
Learning From Positive and Unlabeled Data Using Observer-GAN

Omar Zamzam, Haleh Akrami, Richard M. Leahy
Signal and Image Processing Institute, University of Southern California, Los Angeles, USA

Abstract
The problem of learning from positive and unlabeled
data (A.K.A. PU learning) has been studied in a bi-
nary (i.e., positive versus negative) classification set-
ting, where the input data consist of (1) observations
from the positive class and their corresponding labels,
(2) unlabeled observations from both positive and neg-
ative classes. Generative Adversarial Networks (GANs)
have been used to reduce the problem to the supervised
setting with the advantage that supervised learning has
state-of-the-art accuracy in classification tasks. In or-
der to generate pseudo-negative observations, GANs are
trained on positive and unlabeled observations with a
modified loss. Using both positive and pseudo-negative
observations leads to a supervised learning setting. The
generation of pseudo-negative observations that are re-
alistic enough to replace missing negative class samples
is a bottleneck for current GAN-based algorithms. By
including an additional classifier into the GAN architec-
ture, we provide a novel GAN-based approach. In our
suggested method, the GAN discriminator instructs the
generator only to produce samples that fall into the un-
labeled data distribution, while a second classifier (ob-
server) network monitors the GAN training to: (i) pre-
vent the generated samples from falling into the positive
distribution; and (ii) learn the features that are the key
distinction between the positive and negative observa-
tions. Experiments on four image datasets demonstrate
that our trained observer network performs better than
existing techniques in discriminating between real un-
seen positive and negative samples.

Introduction
In real-world binary classification problems, it is not
unusual to find the cost of labeling one of the classes
considerably higher than the cost of labeling the other class,
it is sometimes even impossible to label a subset of the
data that can belong to either of the classes. This results
in an abundance of data for which we have no knowledge
of the associated class and a subset of data with labels
corresponding to only one class (here we will assume such
labels are ’positive’). This is refered to as the problem of
PU Learning, or learning from positive and unlabeled input
(Bekker and Davis 2020). A common example of the PU
data setting is in recommendation systems, where previous
purchases or user clicks are direct indicators of user interest

(positive label), while labels for all other instances remain
unknown (unlabeled)(Zhou et al. 2021). Another important
example of PU datasets is in automatic diagnostic systems,
where a specific symptom of a disease appears in only a
subgroup of patients; the presence of this symptom can
be used to label positive label cases, but the absence of
this symptom does not necessarily indicate absence of
the disease (Claesen et al. 2015). PU learning also has
applications in the field of gene identification (Mordelet
and Vert 2011), matrix completion (Hsieh, Natarajan, and
Dhillon 2015), clustering (Zhou et al. 2009), and spam
detection (Wu et al. 2018).

In the current study, we provide a technique that uses a
Generative Adversarial Network (GAN) (Goodfellow et al.
2014) to detect features from the unlabeled data for distin-
guishing between positive and negative classes. The main
idea of a GAN is to make the generator network learn the
distribution of a given training set so that it can generate
new samples from the same distribution. This is achieved
by training a generator and a discriminator network adver-
sarially, i.e. the discriminator tries to identify a data sample
as real (coming from the training set) or fake (generated by
the generator network). The objective of the generator net-
work is to generate data samples that the discriminator fails
to classify as fake. We use the unlabeled dataset in this con-
text as the input training set to the discriminator. In addition,
we use an additional classifier, here called an observer net-
work, to determine whether a data sample comes from the
positive set or is fake (generated by the generator network).
The objective of our generator network is modified to gen-
erate data samples that: (i) the discriminator network fails to
classify as fake, and (ii) the observer network successfully
identifies as being ”negative”. These samples should then
be generated exclusively from the negative distribution in
the unlabeled data. The discriminator network cannot deter-
mine that these generated samples are fake, and the observer
network can separate them from the positive samples. After
training these three networks iteratively, the observer net-
work learns features that are sufficient to classify between
unseen positive and negative samples.

Nguyen et al. (2017) have previously suggested training
a GAN with two discriminators in order to enhance its per-
formance and prevent mode collapse. Their work is based

on one discriminator (D1) that favors real data samples,
and a second discriminator (D2) that favors generated sam-
ples. The network D2 ensures that the generated samples
are sufficiently diverse and different from the samples in the
training set and helps to address the mode collapse prob-
lem. We adopt a similar approach, with the modification that
the training set feeding D1 (named D in this paper), is dif-
ferent from the training set feeding D2 (named Observer
in this paper). The unlabeled set is used for training D1

and the positive set is used for training D2. This novel set-
ting allows the generator network to generate samples that
are similar to the unlabeled set yet are sufficiently different
from the positive set that they are comparable to the nega-
tive subset of the unlabeled data. While we have found that
a GAN learns more slowly to generate realistic-looking im-
ages when trained with two discriminators, we demonstrate
that the Observer network can learn to distinguish between
the positive and negative distributions without having to gen-
erate realistic-looking images.

We evaluate the proposed method, Observer-GAN, on
four image datasets and show that it outperforms state-of-
the-art PU learning methods on binary classification tasks.

Related Work
The PU learning problem has been investigated since at
least 1998 (Comité et al. 1999). Recently there has been a
growing interest in developing PU learning methods as a
result of the increased use of machine learning/deep learn-
ing in a variety of applications where the cost of labeling is
high, such as in medicine, marketing, and advertising ((Liu
et al. 2003), (Yu, Han, and Chang 2004), (Zhang and Lee
2005), (Elkan and Noto 2008), (Zhou et al. 2009) (Hsieh,
Natarajan, and Dhillon 2015), (Chiaroni et al. 2020),(Garg
et al. 2021), (Zhao et al. 2022)).

One of the common approaches in PU learning lever-
ages biased Learning, in which unlabeled examples are con-
sidered negative examples with label noise, and a binary
classifier is trained using a biased cost function that as-
signs a higher penalty for misclassification of positive ex-
amples (clean labels) (Liu et al. 2003), (Hsieh, Natarajan,
and Dhillon 2015), (Mordelet and Vert 2014). Another class
of methods for PU learning assumes a positive class prior
(P [y = 1]) is known, which facilitates the training and tun-
ing of a binary classifier. Using this information, training can
be stopped when the proportion of identified positive exam-
ples in an unlabeled validation set is equal to the positive
class prior (Kiryo et al. 2017), (Zhao et al. 2022), (Plessis,
Niu, and Sugiyama 2015). However, the true class prior is
usually difficult to obtain and so an alternative is to estimate
the positive class prior as a first step and then train a binary
classifier using this estimated prior (Ivanov 2020). Conver-
gence can be achieved by iterating between these two steps
(TEDn) (Garg et al. 2021) .

Another common approach for PU learning uses a dis-
tance metric to find reliable negative examples which simpli-
fies the problem to the supervised setting. Reliable negative
examples are the unlabeled examples that are most differ-
ent from the positive samples (Yu, Han, and Chang 2004)

(Grinenko et al. 2018). To generate negative samples a gen-
erative model can also be used (Chiaroni et al. 2020). In
the first step, the so-called D-GAN is trained with a genera-
tor network together with a discriminator network that takes
both unlabeled and positive data as training set. The func-
tion of this discriminator is to force the generator network
to learn to generate pseudo-negative samples. This discrim-
inator network is trained to classify between the unlabeled
data as one class, and both the positive data and generated
data as another class. Using this setup, the generator learns
to fool the discriminator by generating only negative sam-
ples. In the second step, a binary classifier is trained given
the positive samples and the generated ”negative” samples.
This setup can work if two requirements are satisfied: (1)
The discriminator network has to learn the difference be-
tween the unlabeled and the positive sets. This is usually
hard to accomplish if the labeled positive samples are Se-
lected completely at random (SCAR (Elkan and Noto 2008))
from the whole positive class distribution. Most real-word
PU datasets typically reflect this pattern. Also, Elkan and
Noto (2008) show that learning a classifier that can differen-
tiate between positive and unlabeled data is enough to learn
the sought-after positive versus negative classifier, knowing
the positive class prior, which can sometimes be available
or estimated from the data; (2) very realistic generated neg-
ative samples are needed to train the second-step classifier.
We have observed that this is a bottleneck when the target
dataset is complicated and difficult for a GAN to generate.
In these cases, the second-step classifier only learns the dif-
ference between real and fake images, as this task is easier to
learn than the rea-positive versus real-negative sample clas-
sification.The learned features that relate to the generated
negative samples are therefore probably not generalizable to
real negative samples. This difference cannot be ignored by
the classifier, and as a result, when used on unseen real pos-
itive and negative samples, the network tends to decide that
all samples are real.

Our suggested framework can address this problem by
easing the above constraints. Although we are generating
negative samples, neither of the mentioned conditions are
required to achieve the positive-versus-negative classifica-
tion. The objective of our discriminator is to classify be-
tween generated samples and unlabeled samples, and the ob-
jective of our Observer network is to classify between gen-
erated samples and negative samples. These objective can
are achievable even when the SCAR assumption holds. The
objective of the generator network is to generate samples
that can fool the discriminator, while being identifiable by
the observer network as (non-positive) samples. Training the
three networks iteratively, drives the Observer network to
only learn the features that are representative of the positive-
versus-negative difference as described in more detail below.

Problem Setup
We denote an unlabeled observation as xU ∈ XU ∼ PU ,
such that XU is the unlabeled random variable and PU is
the unlabeled data distribution. We defined the positive data
sample xP ∈ XP ∼ PP , such that XP is the positive
random variable and PP is the positive data distribution.

z ∼ PZ is a random noise vector where PZ = N(0, 1)
is a normal distribution. xZ is a generated sample obtained
from the generator. We denote the label for each observation
as y ∈ {0, 1}. D(·) is the output probability of the discrim-
inator, G(z) is the output sample of the generator network,
and Ob(·) is the output probability of the observer network.
α is the proportion of the positive samples in the unlabeled
dataset, i.e., PU = αPP + (1 − α)PN , where PN is the
negative data distribution.

We aim to learn f(x) = p(y = 1 | x), a classifier that
estimate the true label of an observation x. We claim that
at the end of the training of our Observer-GAN, we have
Ob(x) ≈ f(x).

Proposed Method
The standard GAN (Goodfellow et al. 2014) discriminator
network (LD) and the generator network (LG) loss functions
are as follows:

LD = ExU∼PU
[H(D(xU), 1)] + Ez∼PZ

[H(D(G(z)), 0)]
(1)

LG = Ez∼PZ
[H(D(G(z)), 1)] (2)

where H(ŷ, y) = −ylog(ŷ) − (1 − y)log(1 − ŷ) is the bi-
nary cross entropy loss between ŷ and y. Minimizing the
loss in (1) makes the discriminator able to learn the differ-
ence between the data in PU and the output of the generator
G(z). While minimizing the loss in (2) attempts to fool the
classifier into believing its samples are real. Minimizing the
two loss functions iteratively, results in a generator that is
able to generate new samples that are indistinguishable from
the real data samples. Our Observer-GAN has the same ob-
jective for the discriminator, where the input data samples
to the discriminator come from the unlabeled dataset XU ,
so that the generator learns to generate samples that are in-
distinguishable from the unlabeled data. In addition to this
setup, as illustrated in Figure 1, we added a second classifier
network (the Observer). The loss function of the Observer
network LOb is defined as follows:

LOb = ExP∼PP
[H(Ob(xP), 0)]+Ez∼PZ

[H(Ob(G(z)), 1)]
(3)

Minimizing this loss forces the observer network to learn
features that separate the positive dataset and the generated
samples. We refer to these features as ”positive features”.
We also replace the loss function of the generator network
defined in (2) to:

LG = Ez∼PZ
[H(D(G(z)), 1)] + Ez∼PZ

[H(Ob(G(z)), 1)]
(4)

The first term in (4) is the same as the first term in (2)
while the second term in (4) ensures that the samples that
the generator produce are different from positive samples
and this difference can be learned by the observer. The
generator in this setup attempts to fool the discriminator
network, while keeping the loss of the observer network
minimal. In this way, the generator network captures
the distribution of the samples that are presented in the

unlabeled dataset (to fool the discriminator), and absent in
the positive dataset (to keep LOb minimal). Minimizing (1),
(3), and (4) iteratively, ensures that the observer network
learns appropriate features from these generated samples
to distinguish between positive and generated samples.
Algorithm 1 shows the steps for training the three networks.

Algorithm 1: Training Observed-GAN

1: Initialize network weights θD, θOb, and θG randomly.
2: for number of epochs do
3: if epoch number = 100*k for k ∈ {1, 2, 3, ...} then

Reinitialize network weights θOb.
4: end if

Sample xU = [x1
U , x

2
U , x

3
U , ..., x

k
U] from XU .

Sample xP = [x1
P , x

2
P , x

3
P , ..., x

k
P] from XP .

Sample z = [z1, z2, z3, ..., zk] from PZ .
Pass z through G to get xz = [x1

z, x
2
z, x

3
z, ..., x

k
z]

Calculate the gradient of LD:
∇θD

1
k

∑k
i=1[H(D(xi

U), 1) +H(D(xi
z), 0)]

Use the stochastic gradient of LD to update D.
Calculate the gradient of LOb:
∇θOb

1
k

∑k
i=1[H(Ob(xi

P), 0) +H(Ob(xi
z), 1)]

Use the stochastic gradient of LOb to update Ob.
Calculate the gradient of LG:
∇θG

1
k

∑k
i=1[H(D(xi

z), 1)] + [H(Ob(xi
z), 1)]

Use the stochastic gradient of LG to update G.
5: end for

This training strategy forces the generator network to gen-
erate new samples that are closer in distribution to the unla-
beled samples, while keeping the features that the observer
network did not previously identify as ”positive features”.
The persistence of these features in the generated samples
also forces the observer network to only pay attention to the
persistently generated negative features, as the rest of the
features in the generated samples change more drastically as
training progresses.

In the first training steps of Observer-GAN, the generated
samples are very different from the positive data samples,
and since the generator and observer are not training adver-
sarially, the value of LOb is always small, hence, the second
term in (4) is almost disabled. As the training proceeds,
when the generator starts learning to generate samples
that are closer to samples of the unlabeled dataset (by
minimizing the first term in (4)), the value of LOb increases
for the samples xZ that are closer to the positive dataset,
penalizing the generator for generating these samples, We
chose the ”Observer” because of this behaviour of the
network.

This training procedure can result in an undesirable over-
fitting issue, in which the observer network starts to mem-
orize positive samples. This is due to the fact that the pos-
itive training set typically has a small size compared to the
unlabeled dataset. In that case, the value of LOb never in-
creases, and never affects the learning of the generator. To

Figure 1: Illustrative figure of Observer-GAN

address this issue and avoid this undesirable overfitting, we
randomly re-initialize the observer network weights every
100 training epoch. This step has the specific purpose of re-
moving any memory the observer network has about positive
samples, so that it always learns meaningful features from
the input samples, instead of simply memorizing positive
samples. This reinitialization trick has previously been used
to enhance GAN performance (Wang et al. 2021). Since the
idea of using a validation set to monitor the training and
avoid overfitting cannot be used in a PU data setting, this
reinitialization step represents a solution to ensure the valid-
ity of the final classifier. The observed continuous improve-
ment of the quality of the generated samples, justifies use of
reinitialization.

Results
Data Preparation
We evaluate the performance of the Observer network
on four different datasets: MNIST (Deng 2012), Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), CIFAR-10
(Krizhevsky, Hinton et al. 2009), and animal faces (AFHQ)
(Choi et al. 2020). The positive and negative classes are
defined respectively as: even versus odd digits on MNIST
dataset, last five classes vs first five classes on Fashion-
MNIST (classes: T-shirt, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, and Ankle boot), animal versus
not animal images on CIFAR-10, and cat versus dog images
on AFHQ.

We define the whole training dataset to be X =
{x1, x2, ..., xp, xp+1, xp+2, ..., xp+n}, where p is the num-
ber of positive samples, and n is the number of negative
samples. We randomly select α|XU | positive samples to be
in the unlabeled set, where α is the proportion of positive
samples in XU , and |XU | is the size of XU . The remainder
(1 − α)|XU | samples in XU are negative. We use α = 0.5

in the following experiments. Table 1 shows the number of
samples used for each dataset. In all test sets, the number
of samples in the positive class is equal to the number of
samples in the negative class.

Table 1: Number of samples in each dataset

Dataset XU size XP size Test set size
Fashion-MNIST 19000 19000 10000

MNIST 19000 19000 10000
AFHQ 3300 3300 1000

CIFAR10 16000 16000 10000

Model Architectures
We use convolutional neural networks for all of the datasets.
Network architectures are inspired by (Chiaroni et al. 2020).
The size of the images in MNIST and CIFAR-10 datasets
are 28 × 28 and 32 × 32 respectively. Figure 2 shows the
architectures used for both datasets. We use a Minibatch size
of 64 for both datasets.

For the AFHQ dataset, we use input images of size
64 × 64, and a minibatch size of 16. Figure 3 shows the
network architecture used for training on AFHQ. We use
ADAM with a learning rate of 0.0002 for all of the exper-
iments.

We compared our method with two state of the art
approaches,TEDn (Garg et al. 2021) and D-GAN (Chia-
roni et al. 2020). We ran TEDn based on their released im-
plementation1, which contains three different architectures,
we chose the best performing one for each of the datasets.
To implement D-GAN, we follow the model architectures
the authors propose (which are also the base architectures
for our method). For the second stage classifier we use the

1https : //github.com/acmi− lab/PUlearning

(a) (b)

Figure 2: (a) is the generator network used for MNIST, Fashion-MNIST and CIFAR-10 datasets. h = 28 and ch = 1 for MNIST
and Fashion-MNIST datasets, and h = 32 and ch = 3 for CIFAR-10 dataset. (b) is the classifier used for the discriminator and
observer network for the three datasets. Size of z is 100. Kernel size in all convolution layers is 4×4. We use transposed convo-
lutional layers (DeConv) and Batch Normalization (BN) in the generator network. In classifier networks, we use convolutional
layers with Spectral Normalization (SN).

same architecture as that used for the discriminator network
of the GAN. We trained the second stage classifier for 1000
epochs, and picked the best performing model.

Baselines
We compare the performance of the Observer network
to D-GAN, which trains a binary classifier on the posi-
tive sample and previously generated negative samples, and
(TEDn), which uses an iterative method between estimat-
ing α and training a binary classifier.

Because of the nature of the problem, as explained previ-
ously, the use of a validation set to choose the best learner
is not feasible. We propose to use the Fréchet Inception Dis-
tance (FID) score (Heusel et al. 2017) as a tool to moni-
tor training. Since the FID score accounts for both the qual-
ity and diversity of the generated images, it is a reasonable
way to ensure that mode collapse does not happening dur-
ing training. Monitoring the FID score of the generated im-
ages together with reinitialization, allows us to avoid mode
collapse and overfitting of the Observer network. As a re-
sult, the Observer network tends to improve with training
for more epochs. To evaluate the validity of this claim, we
train all models in all of the experiments for 1000 epochs,
and assess the average performance of the Observer net-
work on the test set using the last 50 and 100 epochs. We
follow the same approach when training (TEDn). However,
for D-GAN, the second step classifier can not avoid the over-
fitting problem, hence, we use a fully-labeled validation set
to pick the best performing classifier to compare to. We train
the GAN model in D-GAN for 1000 epochs, and we train
a classifier for 1000 epochs on the output of the GAN after
100, 200, and 1000 epochs.

Table 2 shows the positive-versus-negative classification
accuracy of each of the methods, applied on each of the
datasets. The second step classifier of D-GAN fails for more
complicated datasets since it learns only the difference be-
tween the real and fake samples and therefore predicts a
positive label for all unseen realistic data. D-GAN appears
to work well only for datasets that can easily be generated,
which is not always the case in real-world PU datasets.

The Observer-GAN shows the best performance using
the average accuracy of last 50 and 100 epochs. The per-
formance of Observer-GAN improves from the last 100 to
the last 50 in terms of average accuracy, which empiri-
cally supports our claim about continuous improvement of
Observer-GAN. We can see in Figure 4 the test accuracy of
the Observer network and the FID score of the generated
samples and the unlabeled and positive sets against the num-
ber of training epochs. We see that the reinitialization trick
impacts the testing accuracy after each 100 epochs, yet the
accuracy returns back to the highest after each drop.

Figure 5 shows sample output images from the genera-
tor of both Observer-GAN and D-GAN. It is evident that,
although image quality is limited in both cases, Observer-
GAN performs better in terms of quality of generated im-
ages, and enjoys more diversity in the output images in the
later training epochs.

Discussion
A human being can classify between cats and dogs with rea-
sonable accuracy by looking only at a specific features (e.g.
the tail). In general, neural networks are trained to classify
between two classes of images in a similar way, i.e., given a
labeled training set, the neural network is trained to highlight
the important parts of the images concerning the classifica-
tion task. Looking at Figure 5, it is easy to see that all the
generated images from the generator of Observer-GAN con-
tain a noticeable amount of noise, however, the Observer
network can still achieve good accuracy on the unseen test
set. Because of the noisy output of any fixed generator net-
work, a classifier trained with the positive dataset (cat im-
ages) and the output of a fixed generator network (fake dog
images) as the input, learns the noise in the fake samples
as it provides more evident differences between the two in-
put classes. This holds for the output of any fixed generator
in both Observer-GAN and D-GAN. However, in Observer-
GAN, the learning is not done on a fixed generator network,
which leads the Observer network to only learn the features
of the images that the generators are consistently generating
(this can be seen in Figure 5 where the nose and eyes of each

(a) (b)

Figure 3: (a) is the generator network used for AFHQ dataset. (b) is the classifier used for both the discriminator and observer
network for AFHQ dataset.Size of z is 100. Kernel size in all convolution layers is 5× 5.

D-GAN TEDn Observer
Early Stop 50 100 50 100

AFHQ (Cats vs. Dogs) ∼ 50 86.8± 12 89.9± 14.9 91± 1.1 90.1± 3.2
CIFAR (Animal vs. Not Animal) 82 88± 2.5 87.7± 4.6 89.6± 0.7 88.8± 1.7

MNIST (Even vs. Odd) 98.3 97.7± 0.4 97.7± 0.4 98.3± 0.2 97.8± 1.6
Binarized Fashion MNIST 89.6 88.5± 0.9 88.1± 1 92.6± 0.3 92± 1

Table 2: Details of the experiments; Left-most column is the dataset, and upper-most row is the method used. We report the
mean and standard deviation of the accuracy(%) of the last 50 and 100 epochs when using TEDn or Observer network, and
the best performing model when using D-GAN.

dog are persistent through all generator networks, which are
unique features that distinguish dogs form cats), rather than
the remaining, consistently-changing parts of the output im-
ages.

Using the FID score to monitor training allows for identi-
fication of a mode collapse. In Figure 4, the FID scores ap-
pear to start increasing in the case of a mode collapse, likely
because of the lack of diversity of the output of a collapsed
GAN. We can see in the figure that this does not happen
when training the Observer-GAN. While we expected to see
the FID score between the generated samples and the unla-
beled set to be lower in the later training stages than the FID
score from the positive set, because the generator is trained
to generate negative samples that are exclusively existent in
the unlabeled set, we see that this is not evidently captured
by the FID score. This might be caused by the fact that the
FID score assesses the quality of the whole generated im-
ages, which have a considerable amount of noise. Therefore
the difference between the generated samples and both the
unlabeled and positive images is mostly represented by the
noisy parts of the images. This also gives a better intuition
about why a second stage classifier cannot be trained on the
output of the GAN. Looking at the FID score of the gener-
ated images, we see stability (or a small decrease), and this
reflects stability (or a small increase) of the test accuracy of
the Observer network as training progresses.

While Table 2 shows that TEDn has comparable per-
formance to the Observer network for all of the datasets,
it is worth noting that in TEDn training, all of the posi-
tive and unlabeled datasets are used, on the other hand, after
training the Observer network, the final classifier will have

only seen the positive samples. This leaves substantial room
for improvement by making use of the unlabeled dataset for
fine tuning the Observer network. The Observer network
can generate pseudo-labels for the unlabeled data samples.
The unlabeled data samples along with their correspond-
ing pseudo-labels can then represent a new input dataset for
learning methods that are robust to noisy labels (Song et al.
2022).

Conclusion
In this paper, we present Observer-GAN, a method for learn-
ing from positive and unlabeled datasets. It employs a GAN
architecture with two discriminators. One of the discrimina-
tors (the Observer) contributes to generator learning by de-
viating its output from the positive class distribution, and
it is also used as a final stage classifier between positive
and negative testing samples. Because the Observer net-
work can give state-of-the-art classification accuracy while it
does not use the unlabeled dataset as a direct input, a future
direction to improve its performance is to apply a second-
stage fine tuning method that is robust to noise and uses the
unlabeled data samples and their corresponding pseudo la-
bels(Cui et al. 2022) that can be generated by the Observer
network after training the Observer-GAN.

We have found that a GAN learns more slowly to gener-
ate realistic-looking images when trained with two discrim-
inators. However, we demonstrate that the Observer net-
work can learn to distinguish between the positive and neg-
ative distributions even without having to generate realistic-
looking images. This is because the loss function of the gen-

(a) (b)

Figure 4: In blue, is the test accuracy curve of the Observer network as function of the training epochs. In red and green, is the
FID score between the generated samples and the unlabeled data and positive data, respectively. (a) AFHQ, (b) CIFAR-10.

Figure 5: Example images generated by the generator of Observer-GAN and D-GAN. Each column contains a minibatch of 2
randomly generated images from each method after the number of epochs indicated in the first row. The third row indicates the
testing accuracy of the observer network after the corresponding number of epochs. The bottom row contains 5 example images
from the training set.

erator network drives the generated images to contain fea-
tures that can be used by the two discriminators. These fea-
tures resemble the difference between positive and negative
images, and are generated before the images look realistic to
the human eye.

We also address the issue of overfitting that most existing

PU learning methods suffer from because of the absence
of a labeled validation set. We show that the Observer
network does not tend to memorize positive samples, but
rather learns meaningful differences between the positive
and negative (generated) samples.

References
Bekker, J.; and Davis, J. 2020. Learning from positive and
unlabeled data: A survey. Machine Learning, 109(4): 719–
760.
Chiaroni, F.; Khodabandelou, G.; Rahal, M.-C.; Hueber, N.;
and Dufaux, F. 2020. Counter-examples generation from a
positive unlabeled image dataset. Pattern Recognition, 107:
107527.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, 8188–8197.
Claesen, M.; De Smet, F.; Gillard, P.; Mathieu, C.; and
De Moor, B. 2015. Building classifiers to predict the start
of glucose-lowering pharmacotherapy using belgian health
expenditure data. arXiv preprint arXiv:1504.07389.
Comité, F. D.; Denis, F.; Gilleron, R.; and Letouzey, F. 1999.
Positive and unlabeled examples help learning. In Interna-
tional conference on algorithmic learning theory, 219–230.
Springer.
Cui, W.; Akrami, H.; Joshi, A. A.; and Leahy, R. M.
2022. Semi-supervised Learning using Robust Loss. arXiv
preprint arXiv:2203.01524.
Deng, L. 2012. The mnist database of handwritten digit im-
ages for machine learning research. IEEE Signal Processing
Magazine, 29(6): 141–142.
Elkan, C.; and Noto, K. 2008. Learning classifiers from only
positive and unlabeled data. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 213–220.
Garg, S.; Wu, Y.; Smola, A.; Balakrishnan, S.; and Lipton,
Z. 2021. Mixture Proportion Estimation and PU Learning:
A Modern Approach. In Advances in Neural Information
Processing Systems (NeurIPS).
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Grinenko, O.; Li, J.; Mosher, J. C.; Wang, I. Z.; Bulacio,
J. C.; Gonzalez-Martinez, J.; Nair, D.; Najm, I.; Leahy,
R. M.; and Chauvel, P. 2018. A fingerprint of the epilep-
togenic zone in human epilepsies. Brain, 141(1): 117–131.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30.
Hsieh, C.-J.; Natarajan, N.; and Dhillon, I. 2015. PU learn-
ing for matrix completion. In International conference on
machine learning, 2445–2453. PMLR.
Ivanov, D. 2020. Dedpul: Difference-of-estimated-densities-
based positive-unlabeled learning. In 2020 19th IEEE Inter-
national Conference on Machine Learning and Applications
(ICMLA), 782–790. IEEE.
Kiryo, R.; Niu, G.; Du Plessis, M. C.; and Sugiyama, M.
2017. Positive-unlabeled learning with non-negative risk es-
timator. Advances in neural information processing systems,
30.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Liu, B.; Dai, Y.; Li, X.; Lee, W. S.; and Yu, P. S. 2003. Build-
ing text classifiers using positive and unlabeled examples. In
Third IEEE international conference on data mining, 179–
186. IEEE.
Mordelet, F.; and Vert, J.-P. 2011. Prodige: Prioritization of
disease genes with multitask machine learning from positive
and unlabeled examples. BMC bioinformatics, 12(1): 1–15.
Mordelet, F.; and Vert, J.-P. 2014. A bagging SVM to learn
from positive and unlabeled examples. Pattern Recognition
Letters, 37: 201–209.
Nguyen, T.; Le, T.; Vu, H.; and Phung, D. 2017. Dual dis-
criminator generative adversarial nets. Advances in neural
information processing systems, 30.
Plessis, M. D.; Niu, G.; and Sugiyama, M. 2015. Convex
Formulation for Learning from Positive and Unlabeled Data.
In Bach, F.; and Blei, D., eds., Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, 1386–1394.
Lille, France: PMLR.
Song, H.; Kim, M.; Park, D.; Shin, Y.; and Lee, J.-G. 2022.
Learning from noisy labels with deep neural networks: A
survey. IEEE Transactions on Neural Networks and Learn-
ing Systems.
Wang, S.; Gai, T.; Qu, T.; Ma, B.; Su, X.; Dong, L.; Zhang,
L.; Xu, P.; Su, Y.; and Wei, Y. 2021. Data augmentation in
hotspot detection based on generative adversarial network.
Journal of Micro/Nanopatterning, Materials, and Metrol-
ogy, 20(3): 034201.
Wu, Z.; Cao, J.; Wang, Y.; Wang, Y.; Zhang, L.; and Wu,
J. 2018. hPSD: a hybrid PU-learning-based spammer de-
tection model for product reviews. IEEE transactions on
cybernetics, 50(4): 1595–1606.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Yu, H.; Han, J.; and Chang, K.-C. 2004. PEBL: Web page
classification without negative examples. IEEE Transactions
on Knowledge and Data Engineering, 16(1): 70–81.
Zhang, D.; and Lee, W. S. 2005. A simple probabilistic ap-
proach to learning from positive and unlabeled examples. In
Proceedings of the 5th annual UK workshop on computa-
tional intelligence (UKCI), 83–87.
Zhao, Y.; Xu, Q.; Jiang, Y.; Wen, P.; and Huang, Q. 2022.
Dist-PU: Positive-Unlabeled Learning From a Label Distri-
bution Perspective. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 14461–
14470.
Zhou, K.; Xue, G.-R.; Yang, Q.; and Yu, Y. 2009. Learning
with positive and unlabeled examples using topic-sensitive
PLSA. IEEE Transactions on Knowledge and Data Engi-
neering, 22(1): 46–58.
Zhou, Y.; Xu, J.; Wu, J.; Taghavi, Z.; Korpeoglu, E.; Achan,
K.; and He, J. 2021. Pure: Positive-unlabeled recommenda-
tion with generative adversarial network. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, 2409–2419.

