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ABSTRACT

Audio event detection is a widely studied audio processing task,
with applications ranging from self-driving cars to healthcare. In-
the-wild datasets such as Audioset have propelled research in this
field. However, many efforts typically involve manual annotation
and verification, which is expensive to perform at scale. Movies
depict various real-life and fictional scenarios which makes them
a rich resource for mining a wide-range of audio events. In this
work, we present a dataset of audio events called Subtitle-Aligned
Movie Sounds (SAM-S). We use publicly-available closed-caption
transcripts to automatically mine over 110K audio events from 430
movies. We identify three dimensions to categorize audio events:
sound, source, quality, and present the steps involved to produce a fi-
nal taxonomy of 245 sounds. We discuss the choices involved in gen-
erating the taxonomy, and also highlight the human-centered nature
of sounds in our dataset. We establish a baseline performance for
audio-only sound classification of 34.76% mean average precision,
and show that incorporating visual information can further improve
the performance by about 5%. Data and code are made available for
research at https://github.com/usc-sail/mica-movie-audio-events

Index Terms— Audio Event Detection, Movies, Audio Recog-
nition, Audio Visual Dataset

1. INTRODUCTION

Audio events are naturally occurring non-verbal sounds produced
by humans/objects. Robust detection of such audio events can re-
veal information about one’s acoustic environment, their psycholog-
ical state, and help automate rich transcription of multimedia data.
Audio event detection (AED) is used in a wide range of domains,
including context-aware smart device applications such as in smart-
phones [[1], smart-speakers [2] and self-driving cars [3| 4]], acoustic
monitoring for health and well-being applications [5} 6] as well as
large-scale multimedia indexing [7, |8]. Recently, the introduction
of large-scale “in-the-wild” datasets such as Audioset [7] and VG-
GSound [9]] has enabled prolific AED research. Neural-network rep-
resentations learned over Audioset have been used for several audio
classification tasks such as emotion recognition [[10], gender iden-
tification [11] and music classification [10l [12]. However, curating
such datasets usually involves manual intervention at multiple stages
— during data collection, labeling and taxonomy generation. Further-
more, data collected from YouTube sources are subject to attrition
due to videos being taken down or made private.

As sound effects, audio events form an integral component
of the movie audio stream. Deliberate placement of sounds and
background-score in a movie scene helps construct a rich narrative
and elicit the intended emotional response from viewers. While
a large fraction of sound-effects in movies are naturally produced
(human/animal vocalizations, music, etc.), some sounds, known as
“Foley sounds” [13] are added in post-production. Foley involves
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Fig. 1. Closed caption showing audio events occuring off-screen in
a movie

the use of ‘everyday’ objects to create sound effects that imitate nat-
urally occurring audio events in different ambient environments; be
it the use of snapping celery to imitate the sound of breaking bones,
or popping the bottom of trashcans to amplify the sound of heart-
beaty’} Foley is an effective tool that enables simple and inexpensive
reproduction of such sounds. It allows for the possibility of audio
events that may not be commonly found in the aforementioned data
sources (e.g., vehicles crashing, light footsteps, gunshots). Further-
more, it was shown that Foley sounds are nearly indistinguishable
from their naturally produced counterparts [[14], which makes it
useful for developing AED models.

Closed-captions (CC) are time-aligned transcriptions of charac-
ter dialogues and sound effects. These captions are mandated for
several broadcast media, including movies and TV-shows, in an ef-
fort to make media more accessible to the hearing-impaired and non-
native speakers. Following the guidelines provided by the Described
and Captioned Media Program (DCMP) [15], audio captioners are
expected to label audio events that are deemed relevant to the plot
of the movie/TV-show. Therefore, existing captions can be used to
obtain audio-events from movie data in a precise manner.

The contributions of our work are three-fold:

1. We use simple and scalable methods to automatically extract au-
dio captions from movies and categorize an audio event along the
dimensions of sound, source and quality.

2. We propose a flat taxonomy of sounds, decoupled from their
sources. Unlike previous AED taxonomies, this enables us to group
together acoustically similar sounds from different sources.

3. We leverage visual-cues using early multimodal-fusion of audio
and video features in a transformer setup to establish baseline audio
event detection performance on our dataset.

The rest of the paper is organized as follows: Section [2] dis-
cusses existing resources and methodology. In Sec[3] we outline the
taxonomy generation process using subtitle tags and compare with
audioset taxonomy In Sec. ] we describe the methods used to de-
velop baseline AED models on our dataset.

Iblog.storyblocks.com/inspiration/foley-sfx-everyday-household-objects
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2. RELATED WORK

Data Resources: Audioset [7], one of the first large-scale AED
datasets, includes over 2-million clips with weakly-tagged audio-
event classes. The audioset ontology, is the most comprehensive tax-
onomy of audio-events, comprising 527 different audio-events in a
hierarchical structure based on the source of an audio-event. Human-
raters were used to label the Audioset data at clip-level.

In order to reduce the manual effort involved in labeling, VG-
GSound [9] dataset was proposed, which used a scalable pipeline
of mining visually-grounded audio events from YouTube. Existing
machine learning models were used to automatically verify presence
of visual signature, and to reject possible false-positive audio classes
during data curation. However, a shortcoming is that such methods
still do not guarantee occurrence of a tagged sound-event, allowing
for some label-noise in exchange for reduced manual effort. Further-
more, it is often the case that an audio-event is heard but not shown
on screen, a scenario that is not covered by the VGGSound dataset.

FSD50K [16] consists of over 50K audio events collected in-
the-wild, which are annotated across 200 audioset classes on the
freesound platform [17]]. Apart from these, several smaller-scale
AED datasets exist such as Mivia [[18]], DESED [19], UrbanSound8k
[20]. These are typically targeted toward a specific subset of sounds
such as indoor, outdoor and rare audio events.

Table 1. Details of different audio event detection datasets. Here,
SL refers to whether the audio event labels are precise or are weakly-
labeled, PA refers to whether the dataset is publicly available or not;
FSD - Freesound platform.

Dataset Domain Clips | Classes | SL | PA | Annotation
Mivia [18] Synthetic | 6K 3 v v Manual
UrbanSound8k [20] | FSD 87K | 10 v v Manual
DESED [19 FSD 12K 10 v v Manual
FSD50K [16] FSD 50K 200 X v Manual
Audioset [7] Youtube 2.1M | 527 X X1 | Manual
VGGSound [9] Youtube 200K | 309 X X Automatic
SAM-S Movies 110K | 191 v v Semi-automatic

AED: Until recently, convolutional (CNN) models have been used
widely for AED. A light-weight version of VGG-16, called VGGish
[21] was the first benchmark model for AED on Audioset. Sev-
eral commonly used CNN architectures were compared on Audioset
[10], and it was shown that light-weight CNNs can obtain compa-
rable performance to their larger counterparts. More recently, trans-
former architectures such as VATT [22] and AST [23] have shown
state-of-the-art (SoA) performance for audio-only AED. VATT used
a self-supervised contrastive loss to pretrain general multimodal rep-
resentations, which were then finetuned for AED. AST incorporated
state-of-the-art vision transformers [24] in AED using spectrogram
features.

There have been a few audio-visual methods proposed for audio
event detection and localization. Mid-level attention based fusion
was used on audio-visual streams with CNN backbones [25]]. An op-
timal multimodal fusion mechanism, called gradient-blending [26],
was proposed to address variable overfitting rates across modalities.
More recently, attention-bottlenecks in multimodal transformer ar-
chitectures have been proposed [27]], showing SoA AV-performance
on Audioset using early-fusion. Cross-modal attention mechanisms
have been used for audio-visual localization of event sources, and
weakly-supervised detection [28 29, |30].

2Youtube policy: https://www.youtube.com/static?gl=US &template=terms
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Fig. 2. Annotation examples for sound, source and quality catego-
rization in movie audio events

In the context of multimedia, there have been limited works that
have analysed audio events. Gunshot and explosion classification
was studied based on dictionary learning from MFCC features [31].
Audio event change detection was explored via clustering methods
in a set of 8 movies [32]].

3. SUBTITLE ALIGNED MOVIE SOUNDS (SAM-S)

The SAM-S dataset we introduce in this work comprises 430 top-
grossing Hollywood films from the years 2014 to 2018. In order
to mine audio events, subtitle files for each of the movies were ob-
tained automaticall Closed-captioned subtitles extracted in this
manner contain time-aligned character dialogues and plot-relevant
event tags. It is important to note here that closed-captions are not
exhaustive in labeling all audio events that occur in a movie, i.e.,
the tagging process has low-recall. However, the tagged captions
are accurate in terms of the labeled sound, i.e., high-precision. This
precision-recall trade-off means that while we lose potentially useful
data, we ensure minimal additional human effort for annotation and
cleanup, and a large-enough set of sounds to develop and evaluate
AED models.

These tags are typically enclosed in braces. We automatically
extract these tags and the associated time-stamp from the subtitle
file. In total, we obtain just over 116K subtitle tags, of which 20,817
are unique. These subtitle tags are descriptive in nature, and in-
clude information about the sound, source and quality of the audio
event occurring (see Figure[2). While information about sound is al-
ways present, often the source and quality of the audio event are not
tagged. In fact, following DCMP guidelines, captioners are expected
to label the source of the sound with the exception of the instances
where the source is clearly visible on-screen. Out of the 21K unique
tags, 1.5K are unigrams - usually indicating only the sound, 11K are
bigrams - which include the sound and source, and the rest are n-
grams, n > 3, which could refer to the quality of the audio event
or multiple simultaneously occurring events. Due to the presence
of source-ambiguous audio events in our data, we chose to adopt a
flat taxonomy as opposed to a hierarchical one as in [7l], which we
discuss in more detail in Sec.

3.1. Taxonomy generation

The following steps outline the procedure to label, refine and con-
dense our final taxonomy: Categorization: We conducted an anno-

3https://github.com/ruediger/VobSub2SRT
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Fig. 3. Examples of sounds originating from multiple sources in
movies: (Top) "Whistling” sound from different sources in SAM-S,
(Middle) ”Cracking”, (Bottom) "Buzzing”

tation task using Mechanical Turk in order to categorize a given sub-
title tag into ‘source’, ‘sound’ and ‘quality’ classes. A few sample
examples of the annotation task is provided in Figure P} Annotators
were explicitly asked to only sample from the words in the tag, and
not introduce/interpolate from context (f.e, a subtitle tag of "flicker-
ing”, would only have a sound of “flickering” and no source). Three
annotations were used for each tag, and majority voting was used for
each category. All ties were resolved by an author. For this task, we
chose the set of subtitle tags that occur at least 5-times in the dataset.
This set of 2161 tags covers 80% (~91K) of the audio-visual events
that occur in the dataset.

Lemmatization: For each of the categories, the set of annota-
tions obtained were lemmatized using an opensource NLP-toolkit
- spaCyEl The lemmatization process was manually verified and
errors were corrected by an author. Following this, a total of 254
sources, 254 sounds and 115 qualities form the initial taxonomy
of our dataset. Automatic tagging: Next, we created a dictionary
mapping the original words in the subtitle tags to the transformed
version for each of the categories. Using this dictionary, we attempt
to automatically label the ~25K tags which were left out of the
manual annotation process due to low frequency. In cases where
both sound and source were detected, an additional check was added
to ensure that the sound-source combination was seen in the manual
annotation-scheme. New combinations were disregarded as labeling
error and such samples were not used. Any audio event without
a sound tagged was discarded. We were able to automatically tag
around 10K more sounds and 5K sources in this manner.

Label set refinement: We do a final manual pass of the unique
sound and source tags and combine classes that were not taken care
of by the lemmatization, e.g., “laugh” and laughter”, “explode” and
“explosion”, and “’thunder” and “thunderclap”. We use a named en-
tity recognizer’[to detect names of persons and merge into a single
source class. The resultant dataset consists of 95,452 samples cov-
ering 101,311 sounds from 245 classes, 21,460 sources from 183
classes and 7212 qualities from 93 classes.

3.2. Acoustic and Semantic grouping of sounds

Several audio event ’sounds” in our dataset can be associated with
multiple distinct sources (See Fig. [3). For example, the sound

4https://spacy.io/api/lemmatizer
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Fig. 4. a) Number of classes in each category in the Audioset taxon-
omy, b) Venn diagram for human-centered audio events in Audioset
(Blue) and SAM-S (Yellow)

of buzzing is associated with different sources - flies/insects, cell-
phone, doorbell and alarm, in our dataset. The sounds of a cell-phone
buzzing and an alarm buzzing can be considered to be acoustically
similar, so can the sounds of flies and bees buzzing. However, the
buzz sound of a fly/insect has distinct acoustic signature related to
its frequency spectrum and timing characteristics that distinguishes
it from the cell-phone or alarm buzzes. In a semantic sense, these are
all generally referred to as buzzing. Hence, for modeling purposes,
one of two options can be considered: 1) Retain source-specific
sounds as individual classes. 2) Merge acoustically and semantically
similar sounds

If such sounds are considered as a single class, we reduce the
total number of classes and obtain more representative samples per
class, while at the same time increase the acoustic variability within
a single sound class.

As an example, the audioset (AS) taxonomy [7] is hierarchical,
with the different branches of the hierarchy being organized by the
source. Here, the sound ”buzz” is seen in 5 different audioset hierar-
chies, under ‘alarm’, ‘telephone’, ‘fly’, ‘bees’ and ‘onomatopoeia’.
Most modeling techniques developed on the Audioset data adopt op-
tion 2, by flattening out the hierarchy and considering each sound as
a single class.

In our taxonomy, we make a practical choice of not following the
audioset method due to two reasons: 1. Keeping source-ambiguous
sounds separate significantly reduces the number of samples avail-
able to train/evaluate machine learning models, 2. Following DCMP
guidelines, we do not always have information about the source of
an audio-event.

3.3. Overlap with Audioset

We are interested in understanding the distribution of sound events in
movies and how they compare with existing datasets. In order to do
this, we distribute each of the sound classes in our dataset into two
groups, a) shared sounds, b) movie-specific sounds. Shared sounds
refer to the classes which exist in both our taxonomy as well as the
Audioset taxonomy while movie-specific sounds are those that exist
in our taxonomy alone.

For each of the sounds in SAM-S, we matched one or more
corresponding classes in Audioset taxonomy [7], in order to ana-
lyze label coverage. Pairwise cosine similarity scores were extracted
between sentence transformer embeddings (MiniLM-L6-v2) [33] of
the two taxonomies. For each sound, top-5 audioset class matches
were then manually verified. Out of 245 sound classes, we found one
or more direct matches in Audioset for 170 classes. The remaining
classes were manually mapped, if found relevant, to an equivalent
AS class. Sounds originating from multiple possible sources were
mapped to each of the relevant categories. This resulted in a total
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Fig. 5. AST-MM: Multimodal Transformer architecture for audio
event detection in movies.

of 189 shared sound classes. It is interesting to note that although
some of these classes exist in the audioset taxonomy, they have no
representative data samples, for example; screech, blare, yawn and
booing.

Finally the remaining ‘movie-specific sounds’ are manually
grouped into the high-level categories. The distribution of the
‘shared sounds’ and ’movie-specific sounds’ are shown in Fig. [dh.
We can see that highest coverage is obtained for human sounds and
source-ambiguous sounds. In the case of music, instances in SAM-S
typically do not specify music instruments/genres, hence we do not
observe the level of detail as in Audioset.

In Fig. E]), we can see that SAM-S includes most of the human
sound classes found in Audioset. However, it also contains many
sounds not found in Audioset; including single-person sounds such
as yawn, sniffle, strain and scoff, as well as crowd-sounds such as
murmur, clamor and argue. Therefore, SAM-S can also be used to
augment Audioset with more fine grained human-centric sounds.

4. EXPERIMENTS

In order to transfer knowledge from large-scale models, we create
10s segments by adding context (~5s) on either side of the audio-
event. We create a train-validation-test (80-10-10) split based on the
movies, i.e., we use 344 movies for training, 43 for validation and
43 for final evaluation. For development and evaluation purposes,
we restrict to sound classes that explain at least 0.1% of the entire
data, which results in 120 sound classes.

4.1. Baseline Audio Models

We conduct audio-only baseline experiments using two SoA models.
The first is a Resnet-18 model [9] using 512-dim log-spectrograms
pre-trained on VGGSound dataset. We also fine tune a transformer-
based AED model - AST [23]], which has shown state-of-the-art per-
formance for audio event detection on Audioset. 128-dim log-mel

Table 2. Uni- and multi- modal results on SAM-C

Model Modality | mAP | mAUC | d-prime
VGGSound A 14.1 87 1.59
AST A 34.76 | 95.02 2.33
AST-MM (S) | AV 35.67 | 95.05 2.33
AST-MM (B) | AV 35.82 | 95.11 2.34
AST-MM (L) | AV 36.3 | 95.25 2.36

spectrograms are used as features to AST. For augmentation, we use
mixup [34] with probability 0.5 and sample the mixup-lambda from
a Beta-distribution with parameters a=£=10. We also use SpecAug-
ment [35] with a time-frequency mask of 192x48.

For our experiments, we use a batch size of 20, initial learning
rate of le-5 and a multi-step learning rate scheduler at epoch 5 and
25 with decay of 0.85 similar to as in [23]. We train each model for
30 epochs. Since our classes are multi-label and we use mix-up, we
use binary cross-entropy loss. As evaluation metrics, we use mean
average precision (mAP), area under curve (mAUC), and d-prime.

4.2. AST-MM

As visual features, we use the output of CLIP-encoder (ViT-B/32)
[36]. CLIP was trained in a contrastive manner using language-
image pairs and has been widely used in a number of image recog-
nition tasks. We also chose CLIP because of its ability to generalize
well to unseen objects and scenes, which is often the case in movies.
We extract 512-dim CLIP features at 1fps, and pad/crop the resulting
features to a sequence length of 12.

We use position embeddings and modality-specific segment em-
beddings to encode multiple modalities in a transformer setup as in
previous work[37]. We pass CLIP features through a linear layer
to match-dimensions of the audio patch embeddings (768-dim). We
experiment with three different position embeddings: 1. Fixed si-
nusoidal position embeddings (S) [38]], 2. Learnable embeddings
initialized with pretrained BERT position embeddings (B) [39]], 3.
Learnable, randomly initialized.

We also use a separator token to distinguish audio and visual
sequences as we find it helps empirically. The final input represen-
tation to the encoder is obtained by adding the patch, position and
modality embeddings for each of the sequences.

4.3. Results

From Table 2] we see that the audio-only model trained on Audioset
clearly outperforms the one trained on VGGSound. Apart from the
size of the datasets and model architecture, a reason for this could be
that the constraint on audio-visual correspondence limits the range of
sound classes seen in VGGSound, hence affecting its transferability
to other domains. The multimodal AST-MM model shows a 5%
relative improvement over the audio-only model.

5. CONCLUSION

In this paper, we release a dataset curated for audio-event detection
in movies. We describe a scalable method for generating a flat-
taxonomy for audio events, and compare it with existing taxonomy
popularly used for audio event detection. We designed an annotation
scheme to categorize the sound and source of an audio event, solely
from subtitle tags. We employ state of the art machine learning mod-
els to establish baseline AED performance on the SAM-S corpus.



We incorporate visual information using CLIP-encoder features in a
early-fusion manner to further improve AED multimodally.
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