty in aligning the TTS audio and the reference blend-
shapes. As a result, the reference blendshape of each acoustic feature
frame is not determinate as that in the source audio-animation data.
The problem of duration misalignment in the TTS audio-animation
pair will be solved in 3.2.

Feature Extractor. To better utilize the underlying structure
information lied in the audio, a pre-trained HuBERT[16, 27] model
is adopted as feature extractor, and the hidden layer outputs of each
layer are weighted and summed to obtain the acoustic feature as the
input for the talking face system, which can be formulated as:

f t =

N∑
i=1

(αi ∗ hti) ,

N∑
i=1

αi = 1

Where hti denotes the i-th layer output of HuBERT at time t, N
is the total number of hidden layers in HuBERT, αi represents the
learnable weight of hti , and f t is the final acoustic feature at time t.

Backbone Network. We first adopt a convolutional mod-
ule to downsample the features extracted by HuBERT from 50Hz
to 25Hz aligned with blendshapes. The convolutional downsam-
pling module is a 2-layer 1-D convolutional neural network. The
downsampled features are then fed to a 2-layer lightweight BiLSTM
network, followed by a linear layer for the blendshapes sequence
prediction.

3.2. Soft-DTW Loss for TTS Audio Alignment

DTW can measure the distance of two sequences with different
lengths, which fits the case in our task as the TTS audio and the
ground truth blendshapes sequence are not guaranteed to have the
same length. However, DTW is nondifferentiable because of the
min operation in the dynamic programming process. In order to
derive a differentiable form of DTW computation, soft-DTW [14]
is adopted. The soft-DTW loss allows soft alignment between the
predicted blendshapes sequence derived from audio and the ground
truth blendshapes sequence, and so as to enable the use of TTS
data with variable lengths. To the best of our knowledge, this loss
function is first introduced to the talking face task.

To formulate the soft-DTW loss, we first consider the DTW dis-
tance of the predicted blendshapes sequence (b̂1, b̂2, · · · , b̂m) and
the ground truth blendshapes sequence (b1, b2, · · · , bn). Through
the DTW computation, tokens from two sequences will be aligned
in pairs, and a feasible path can be defined as an ordered sequence
of token pairs that submits to some restrictions, the target of DTW

1The discussion of rendering is out of scope and is not detailed here.



is to find a feasible path with minimum cost. To acquire the formu-
lation of DTW, denoting the k-th paired item in a specific path as
(b̂ik , bjk ), two restrictions in DTW are exerted as follows:
ik+1 − ik ≤ 1, jk+1 − jk ≤ 1 · · · · · · continuity

ik+1 − ik + jk+1 − jk ≥ 1 · · · · · ·monotonicity
(1)

Denoting δij as the distance of token b̂i and bj . In our work, Eu-
clidean distance is adopted to measure the distance of two tokens,
so δij = ||b̂i − bj ||2. The cost of a feasible path is the sum of the
distances of all paired tokens in the path. To avoid the enumeration
of all feasible paths, dynamic programming is adopted to find the
optimal path. Denoting the cost of the optimal DTW path between
sequence (b̂1, · · · , b̂i) and sequence (b1, · · · , bj) as ri,j , and our
target is equivalent to find the minimum rm,n. According to Eq.1,
state transition equation of the optimal path cost is formulated as:

ri,j = δij +min{ri−1,j , ri,j−1, ri−1,j−1} (2)
The min operator prevents the differential operation of ri,j . To

solve this problem, soft-DTW introduces a smoothed formulation of
the min operator, that is:

γ

min {d1, . . . , dn} :=

{
mini≤n di, γ = 0

−γ log
∑n
i=1 e

−di/γ , γ > 0
(3)

When γ > 0, minγ {d1, . . . , dn} is differentiable, and the
closer γ is to 0, the closer minγ {d1, . . . , dn} is to min {d1, . . . , dn}.
Soft formulation of Eq. 2 can be derived from Eq. 3, where ri,j is
differentiable:
ri,j = δij − γ log(e−ri−1,j/γ + e−ri,j−1/γ + e−ri−1,j−1/γ) (4)

Finally, the soft-DTW loss is derived as follows, the calculation of
rm,n follows the state transition equation Eq. 4, which requires a
time complexity of O(mn).

Lsoft−DTW = rm,n (5)
According to the chain rule, ∂L

∂δij
can be calculated from Eq. 4,

please refer to [14] for more mathematical details of gradient calcu-
lation. With the back propagation of ∂L

∂δij
, model parameters will be

updated during the training process.

4. EXPERIMENTS

4.1. Experiment Settings

Table 1. Speakers allocation of datasets

config name train validation test

REC record record

recordTTS1 1 TTS speaker 1 TTS speaker
TTS13 13 TTS speakers 13 TTS speakers

REC+TTS13 record+13 TTS speakers record

Dataset Description We use a Chinese dataset from the 2022
text&audio-driven talking face competition of World Artificial In-
telligence Innovation (AIWIN)2. The dataset contains three splits,
including train (276 sequences, 29m8s in duration), validation (79
sequences, 9m58s in duration), and test set (85 sequences, 10m30s
in duration). There is a single female speaker in this dataset (denote
the audios of this speaker as “record”, the scripts of audios are avail-
able), and the neural TTS system from Microsoft Azure is used for
TTS audio generation. Four different dataset configurations are used
for the experiment, they are REC, TTS1, TTS13, and REC+TTS13
in Table 1, where “record” are recorded audio synchronized with the

2http://ailab.aiwin.org.cn/competitions/69

ground truth animation, while TTS audios are variable in duration
and are not aligned with the ground truth animation. All dataset con-
figurations take the audio-animation data from the recorded audio as
the test set for a fair comparison.

Experiment Setups For each experiment, we trained the
model for 30 epochs and selected the best model by evaluating
soft-DTW loss on the validation set. Finally, we render the out-
put animations from the predicted blendshapes to videos by Unreal
Engine 4 (UE4). The demo can be found on our project page.

Evaluation Metrics To analyze experiment results, we per-
formed objective and subjective evaluations. During the objective
evaluation, the MSE and DTW scores of models are tested on the
“record” test set. The audios and animations in the “record” test set
are strictly aligned, and the MSE score is able to average the dis-
tance between each aligned token pair, so MSE score quantifies the
similarity of sequences at the frame level. As previous research [26]
demonstrated DTW’s capability of finding patterns in time series, the
DTW score is introduced additionally and is expected to reflect the
overall performance at the sequence level. For the subjective evalu-
ation, a user study in the form of AB tests is conducted. In the AB
tests, we presented volunteers with animations predicted by different
models and asked them to choose the animation that synchronizes
with the background audio better. The audios used in the AB tests
consist of 2 Chinese News report audios, 1 Chinese “record” audio,
1 Chinese TTS audio, and 1 English audio. We collected 41 pieces
of feedback in total to calculate the preference rate for each model.

4.2. TTS Data Augmentation

In the following experiment, the effectiveness of TTS data augmen-
tation on the low-resource scenario will be explored. The baseline
model is trained on ten sequences (70s in duration) from the REC
dataset. In contrast, TTS audios from 13 other speakers are gener-
ated based on the transcription of 10 sequences, and are combined
with the recorded audios to enhance the baseline talking face system
with the soft-DTW algorithm. The experiment results can be found
in Table 2.

Table 2. Objective and subjective results of models trained by
recorded audios, recorded audios + TTS audios of 13 speakers on
merely 70 seconds labeled data

Metrics REC REC+TTS13

MSE score 0.00473 0.00391
DTW score 0.68819 0.54433

User study preference rate 31.0% 69.0%

According to the results, the TTS augmented system yields con-
sistent and noticeable performance improvement over the baseline
in objective and subjective evaluations. The rendering results of our
system are also satisfactory, which demonstrate that our proposed
method can build a decent audio-driven talking face system with
merely 70 seconds of labeled audio-animation data. For more in-
formation, readers are referred to the demo on the project page.

4.3. TTS-driven talking face

The next experiment is conducted to compare the performance of
the talking face system trained on TTS audios and that trained on
recorded audios. To this end, three systems were trained based on
REC, TTS1, and TTS13 datasets as defined in Table 1. The experi-
mental results are shown in Table 3.

http://ailab.aiwin.org.cn/competitions/69


Table 3. Objective and subjective results of talking face models
trained on recorded audios, TTS audios with one speaker, TTS au-
dios with 13 speakers on 29m8s training data

Metrics REC TTS1 TTS13

MSE score 0.00349 0.00420 0.00378
DTW score 0.46135 0.53501 0.49961

User study preference rate 61.0% - 39.0%

According to the objective and subjective results, the talking
face model trained on the TTS data is slightly behind that trained on
recorded audio, which is expected as the latter adopted the synchro-
nized audio, and the model is evaluated in the matched recorded au-
dio. Despite this gap, the performance on TTS13 is still impressive,
as there is zero synchronized recorded speech used during training.
It is also noteworthy that the TTS13 system outperforms the TTS1
system, which indicates that the increase of diversity in the train set
helps to improve performance. The result that TTS-driven talking
face system is able to achieve satisfactory performance demonstrates
the effectiveness of combining TTS audio with soft-DTW loss in the
audio-driven talking face from another aspect.

4.4. Model Robustness

Ablation study on Feature Robustness. Weighted sum of Hu-
BERT features is adopted in the proposed method. To validate the
robustness and superiority of the HuBERT feature, we compared the
talking face models with different types of audio features in various
amounts of labeled data. The audio features include HuBERT fea-
ture, MFCC, phonetic posteriorgrams (PPGs), where PPGs are the
last layer output of an ASR model trained on the Chinese speak-
ing corpus AISHELL-2 [28]. The results are shown as Figure 2.
It turns out that our HuBERT feature significantly and consistently
outperforms the other two types of features and yields the best per-
formance. More details can be found on the project page.

Fig. 2. MSE score of models trained by HuBET, MFCC, PPGs fea-
tures in data resource of 10, 20, 30, 40, 50 training sequences

Ablation study on Loss Function Effectiveness. The next
experiment is to demonstrate the effectiveness of the soft-DTW loss
in comparison with the conventional L1 and L2 losses, which are
commonly used on talking face tasks. During the experiments, the
dataset configuration is fixed as REC. Objective evaluation results
for models trained by different loss functions are shown in Table
4. We can find that models trained by L1, L2, and soft-DTW yield
similar MSE scores, which indicates that the soft-DTW loss has
comparable fitting performance with L1 and L2 losses at the frame
level. Meanwhile, the model trained by soft-DTW exceeds L1 and
L2 losses largely on the DTW score, indicating it has the potential

to better predict sequences with similar shapes as the ground truth.
To compare the ability of fitting sequence shape, we randomly pick
a piece of audio in the test set and plot the “JawOpen” value(a di-
mension of blendshapes). Figure 3 shows that model trained by soft-
DTW is better at predicting the peaks in a blendshapes sequence,
which is expected to result in a more expressive rendered animation.

Table 4. Performance of models trained by L1, L2, soft-DTW losses

Metrics L1 L2 soft-DTW

MSE score 0.00344 0.00351 0.00349
DTW score 0.51082 0.55999 0.46135

Fig. 3. JawOpen value change trend of ground truth and value pre-
dicted by models trained with L1, L2, soft-DTW losses

Ablation study on Model Architecture. To further verify
the effectiveness of our method, we also changed the backbone net-
work from BiLSTM to GRU, RNN and Transformer, and respec-
tively trained models with or without TTS data augmentation. The
results are shown as Table 5, TTS data augmentation methods show
superiority on all of the 4 architectures.

Table 5. MSE score of models with different network architectures
trained by recorded audio, recorded audio + TTS audio of 13 speak-
ers on merely 70 seconds labeled data

BiLSTM GRU RNN Transformer

w/o aug 0.00473 0.00438 0.00447 0.00896
with aug 0.00391 0.00406 0.00409 0.00632

5. CONCLUSION

We have developed a TTS data augmentation method in talking face
tasks by producing augmented audio-animation pairs with a TTS
system, and solved the misalignment problem brought by TTS audio
with the introduction of soft-DTW loss. The weighted sum of Hu-
BERT features is adopted to fully utilize the underlying information
of audio. From objective and subjective experiments, our proposed
method is proven to boost the few-shot ability of a talking face sys-
tem in low data resources. For future studies, we are going to apply
our TTS data augmentation method in other cases of talking face
generation, such as synthesizing photo-realistic talking face. Hope-
fully, our method will serve as an alternative for increasing speaker
diversity and improving few-shot ability in talking face tasks.
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