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ABSTRACT 

 

Modern noise-cancelling headphones have significantly 

improved users’ auditory experiences by removing unwanted 

background noise, but they can also block out sounds that matter 

to users. Machine learning (ML) models for sound event 

detection (SED) and speaker identification (SID) can enable 

headphones to selectively pass through important sounds; 

however, implementing these models for a user-centric 

experience presents several unique challenges. First, most 

people spend limited time customizing their headphones, so the 

sound detection should work reasonably well out of the box. 

Second, the models should be able to learn over time the specific 

sounds that are important to users based on their implicit and 

explicit interactions. Finally, such models should have a small 

memory footprint to run on low-power headphones with limited 

on-chip memory. In this paper, we propose addressing these 

challenges using HiSSNet (Hierarchical SED and SID Network). 

HiSSNet is an SEID (SED and SID) model that uses a 

hierarchical prototypical network to detect both general and 

specific sounds of interest and characterize both alarm-like and 

speech sounds. We show that HiSSNet outperforms an SEID 

model trained using non-hierarchical prototypical networks by 

6.9 – 8.6%. When compared to state-of-the-art (SOTA) models 

trained specifically for SED or SID alone, HiSSNet achieves 

similar or better performance while reducing the memory 

footprint required to support multiple capabilities on-device.  

 

Index Terms — Sound event detection (SED), speaker 

identification (SID), hierarchical prototypical networks 

 

1. INTRODUCTION 

 

The advancement of noise cancellation technology for 

headphones and earbuds has enabled people to focus on their 

work and enjoy music even in a noisy environment, whether it is 

outdoors in a crowded plaza or indoors in a busy house. 

However, current noise-cancelling headphones can also block 

out important sounds that matter to users, such as a nearby 

person trying to get their attention, a passing car or truck while 

walking on the street, or someone trying to ring the user’s 

doorbell. An ideal solution is to embed sound event detection 

(SED) and speaker identification (SID) machine learning (ML) 

models directly in noise-cancelling headphones, enabling it to 

block out unwanted sounds while passing through sounds that 

are important to the user.  

Neural networks are a common ML model architecture used 

in SED systems [1] to detect general sounds of interest that 

require user attention, such as speech, appliance sounds, etc. [2], 

[3]. These models can detect sounds with no user input, which is 

favorable for consumer products as users typically spend limited 

time customizing their devices (ex. ~25% of users adjust 

equalizer settings in the Bose Music app). However, it is 

currently difficult for neural networks to differentiate between 

specific sounds that are important or unimportant; for example, 

speech from a spouse or child is important, while speech from a 

television is not as important.  

Few-shot learning models [4]–[6] can be trained to 

differentiate between specific sounds and personalized to the 

user’s environment based on explicit interactions (e.g., record 

real-world sound samples) and potentially implicit interactions 

(e.g., head movement when wearing a headphone) [7]. However, 

such models require significant user inputs to start functioning, 

so it has been used in accessibility applications for deaf and hard 

of hearing users, as they are more willing to spend time recording 

audio samples to create a personalized SED system [4]. While it 

is possible to train separate machine learning models to detect 

both general sounds that may matter to users and prioritize 

specific sounds as a system learns user preferences, the memory 

required to run multiple models concurrently makes it more 

challenging to deploy on low-power embedded devices that have 

minimal (1 – 4 MB) on-chip storage [8]. 

In this paper, we present three contributions. First, we 

propose HiSSNet, a hierarchical prototypical network [6] for 

general and personalized SEID (SED and SID). With no user 

input, HiSSNet can store pre-trained embeddings to classify 

general sounds of interest, and with some real-world samples the 

model can be personalized to create new embeddings and detect 

specific sounds from the user’s environment. Second, we 

propose a hierarchical class ontology for HiSSNet to define 

relationships between general and specific sound classes and 

separate sounds that require different user attention levels. 

Finally, we show that HiSSNet can outperform a standard 

prototypical network (ProtoNet) trained on SEID by 6.9 – 8.6% 

and can achieve similar or better performance compared to state-

of-the-art (SOTA) models that are specifically trained for SED 

or SID alone while reducing the memory footprint for running 

SEID on-device. 



2. METHODS 

 

The model architecture for HiSSNet was adapted from the 

hierarchical prototypical network [6], a few-shot learning model 

that can predict classes using a limited set of examples and 

incorporates a hierarchical structure to define relationships 

between general and specific classes. In a few-shot classification 

task, we are given a labeled support set 𝑆 with 𝑁 examples. Each 

support example 𝑥𝑆 ∈ 𝑆 is labeled with a class 𝑘 ∈ 𝐾 from a set 

of classes 𝐾; the subset of 𝑆 labeled with class 𝑘 is defined as 𝑆𝑘. 

The objective of the task is to predict a target class 𝑘 ∈ 𝐾 for 

each example 𝑥𝑄 ∈ 𝑄 in an unlabeled query set 𝑄 with 𝑁 

examples. A neural network encoder 𝑓𝜃 is used to transform the 

support and query sets into a latent embedding space. 

 

2.1. Hierarchical Prototypical Network 

 

A hierarchical prototypical network [6] computes class 

prototypes using the mean of support example feature 

embeddings for each level ℎ = 0 …  𝐻 of a tree 𝑇 with height 𝐻. 

Starting from the lowest level ℎ = 𝐻, the prototypes 𝑥𝑠 for level 

ℎ are aggregated based on the hierarchical relationships defined 

in 𝑇 to form meta-prototypes at level ℎ − 1: 

 

𝑐𝑇𝑘
ℎ−1 =

1

|𝑆𝑇𝑘
ℎ|

 ∑ 𝑓𝜃(𝑥𝑆)

𝑥𝑆 ∈ 𝑆
𝑇𝑘

ℎ

 
(1) 

 

In our notation, 0 is the top-most level of the hierarchy 

containing general sound class labels, and 𝐻 is the bottom-most 

level of the hierarchy containing specific sound class labels. The 

classes in 𝑘 ∈ 𝐾 are used to form prototypes for level 𝐻.  

For classifying a query sample 𝑥𝑄, each level of the 

hierarchy is treated as a separate few-shot classification task. 

Using a distance function 𝑑, a softmax is applied to the distances 

between each query sample feature embedding and class 

prototype or meta-prototype, and a probability distribution is 

created for each level: 

 

𝑝𝜃(𝑦𝑄 = 𝑇𝑘
ℎ | 𝑥𝑄) =

exp (−𝑑 (𝑓𝜃(𝑥𝑄), 𝑐𝑇𝑘
ℎ))

∑ exp (−𝑑 (𝑓𝜃(𝑥𝑄), 𝑐
𝑇𝑘

ℎ
′ ))𝑐

𝑇𝑘
ℎ

′
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The class with the closest prototype distance to the query 

sample is assigned as the predicted label. The learnable 

parameters in the neural network encoder 𝜃 are optimized during 

training with stochastic gradient descent. 

A hierarchical prototypical network is optimized using a 

weighted loss function 𝐿 that trains the model to incorporate the 

relationships between general and specific sound classes into the 

latent embedding space. The loss function is an exponentially 

decaying sum of cross-entropy loss terms for each level of the 

hierarchy: 

 

𝐿 = ∑ ∑ 𝑒𝛼∙ℎ log 𝑝𝜃(𝑦𝑄 = 𝑇𝑘
ℎ | 𝑥𝑄)

𝑥𝑄 ∈ 𝑄

𝐻

ℎ=0

 (3) 

 

A hyperparameter 𝛼 is used to adjust the weight of the 

optimization objective between general (upper-level) and 

specific (lower-level) classes. 𝛼 > 0 gives more weight to 

specific classes, 𝛼 = 0 equally weights general and specific 

classes, and 𝛼 < 0 gives more weight to general classes. 

 

2.2. HiSSNet 

 

To perform general and personalized SEID, we used the 

hierarchical prototypical network for HiSSNet, and for the 

neural network encoder we selected the MobileNetV2 

architecture [9], a convolutional neural network that efficiently 

runs on the latest-generation of ultra-low-power 

microcontrollers [8] and has previously been used in a few-shot 

learning model for SED [4]. Additionally, we tested two 

different distance functions for 𝑑 in HiSSNet: squared Euclidean 

distance [10] and angular distance [11], which combines a cosine 

similarity metric with learnable scale and bias parameters. We 

ultimately selected the Euclidean distance function as it achieved 

better accuracy in our testing (results not shown). 

 

 

Fig. 1: Partial definition of the taxonomy used for training 

HiSSNet. Bolded classes are sounds important to users. 

  

We created a custom, three-level sound class hierarchy (Fig. 

1) for training HiSSNet and evaluating all other models. The 

hierarchy was created with an emphasis on speech and alarm-

like sounds (including alarms, appliance timers, door bells, 

phone notifications, etc.), as prior studies [2], [3] have shown 

that users are primarily interested in these two categories of 

sound classes. To create a taxonomy of classes to use for the 

hierarchy, we filtered specific sound classes in our selected 

datasets to match the hierarchy and manually aggregated them 

into individual labels. In total, the hierarchy contains 7 top-level 

classes, 19 middle-level classes, and 1319 lower-level classes, 

with 56 classes for SED and 1263 classes for SID. We have made 

both the sound class hierarchy and the corresponding taxonomy 

available online at https://github.com/Bose/HiSSNet-Hierarchy. 

The inclusion of a concrete sound class hierarchy in 

HiSSNet will enable the model to function with varying levels 

of input when deployed to low-resource headphones. In the base 

case scenario, pre-trained embeddings for upper-level classes 

(e.g. Speech, Alarm) can be stored on-device to allow HiSSNet 

to classify general sounds of interest with no user input. Over 

time, the model can be trained to differentiate specific sounds of 

interest based on implicit user interactions; for example, a nearby 

https://github.com/BoseCorp/HiSSNet-Hierarchy


speaker (Speaker X) can be annotated with a positive response if 

the user turns their head in response to the sound or if the 

headphones detect self-voice activity. Finally, if users choose to 

record audio samples and provide them for personalization, 

HiSSNet can improve upon the pre-trained embeddings and 

provide a better experience based on the user’s surroundings. 

We trained HiSSNet on all sound classes to ensure the 

encoder learns the latent embedding space for the full 

hierarchical ontology without assuming the model will 

generalize to unseen classes during testing. We believe it is better 

to treat novel classes as “unknown” via an open set approach so 

the headphone system can take the corresponding action.  

 

3. EXPERIMENTAL SETUP 

 

3.1. Datasets 

 

For all experiments, we compiled single sound class recordings 

for SED and SID from 7 different datasets – ESC50 [12], TUT 

Sound Events 2016 [13], TAU MREAL [14], FSD50K [15], 

BBC [16], VCTK [17], and LibriSpeech [18]. For TUT and 

TAU, we included recordings with single sound classes and 

excluded recordings with overlapping sound classes. In ESC50, 

FSD50K, BBC, VCTK, and LibriSpeech, all recordings contain 

a single sound class by default. In total, our collated SEID dataset 

contains ~211.6K audio files amounting to ~673.4 hours of 

audio. The dataset was randomly split into 10 stratified folds; 9 

folds were used for K-fold cross validation during training, while 

1 fold was used for post-training evaluation. All HiSSNet and 

baseline models were trained and evaluated on the same fold 

configuration, and all metrics reported in the Results were 

computed on the post-training evaluation fold. 

Audio files were downsampled to 16 kHz before being 

downmixed to mono, single-channel waveforms, and 1-second 

segments were randomly sampled from each file. To ensure that 

the segments were non-silent and contained sound events, a 

simple dB threshold was applied during segment sampling. We 

then applied two separate data augmentation transformations for 

our models to be robust to variations in background noise and 

context. The first transformation was to mix the audio segments 

with background noise from an ambient sound scene, such as 

indoors in a restaurant or an outdoor park. The SNR between the 

sample and the ambient sound scene was randomly selected 

between 10 dB to 20 dB. The second transformation was to apply 

a reverb unit with randomly generated parameters. After data 

augmentation, each segment was converted into a 64-bin log-

Mel spectrogram with a 32ms window and 10ms hop size, 

creating 64 × 97 bin spectrograms which were finally passed as 

input to HiSSNet and baseline models.  

 

3.2. Model Training Procedure 

 

HiSSNet and ProtoNet models were trained using episodic 

batches, where each batch contains a random subset of 12 sound 

classes from the taxonomy and 5 recordings for each class. To 

sufficiently balance training on both SED and SID classes, we 

created three different batch configurations: SED only, SED & 

SID, and SID only. The configuration for each batch was 

randomly selected during training, with a weight distribution of 

60%/20%/20%, respectively. Each epoch contained 100 

episodic batches, and the model was trained for 1000 epochs. We 

used the Adam optimizer [19] with an L2 regularization penalty 

for performing stochastic gradient descent in all models. 

All HiSSNet models were trained on the full SEID dataset, 

while SOTA baseline models were trained on SED-specific or 

SID-specific subsets of the dataset. For the SED baselines, we 

implemented a dilated convolutional recurrent neural network 

(CRNN) [20] and a non-hierarchical ProtoNet [4], and for the 

SID baselines we implemented a non-hierarchical ProtoNet [11]. 

The SED baselines were trained on the data subset from ESC50, 

TUT, TAU, FSD50K and BBC, while the SID baselines were 

trained on the data subset from VCTK and LibriSpeech. The 

dilated CRNN was trained using standard batch processing with 

a batch size of 128. 

 

3.3. Evaluation Metrics 

 

We used the same episodic batch settings (12 sound classes, 5 

recordings per class, 100 episodes) from training for all 

evaluation experiments except the equal error rate (EER) 

comparison on SID. Our primary evaluation metric is the per-

segment accuracy on each level (L1, L2, L3) in the sound class 

hierarchy, with an emphasis on the top-most level (L1), which 

captures the performance with no user configuration, and the 

bottom-most level (L3), which captures the performance after a 

user provides 5 audio recordings for 12 sound classes. To further 

evaluate the models’ performance on upper-level sound classes 

in the hierarchy, we also use a hierarchical mistake (HM) metric 

[6] that measures the height to the lowest common ancestor 

between the predicted and ground truth labels of an incorrectly 

classified sample. For the SID task, we ran a separate experiment 

to compute the EER by running 100 trials and randomly 

sampling 1000 speaker pairs for each trial, which was adapted 

from a previous study [11]. All tables report the mean ± SEM of 

the 100 episodic batches or EER trials. 

 

4. RESULTS 

 

4.1. Weighting Specific Sound Classes Improves Accuracy 

 

We conducted three cross-validation ablation experiments with 

HiSSNet to compare different weighting schemes (𝛼 =
{−1, 0, 1}) in the hierarchical loss function and analyze the 

impact of selecting different cross-validation schemes in our 

dataset. Our results (Table 1) show that giving more weight to 

specific sound classes (𝛼 = 1) in the loss function helps the 

model achieve the best performance across all levels, which is in 

agreement with the original hierarchical prototypical network 

study that focused on instrument classification [6]. HiSSNet 

achieves 93.5% on general SED (L1), 91.3% on specific SED 

(L3), and 88.9% on specific SID (L3).  

The results in Table 1 also show minimal variance in both 

the accuracy (< 2.5%) and the hierarchical mistake (< 0.1) across 

different cross-validation training schemes. While HiSSNet with 

𝛼 = 0 and HiSSNet with 𝛼 = −1 perform marginally better on 

the hierarchical mistake, our post-evaluation Wilcoxon signed-

rank and Kruskal-Wallis tests (data not shown) revealed that the 

differences are not statistically significant. 



Model Metric SED SID 

HiSSNet 
𝛼 = −1 

L1 Acc. 89.5 ± 1.0% - 

L2 Acc. 84.6 ± 1.3% 95.4 ± 0.5% 

L3 Acc. 77.6 ± 1.3% 73.4 ± 2.2% 

H. Mistake 2.15 ± 0.05 1.13 ± 0.01 

HiSSNet 
𝛼 = 0 

L1 Acc. 91.7 ± 1.2% - 

L2 Acc. 89.6 ± 1.3% 95.9 ± 0.6% 

L3 Acc. 85.9 ± 1.3% 84.8 ± 1.6% 

H. Mistake 2.26 ± 0.05 1.15 ± 0.02 

HiSSNet 
𝛼 = 1 

L1 Acc. 93.5 ± 1.1% - 

L2 Acc. 93.1 ± 1.2% 96.7 ± 0.3% 

L3 Acc. 91.3 ± 1.2% 88.9 ± 1.3% 

H. Mistake 2.29 ± 0.09 1.15 ± 0.02 

 

Table 1: Cross-validation ablation experiments of HiSSNet 

with different hierarchical loss weighting schemes. 

 

4.2. Training ProtoNet with Hierarchy Achieves Better 

Accuracy 

 

We compared HiSSNet with a non-hierarchical ProtoNet trained 

for joint SEID. A key drawback of the non-hierarchical ProtoNet 

is that it does not force similar sounds that require different 

attention levels to be in different embedding regions (e.g., phone 

notifications vs. plate clinking sound while washing dishes). If 

we pre-compute prototypes for upper-level general classes using 

such networks based on sound classes that matter to users, it is 

possible that other unimportant sounds with similar 

characteristics can end up being close to these upper-level 

prototypes. We thus hypothesize that HiSSNet will perform 

better than the non-hierarchical ProtoNet, especially for the top-

level accuracy. Our results in Table 2 confirm this hypothesis, as 

HiSSNet outperforms SEID ProtoNet by 8.6% on general SED 

(L1), 6.9% on specific SED (L3), and 8.3% on specific SID (L3).  

 

Model Metric SED SID 

SEID 

ProtoNet 

L1 Acc. 85.5 ± 5.6% - 

L2 Acc. 85.1 ± 5.7% 93.3 ± 4.5% 

L3 Acc. 84.8 ± 5.2% 80.0 ± 6.2% 

H. Mistake 2.46 ± 0.31 1.17 ± 0.14 

HiSSNet 

𝛼 = 1 

L1 Acc. 94.1 ± 3.1% - 

L2 Acc. 93.2 ± 3.6% 96.5 ± 3.3% 

L3 Acc. 91.7 ± 4.0% 88.3 ± 5.0% 

H. Mistake 2.30 ± 0.52 1.16 ± 0.22 

 

Table 2: Comparison with non-hierarchical ProtoNet. 

 

4.3. Sound Event Detection Baseline Comparison 

 

We compared HiSSNet with two SOTA models trained 

specifically for SED [4], [20]. While HiSSNet enables both 

general and specific SEID in one model to minimize storage and 

memory, our initial hypothesis was that it could potentially 

suffer from lower accuracy compared to models trained 

separately for individual tasks. 

To our surprise, our results (Table 3) show that HiSSNet 

achieves better accuracy compared to the SOTA models, with an 

improvement of 5.2% on general SED (L1) and 3.2% on specific 

SED (L3) compared to SED-only ProtoNet. HiSSNet also 

achieved an improvement of 14.8% over the dilated CRNN, 

which was only evaluated for specific SED due to the 

classification architecture.  

 

Model #Params #MAC Metric SED 

SED-only 

ProtoNet 

[4] 

2.2M 45.3M 

L1 Acc. 88.9 ± 5.2% 

L2 Acc. 88.7 ± 4.5% 

L3 Acc. 88.5 ± 4.9% 

H. Mistake 2.47 ± 0.37 

SED-only 

Dilated 

CRNN 

[20] 

0.9M 87.2M 

L1 Acc. - 

L2 Acc. - 

L3 Acc. 76.9 ± 6.4% 

H. Mistake - 

HiSSNet 

𝛼 = 1 
2.2M 45.3M 

L1 Acc. 94.1 ± 3.1% 

L2 Acc. 93.2 ± 3.6% 

L3 Acc. 91.7 ± 4.0% 

H. Mistake 2.30 ± 0.52 

 

Table 3: Comparison with SED baselines. 

 

4.4. Speaker Identification Baseline Comparison 

 

We also compared HiSSNet with a SOTA SID approach [11] 

that uses ProtoNet. For the encoder, instead of the proposed 

ThinResNet, we applied the MobileNetV2 architecture like our 

other ProtoNet models as the number of MAC operations is ~10x 

smaller. Our results (Table 4) show that HiSSNet achieves close 

performance, with a drop of 6.7% in specific SID (L3) and 

0.88% in EER. This minimal decrease in performance is likely 

acceptable in our problem context of noise-cancelling 

headphones due to the smaller negative cost of false positives 

and false negatives, which will temporarily reduce (false 

positive) or not affect (false negative) the noise cancellation 

level.  

 

Metric 

Model 

SID-only 

ProtoNet 

HiSSNet 

𝛼 = 1 

L2 Acc. 97.8 ± 2.3% 96.5 ± 3.3% 

L3 Acc. 95.0 ± 3.5% 88.3 ± 5.0% 

EER 0.59 ± 0.03% 1.47 ± 0.09% 

 

Table 4: Comparison with an SID baseline. 

 

5. CONCLUSION 

 

This paper presents HiSSNet, a hierarchical prototypical 

network for joint SED and SID. This model can detect sounds 

using no user input, learn and differentiate the specific sounds 

that matter to users over time based on implicit and explicit user 

interaction, and run within the on-chip memory constraints of 

embedded devices. It allows us to address the unique challenges 

encountered when embedding sound event detection abilities in 

low-resource noise-cancelling headphones. We show that 

HiSSNet outperforms non-hierarchical ProtoNet when trained 

on an SEID dataset. Furthermore, HiSSNet achieves close or 

better performance as SOTA models trained solely for SED or 

SID while reducing the memory required to support multiple 

capabilities on-device. 
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