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ABSTRACT

Recently, the pre-trained Transformer models have received a rising
interest in the field of speech processing thanks to their great success
in various downstream tasks. However, most fine-tuning approaches
update all the parameters of the pre-trained model, which becomes
prohibitive as the model size grows and sometimes results in over-
fitting on small datasets. In this paper, we conduct a comprehensive
analysis of applying parameter-efficient transfer learning (PETL)
methods to reduce the required learnable parameters for adapting
to speaker verification tasks. Specifically, during the fine-tuning
process, the pre-trained models are frozen, and only lightweight
modules inserted in each Transformer block are trainable (a method
known as adapters). Moreover, to boost the performance in a cross-
language low-resource scenario, the Transformer model is further
tuned on a large intermediate dataset before directly fine-tuning it
on a small dataset. With updating fewer than 4% of parameters, (our
proposed) PETL-based methods achieve comparable performances
with full fine-tuning methods (Vox1-O: 0.55%, Vox1-E: 0.82%,
Vox1-H:1.73%).

Index Terms— Speaker verification, pre-trained model, adapter,
fine-tuning, transfer learning

1. INTRODUCTION

A typical state-of-the-art speaker verification (SV) system is based
on comparison of speaker embeddings which are extracted using a
deep neural model [1, 2, 3] trained from scratch on a large-scale
speaker-labeled dataset such as Voxceleb [4, 5]. The size (typically
more than 10 million parameters) and the architecture based on a
series of convolutional layers make it difficult to properly train these
extractors in a data-restricted scenario of some low-resource domain
(i.e., completely new channel, language, or their combination).

Recently, large pre-trained Transformer models, including
Wav2Vec [6], HuBERT [7], WavLM [8], and their variants [9]
have significantly boosted the performance in the field of speech
processing. The most common way to adapt those general-purpose
models to downstream tasks is to fine-tune the whole pre-trained
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Fig. 1. Performance change of several PETL approaches on
VoxCeleb1-O, when the number of learnable parameters is in-
creased. The learnable parameters include the speaker extractor
back-end with constant 2.2M parameters and the PETL module.

model with a task-oriented back-end (full fine-tuning). In [10], a
strong performance on the speaker verification task was achieved
with the ECAPA-TDNN back-end, of which the frame-by-frame
input to the back-end was calculated as a weighted combination of
outputs of the individual layers of a pre-trained Transformer model.
In [11], to shorten the training time, a more lightweight back-end is
employed, which consists of an attention layer and a linear layer to
extract speaker representations. However, potential shortcomings of
such full fine-tuning are the necessity of updating a vast amount of
parameters and storing a separate task-related copy of the fine-tuned
model parameters for each downstream task or its domain-specific
version. This issue will become increasingly problematic with the
number of parameters of the pre-trained model growing from hun-
dreds of millions to billions. For example Whisper [12] contains
1,550 M parameters.

To alleviate this issue, many recent studies have focused on
parameter-efficient transfer learning, known as adapter, where addi-
tional lightweight modules with task-specific trainable parameters
are inserted into the pre-trained model while keeping the entire pre-
trained model frozen. For example, in [13], a bottleneck adapter
[14] is applied to the Wav2Vec model and the adapter-based model
achieved comparable performance to full fine-tuning by only updat-
ing 10% of the model parameters in ASR tasks. In [15], pre-trained
models are connected with a multilingual denoising auto-encoder
for speech-to-text translation through adapter modules. In addition,
a more challenging and not extensively explored problem with pre-
trained speech models is their adaptation to a low-resource scenario
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(a) Full Fine-tuning (b) Bottleneck Adapter (c) Prefix Tuning (d) Mix-and-Match Adapter

Fig. 2. Architecture of the pre-trained model and state-of-the-art parameter-efficient methods. For (b)(c)(d), only the inserted lightweight
modules and back-end are learnable during fine-tuning, while the pre-trained model is frozen. “Speaker Extractor Back-end” consists of a
multi-head factorized attentive pooling (MHFA) and a linear layer to extract speaker representations [11].

with few trainable parameters. Indeed, most pre-trained models
are optimized on English corpora (e.g. LibriSpeech [16]). Such
models are supposed to be eminently suitable for downstream tasks
transfer learning using the same language. However, there is no
reason to believe those pre-trained models can also provide a proper
initialization for unseen languages since the distribution of acoustic
units might be completely different [17]. When fully fine-tuning on
a different dataset, the training process might degenerate the model,
resulting in catastrophic forgetting of what was learned during the
pre-training phase [18].

To mitigate this issue, in this paper, we first analyze the per-
formance of three different PETL methods, including bottleneck
adapter [14], prefix tuning [19], and mix-and-match adapter [20],
to transfer the pre-trained model to downstream speaker verifica-
tion tasks. Then, we explore using model tuned on an intermedi-
ate dataset before fine-tuning it to a small out-of-domain (cross-
language in our case) dataset. This approach reduces the variance
between target and source domains, and improves the robustness and
discrimination of learned speaker representations, resulting in boost-
ing the performance in the low-resource setting. The contributions
of our work are as follows:

• We demonstrate that the PETL methods can be utilized to ef-
fectively adapt large-scale pre-trained transformer models to
a specific downstream task (e.g., speaker verification) with
few learnable parameters, as shown in Fig 1.

• To further boost the performance in the cross-language low-
resource scenario, we tune the pre-trained model using an
intermediate dataset before fine-tuning it on a small dataset.
This achieves state-of-the-art results on the CNCeleb dataset.

• Extensive experiments on VoxCeleb corpus [4, 5] show that
adapter-based fine-tuning can achieve comparable perfor-
mance to full fine-tuning through updating less than 4% of
the original model parameters.1

2. PARAMETER-EFFICIENT TRANSFER LEARNING

In this section, we will introduce three state-of-the-art parameter-
efficient transfer learning methods, as shown in Fig 2. Unless

1The code will be available with the submission of the final paper.

otherwise emphasized, the parameters of pre-trained models are
frozen during the fine-tuning process, while only the parameters of
lightweight additional modules are trainable.
Bottleneck Adapter: As illustrated in Fig 2 (b), bottleneck adapter
[14] is inserted into each Transformer block of a pre-trained model
after multi-head attention layers and feed-forward layers with a
residual connection. The bottleneck adapter layer consists of a down
projection layer Wdown ∈ RDhidden×Dbottleneck , a up projection layer
Wup ∈ RDbottleneck×Dhidden , as well as a nonlinear activation function
f(·). Its frame-by-frame output

Hout = Hin +Wupf(WdownHin) (1)

is of the same size as the input Hin ∈ RT×Dhidden , where T is the
length of the input sequence.
Prefix Tuning: Different from the bottleneck adapter that utilizes
the outputs of different layers, prefix tuning [19] adds a set of l
learnable vectors (virtual tokens) as additional keys and values to
each head of the multi-head attention module in each Transformer
block. During the fine-tuning phase, these learnable vectors are ex-
pected to capture task-related information and adapt the pre-trained
model to the downstream task, as shown in Fig 2 (c). We denote the
linear projections of queries, keys and value of each head of each
attention module2 as WQ, WK and WV ∈ RDhidden×Dproj , respec-
tively. Dproj is the projected dimension of each head. Typically,
Dproj = Dhidden/H , where H is the total number of heads. The at-
tention maps are evaluated as:

Attn(Q,Kprefix, Vprefix) = softmax

(
QKT

prefix√
Dproj

)
Vprefix

Kprefix = concat(PK ,WKHin)

Vprefix = concat(PV ,WV Hin)

(2)

where two learnable matrices (the two sets of virtual tokens) PK ,
PV ∈ Rl×Dproj are prepended to the original keys and values, re-
spectively.

2We omit the layer and head indices in the symbols to keep the notation
uncluttered.



Mix-And-Match Adapter: To combine and unify the two afore-
mentioned PETL methods, in [20], a new variant, named mix-and-
match adapter, was applied. As illustrated in Fig 2 (d), the MAM
uses an adapter block processing the hidden representation parallel
to the feedforward block. Additionally, it leverages a small prefix
tuning module to generate task-related attention maps.

3. FINE-TUNING VIA INTERMEDIATE DATASET

HuBERT-style models consume masked frame-level features to
predict a pre-determined discrete target during the unsupervised
pre-training phase. When using those models to deal with a small
dataset, the pre-learned parameters are supposed to be ideally appro-
priate for the downstream tasks. However, when fully fine-tuning to
a cross-language low-resource scenario, the learning process often
gets stuck in local minima. This might be because the target dataset
may have a different distribution of acoustic units that is unseen
during pre-training. Thus, to improve the robustness, in this paper,
we tune the pre-trained model on a large intermediate supervised SV
dataset before fine-tuning it to a small dataset. With this two-step
tuning scheme, the task-related model is expected to be reasonably
close to the proper setting for the low-resource target task.

4. EXPERIMENTS
4.1. Setup

Data-sets: The SV performance is evaluated on the VoxCeleb
[4, 5] and CNCeleb [21, 22] corpora, both are widely used text-
independent speaker verification datasets. For VoxCeleb, the train-
ing set is the development set of VoxCeleb2. The performance
is evaluated on VoxCeleb1-O, VoxCeleb1-E, and VoxCeleb1-H
trials. For CNCeleb, the model is fine-tuned on three different
training dataset, namely CNCeleb1-S1, CNCeleb1-S2, CNCeleb1
and CNCeleb.T, containing 200, 400, 800 and 2800 speakers, re-
spectively. CNCeleb.T is a combination of CNCeleb1-dev and
CNCeleb2. The evaluation part CNCeleb-E contains 18,849 utter-
ances from 200 speakers. Besides, all training datasets are aug-
mented by adding noise and reverberation.
Implementation details: In this work, we utilize two types of pre-
trained models: 1) The Base models, including WavLM Base+ and
HuBERT Base, contain a CNN encoder and 12 layers of Trans-
former. The dimension of the Transformer output Dhidden is 768.
The total number of parameters of those models is around 94M; 2)
The Large model has 24 transformer blocks with 1024-dimensional
output resulting in 316M parameters. All experiments are conducted
on 8 A100 GPUs with 10 epochs optimizing AAM-softmax [23]
with a margin of 0.2 and scaling of 30. To speed up the training,
the learning rate is decreased by 5% each epoch. The duration of in-
put raw waveforms is set to 3 seconds. The mini-batch size of 120 is
chosen for training models. We also adopt large margin fine-tuning
(LM-FT) [24] to further boost performance. Specifically, we input
longer (5 seconds) waveforms and set the margin to 0.5 for additional
2 tuning epochs.
Performance Metrics: Both equal error rate (EER) and minimum
detection cost function (minDCF) are employed to measure the per-
formances of speaker verification systems. The prior target proba-
bility Ptar is set to 0.01 or 0.05, for DCF1 and DCF5, respectively.
Cfa and Cmiss are set to 1.0.

4.2. Analysis of PETL methods

We first investigate the performance of the three PETL variants. In
the field of natural language processing, prefix tuning attains com-

Table 1. Results on the VoxCeleb1-O dataset. For a fair comparison,
all methods use WavLM Base+ as the frozen pre-trained model.

Adapter Params Dim EER (%)

Bottleneck Adapter
4.7M Dbottleneck = 128 0.78
2.3M Dbottleneck = 64 0.85
1.2M Dbottleneck = 32 0.87

Prefix tuning 3.6M l = 200 1.15
0.7M l = 40 1.09

MAM Adapter
5.4M Dbottleneck = 256, l = 40 0.72
3.0M Dbottleneck = 128, l = 40 0.77
1.9M Dbottleneck = 64, l = 40 0.84

parable performance with the adapter-based method [19]. Neverthe-
less, as we observer results in Fig 1 and Table 1, it exhibits the worst
performance on the SV task. This might be caused by the model
pre-training phase mostly focusing on the semantics within an ut-
terance. In contrast, the SV task requires the discrimination ability
between utterances, which cannot be achieved by modifying the at-
tention weights among input sequences alone. For both Bottleneck
and MAM adapters, the performance is similar for variants with the
same bottleneck dimensionality. However, architectural design ren-
ders the MAM adapter more parameter efficient and thus our choice
for further experiments. The final metrics improve with the increased
dimensionality as shown in Fig 1, where the last data-point for the
MAM adapter corresponds to the bottleneck dimensionality of 512,
but we set a threshold on the number of parameters to approximately
5M, which in our opinion is a good trade-off between performance
and a reasonable model size.

4.3. Analysis on in-domain VoxCeleb

We will first analyze the base scenario with a relatively large amount
of in-domain labeled data for fine-tuning. Let us first concentrate
on comparing the fine-tuning of pre-trained models (HuBert Base,
WavLM Base+, and WavLM Large) via different adapters and the
MHFA backend [11]. The bulk of the experiments can be observed
in the second and third blocks of the Table 1, where we work with
the WavLM Base+ and HuBert Base model, respectively. We ob-
serve that the MAM adapter performs similarly to the Bottleneck
adapter and significantly better than Prefix Tuning across all ana-
lyzed Voxceleb test sets and both models. Additionally, we can ob-
serve only small degradation when using MAM adapter versus full
fine-tuning of all model parameters. We can also safely claim that
all PETL methods and full fine-tuning outperform the case when the
pre-trained model is fixed and only the MHFA backend is trained.
In the third block of Table 1, we can also observe the effect of large
margin fine-tuning (LM-FT) which consistently improves the perfor-
mance for both full fine-tuning and MAM adapter strategy across all
test conditions. For completeness and consistency with our previous
work [11], we also provide the results with WavLM Large and the
MAM adapter including large margin fine-tuning in the last block
of Table 1. We can observe a small degradation in performance as
now, the total decrease of the learnable parameters is much larger.

Finally, in the first block of the same table, we can compare
our attained results with different approaches selected from the
literature. The ECAPA-TDNN represents a standard approach of
embedding extractor fully trained from scratch on a supervised
dataset (Voxceleb) while the wav2vec-TDNN and Unispeech-
SAR BASE-TDNN represent a combination of a pre-trained model
with a TDNN [1] and ECAPA-TDNN [2] structure for embedding
extraction, respectively.



Table 2. Results on the Voxceleb1 dataset and extended test sets. All models are trained on VoxCeleb2-dev, except †– its training data consists
of Vox2-dev and Vox1-dev. LM-FT denotes large-margin fine-tuning. The learnable back-end MHFA [11] contains 2.2M parameters.

Front-end Model Params VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H
EER(%) DCF1 DCF5 EER(%) DCF1 DCF5 EER(%) DCF1 DCF5

ECAPA-TDNN [25] 14.7M 0.90 - 0.081 1.11 - 0.077 2.32 - 0.155
wav2vec-TDNN † [26] 317M + 3M 0.84 0.058 - - - - - - -
UnispeechSAR BASE-TDNN [8] 94M+6M 1.00 - - 0.93 - - 1.87 - -
Pre-trained Model: HuBERT BASE, Back-end: MHFA
Full fine-tuning 94.6M+2.2M 0.82 0.114 0.061 1.13 0.122 0.073 2.43 0.244 0.014
Fixed 0.0M + 2.2M 1.96 0.221 0.525 2.27 0.252 0.152 4.62 0.416 0.131
Bottleneck Adapter 4.7M + 2.2M 0.98 0.138 0.068 1.21 0.137 0.081 2.61 0.260 0.162
Prefix Tuning 3.6M + 2.2M 1.55 0.193 0.107 1.74 0.198 0.118 3.86 0.356 0.233
MAM Adapter 5.4M + 2.2M 0.96 0.130 0.065 1.18 0.133 0.079 2.56 0.261 0.161
Pre-trained Model: WavLM BASE+, Back-end: MHFA
Full fine-tuning 94.7M+2.2M 0.66 0.074 0.045 0.89 0.097 0.056 1.90 0.190 0.119
Full fine-tuning [LM-FT] [11] 94.7M+2.2M 0.59 0.069 0.041 0.79 0.089 0.050 1.73 0.177 0.107
Fixed 0.0M + 2.2M 1.45 0.167 0.098 1.64 0.191 0.111 3.45 0.330 0.207
Bottleneck Adapter 4.7M + 2.2M 0.78 0.073 0.052 0.96 0.108 0.063 2.10 0.215 0.131
Prefix Tuning 3.6M + 2.2M 1.15 0.128 0.068 1.27 0.145 0.083 2.69 0.253 0.161
MAM Adapter 5.4M + 2.2M 0.72 0.086 0.052 0.92 0.107 0.059 2.05 0.212 0.132
MAM Adapter [LM-FT] 5.4M + 2.2M 0.61 0.058 0.041 0.88 0.099 0.055 1.90 0.193 0.119
Pre-trained Model: WavLM Large, Back-end: MHFA
Full fine-tuning [LM-FT] 316M + 2.2M 0.49 0.081 0.041 0.70 0.091 0.051 1.70 0.177 0.105
MAM Adapter [LM-FT] 12.5M + 2.2M 0.55 0.065 0.038 0.82 0.091 0.050 1.73 0.166 0.104

Table 3. Results on the CNCeleb-E dataset with different size
of training dataset. CNCeleb1-S1 and -S2 denotes a subset of
CNCeleb1 with randomly selected 200 and 400 speakers, respec-
tively. [Int. D] means Intermediate dataset, i.e. the Transformer
model is continually tuned on Vox2-dev before fine-tuning. WavLM
Base+ is used as pretrained model.

Training Dataset
CNCeleb1-S1 CNCeleb1-S2 CNCeleb1 CNCeleb.T

# 200 Spk # 400 Spk # 800 Spk # 2800 Spk
EER DCF1 EER DCF1 EER DCF1 EER DCF1

Sparse FilterBank [27] - - - - 12.25 0.5391 - -
Modified x-vector [28] - - - - 11.05 - - -
R-vector [29] - - - - 8.86 - - -
ECAPA-TDNN [30] - - - - - - 8.93 0.5043
FT 17.43 0.8624 12.25 0.6384 10.05 0.5000 7.93 0.4079
FT [Int. D] 9.25 0.5053 8.83 0.4515 8.45 0.4145 7.71 0.4057
MAM Adapter 13.73 0.7029 11.19 0.5715 9.45 0.4745 7.52 0.4072
MAM Adapter [Int. D] 9.12 0.4963 8.58 0.4671 7.94 0.4087 6.89 0.3784

4.4. Low-resource scenario

This section presents a scenario where we fine-tune with a small
amount of labeled data that we would consider out-of-domain w.r.t.
the substantially larger labeled dataset that we call intermediate
dataset (Voxceleb2-dev). As out-of-domain test set, we chose the
CNCeleb-E benchmark and corresponding out-of-domain training
sets formed by CNCeleb1 and CNCeleb.T. We perform our experi-
ments with the WavLM Base+ pre-trained model.

Our results are presented in the second block of Table 3 where
we also analyze the impact of the amount of available training data
for fine-tuning (adaptation). When confronted with a small amount
of training data (200, 400 and 800 speakers), we can observe that
direct full fine-tuning (FT) on this data yields the worst results. Only
after fine-tuning on CNCeleb.T with 2800 speakers, the performance
of direct fine-tuning falls into the same ballpark as other approaches
that we will analyze next.

The rather average performance of full fine-tuning and its abrupt
degradation with decreasing size of training data would suggest that
it is indeed problematic to re-train such a large amount of parameters
(94.7M + 2.2M for backend) in a low-resource scenario. The imme-
diate solution might be to leave the pre-trained model fixed and only
train the proposed MAM adapter (5.4M + 2.2M parameters). Re-

sults with this approach are in the third row of the second block in
Table 3 and we can indeed observe an improvement for low-resource
scenarios, but it diminishes when using larger training data such as
CNCeleb.T.

In the next two approaches we make use of an intermediate
dataset that represents a valuable resource for focusing the large
model on the SV task. First, we take the model that is fully fine-tuned
on Voxceleb2-dev dataset (first row in the third block of Table 2) and
further fine-tune it on CNCeleb data. This system is denoted by FT
[Int. D] in Table 3). We can observe a significant improvement w.r.t.
direct fine-tuning and even the direct use of MAM adapter, espe-
cially in low-resource scenarios. Again, the improvements diminish
with the larger amount of available training data (CNCeleb2). Fi-
nally, we start again with the same model, add the MAM adapter and
train on CNCeleb data. This yields overall the best results across all
analyzed scenarios and even significantly outperforms the previous
approaches when larger amount of training data is available. This
final approach is especially practical in a sense that we need to store
only the parameters of the MAM adapter and the MHFA backend
(approximately 5% of original model size) in order to switch to a
new domain while retaining the best possible performance.

5. CONCLUSION

In this paper, we demonstrate the effectiveness of several PETL
methods in the field of speaker verification. The large pre-trained
model is frozen, and we only update the inserted lightweight mod-
ules. We show that the PETL strategy with MAM adapter is better
than simple direct fine-tuning in a low-resource scenario. Addition-
ally, we have demonstrated that having a large labeled intermediate
dataset can further improve the overall performance as it precondi-
tions the large transformer-based model for the use in intended task
which in our case was speaker verification. Using model directly
fine-tuned on such dataset and subsequently training the MAM
adapter on low-resource, out-of-domain data, we achieve the best
possible performance with the practicality of storing variants of the
model for many different domains.
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