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Abstract—Suppose L simultaneous independent stochastic sys-
tems generate observations, where the observations from each
system depend on the underlying parameter of that system.
The observations are unlabeled (anonymized), in the sense that
an analyst does not know which observation came from which
stochastic system. How can the analyst estimate the underlying
parameters of the L systems? Since the anonymized observations
at each time are an unordered set of L measurements (rather
than a vector), classical stochastic gradient algorithms cannot be
directly used. By using symmetric polynomials, we formulate a
symmetric measurement equation that maps the observation set
to a unique vector. By exploiting that fact that the algebraic
ring of multi-variable polynomials is a unique factorization
domain over the ring of one-variable polynomials, we construct
an adaptive filtering algorithm that yields a statistically con-
sistent estimate of the underlying parameters. We analyze the
asymptotic covariance of these estimates to quantify the effect
of anonymization. Finally, we characterize the anonymity of the
observations in terms of the error probability of the maximum
aposteriori Bayesian estimator. Using Blackwell dominance of
mean preserving spreads, we construct a partial ordering of the
noise densities which relates the anonymity of the observations
to the asymptotic covariance of the adaptive filtering algorithm.

Keywords: Adaptive filtering, Blackwell dominance, sym-

metric transformation, polynomial ring, Algebraic Liapunov

equation, anonymization

I. INTRODUCTION

The classical stochastic gradient algorithm operates on

a vector-valued observation process that is inputted to the

algorithm at each time instant. Suppose due to anonymization,

the observation at each time is a set (i.e., the elements are

unordered rather than a vector). Given these anonymized

observation sets over time, how to construct a stochastic

gradient algorithm to estimate the underlying parameter?

Figure 1 shows the schematic setup comprising L simulta-

neous independent stochastic systems indexed by l = 1, . . . , L,

evolving over discrete time k = 1, 2, . . .. Each stochastic

system l is parametrized by true model θol ∈ R
D and

generates observations yl(k) ∈ R
D given input signal D×D

dimensional matrix ψ(k):

yl(k) = ψ(k) θol + vl(k), l ∈ [L]
defn
= {1, . . . , L} (1)
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Fig. 1: Schematic setup comprising L stochastic sys-

tems. Given the sequence of anonymized observation sets

({y1(k), . . . , yL(k)}, k = 1, 2, . . .), the aim is to estimate the

underlying parameter set θo = {θo1, . . . θ
o
L} of the L systems.

We assume that vl(k) ∈ R
D is iid random sequence with

bounded second moment. We (the analyst) know (or can

choose) the input signal sequence (ψ(k), k = 1, 2, . . .). For

convenience, assume that elements of (ψ(k), k = 1, 2, . . .) are

zero mean iid sequences of random variables. Thus the output

of the L stochastic systems at time k is the observation matrix

y(k) = [y1(k), . . . , yL(k)]
′ ∈ R

L×D

where a′ denotes transpose of matrix a.

The analyst observes at each time k the anonymized (unla-

beled) observation set

y(k) = σk(y(k)) = {y1(k), . . . , yL(k)} (2)

The anonymization map σk is a permutation over the set

{1, 2, . . . , L}. By anonymization1 we mean that by transform-

ing the matrix y with ordered rows to set y with unordered

rows, the index label l ∈ {1, 2, . . . , L} is hidden; that is, the

observations are unlabeled. The time dependence of σk em-

phasizes that the permutation map operating on y(k) changes

at each time k.

Aim. The analyst only sees the anonymized observation set

y(k) at each time k. Given the time sequence of observation

sets (y(k), k = 1, 2, . . .), the aim of the analyst is to estimate

the underlying set of true parameters θo = {θo1, . . . , θ
o
L} of

the L stochastic systems. Note that the analyst aim is estimate

the set θo; due to the anonymization (unknown permutation

map), in general, it is impossible to estimate which parameter

belongs to which stochastic system.

1For now we use anonymization to denote masking the index label l of the
stochastic process. Sec. I-C motivates this in terms of k-anonymity.
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Remarks: (i) Another way of viewing the estimation objec-

tive is: Given noisy measurements of unknown permutations

of the rows a matrix, how to estimate the elements of the

matrix? Our main result is to propose a symmetric transform

framework that circumvents modeling the permutations σk and

is completely agnostic to the probabilistic structure of σk .

(ii) The assumption that ψ(k) is a D × D matrix in (1)

is without loss of generality. The classical LMS framework

involves scalar valued observations ol(k) = ψ′(k)θol + el(k)
where ψ(k) ∈ R

D is the known regression vector, and el(k)
is a noise process. If we stack D such scalar observations into

the vector yl(k), then we obtain (1).

(iii) The model reflects uncertainty associated with the

origin of the measurements (arbitrary permutation) in addi-

tion to their inaccuracy (additive noise). If we knew which

observation m was associated with which stochastic sys-

tem l, then we can estimate each θ∗l independently as the

solution of the following stochastic optimization problem:

θ∗l = argminθ E{(yl(k)−ψ(k)θl)
2}. Then the classical LMS

algorithm can be applied to estimate each θ∗l recursively as:

θl(k + 1) = θl(k) + ǫ ψ(k)
(

yl(k)− ψ(k) θl(k)
)

(3)

where the fixed step size ǫ > 0 is a small positive constant.

(iv) Since the ordering of the elements of the set

{y1(k), . . . , yL(k)} is arbitrary, we cannot use the LMS algo-

rithm (3). If we naively choose a random permutation of the

set y(k) as the observation vector, and feed this L-dimensional

observation vector into L LMS algorithms (3), then the esti-

mates will not in general converge to θol , l = 1, . . . , L.

(v) Finally, the above formulation only makes sense in the

stochastic case. The deterministic case is trivial. If the noise

vl(k) = 0 and input matrix ψ(k) is invertible, then we need

only one observation y to completely determine the parameter

set θo, regardless of the permutation σk .

Stochastic Optimization with Anonymized Observations. Cir-

cumventing Data Association

Broadly, there are two classes of methods for dealing with

unlabeled observation model (1), (2). One class of methods is

based on data association [1], [2], [3]. Data association deals

with the question: How can the observations from multiple

simultaneous processes be assigned to specific processes when

there is uncertainty about which observation came from which

process? Since the observations are anonymized wrt to the

index label l of the random processes, one approach is to

construct a classifier that assigns at each time k the obser-

vation yl(k) to a specific process m. Because the number

of process/observation pairs grows combinatorially with the

number of processes and observations, a brute force approach

to the data association problem is computationally prohibitive.

Data association is studied extensively in Bayesian filtering for

target tracking. In this paper we are dealing with stochastic

optimization instead of Bayesian estimation, where we wish

to preserve the convex structure of the problem.

The second class of methods bypasses data association, i.e.,

labels are no longer estimated (assigned) to the anonymized

observations. This paper focuses on using symmetric trans-

forms to bypass data association, as discussed next.

A. Main Idea. Symmetric Transforms & Adaptive Filtering

Since the assignment step in data association can destroy

the convexity structure of a stochastic optimization problem,

a natural question is: Can data association be circumvented

in a stochastic optimization problem? A remarkable approach

developed in the 1990s by Kamen and coworkers [4], [5] in

the context of Bayesian estimation, involves using symmetric

transforms. This ingenious idea circumvents data association;

see also [6] and references therein. In this paper we extend

this idea of symmetric transforms to stochastic optimization.

Specifically, we show that the symmetric transform approach

preserves convexity. Since [4] deals with Bayesian filtering

for estimating the state, convexity is irrelevant. In comparison,

preservation of convexity is crucial in stochastic optimization

problems to ensure that the estimates of a stochastic gradient

algorithm converge to the global minimum.

To explain our main ideas, suppose there are L = 3
scalar-valued random processes, so each observation yl(k) is

scalar-valued. Further for simplicity assume the input signal

ψ(k) = 1; so the observations are yl(k) = θol + vl(k). Given

the anonymized observation set y(k) = {y1(k), . . . , y3(k)}
at each time k, how to estimate the parameters θo1, θ

o
2, θ

o
3?

Our main idea is to use the set y(k) to construct a pseudo-

measurement vector z(k) ∈ R
3. Suppressing the time depen-

dency (k) for notational convenience, we construct the pseudo-

measurements z1, z2, z3 via a symmetric transform as follows:

z1 = S1{y1, y2, y3} = y1 + y2 + y3

z2 = S2{y1, y2, y3} = y1 y2 + y1 y3 + y2 y3

z3 = S3{y1, y2, y3} = y1 y2 y3

(4)

The key point is that the pseudo-observations zl are symmetric

in y1, y2, y3. Any permutation of the elements of {y1, . . . , y3}
does not affect zl. In this way, we have circumvented the data

association problem; there is no need to assign (classify) an

observation to a specific process. But we have introduced a

new problem: estimating θo using the pseudo-observations is

no longer a convex stochastic optimization problem. To esti-

mate θo we minimize the second order moments to compute:

θ∗ = argmin
θ

{E{(z1 − (θ1 + θ2 + θ3))
2} (5)

+ E{(z2 − (θ1θ2 + θ1θ3 + θ2θ3))
2}+ E{(z3 − θ1θ2θ3)

2}}

Clearly the multi-linear objective (5) is non-convex in

θ1, θ2, θ3. However, the problem is convex in the symmetric

transformed variables (denoted as λ below), and the original

variables θ can be evaluated by inverting the symmetric

transform. We formalize this as follows:

Result 1. (Informal version of Theorem 1) The global mini-

mum θ∗ of the non-convex objective (5) can be computed in

three steps:

(i) Given the observations y(k), compute the pseudo-

observations z(k) using (4).

(ii) Using these pseudo-observations, estimate the pseudo

parameters λ1 = θ1 + θ2 + θ3, λ2 = θ1θ2 + θ1θ3 + θ2θ3,

λ3 = θ1θ2θ3. Clearly (5) is a stochastic convex optimization

problem in pseudo-parameters λ1, λ2, λ3. Let λ∗1, λ
∗
2, λ

∗
3 de-

note the estimates.
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(iii) Finally, solve the polynomial equation s3 +λ∗1s
2+λ∗2s+

λ∗3 = 0. Then the roots2 are θ∗. Computing the roots of a

polynomial is equivalent to computing the eigenvalues of the

corresponding companion matrix (Matlab command roots).

Put simply the above result says that while (5) is non-convex

in the roots of a polynomial, it is convex in the coefficients

of the polynomial! To explain Step (ii), clearly (5) is convex

in the pseudo-parameters λ1, λ2, λ3. We can straightforwardly

compute the global minimum in terms of these pseudo param-

eters as λ∗1 = E{z1}, λ∗2 = E{z2}, λ∗3 = E{z3}.

To explain Step (iii) of the above result, we use a crucial

property of symmetric functions. The reader van verify that

the following monic polynomial in variable s satisfies

(s+ θ1)(s+ θ2)(s+ θ3) = s3 + λ1s
2 + λ2s+ λ3

The above equation states that a monic polynomial with

pseudo-parameters λ1, λ2, λ3 as coefficients has the parame-

ters θ1, θ2, θ3 as roots of the polynomial. By the fundamental

theorem of algebra, there is a unique invertible map between

the coefficients of a monic polynomial and the set of roots

of the polynomial. As a result having computed the global

minimum λ∗ of the above objective (5) (since it is convex

in λ), we can compute the unique parameter set θ∗, which

are the set of roots of the corresponding polynomial. Thus

we have computed the global minimum θ∗ of the non-convex

objective (5). To summarize Result 1 gives a constructive

method to estimate the true parameter set θo given anonymized

observations (albeit in an extremely simplified setting).

B. Main Results and Organization

1) Our first main result in Sec. II, extends the above sim-

plistic formulation to a random input process ψ(k) rather

than a constant. To achieve this, Theorem 1 exploits the

homogeneous property of the symmetric transform S to

construct a consistent estimator for θo. In Theorem 1,

we will construct a stochastic gradient algorithm that

generates a sequence of estimates λ(k) that provably

converges to λ∗ (since the problem is convex). The roots

of the corresponding polynomial converge to θ∗.

2) Sec. III extends this symmetric transform approach to the

case where each anonymized observation yl(k) is a vector

in R
D where D ≥ 2 in (1). For this vector case, three

issues need to be resolved:

a) It is not possible to use the scalar symmetric trans-

form (4) element-wise on vector observations. Naively

applying the scalar symmetric transforms element wise

yields “ghost” parameters estimates that are jumbled

across the various stochastic systems (see Sec.III-A.)

b) Since a scalar symmetric transform (or equivalently, the

one variable polynomial transform) is not useful, we

will use a two-variable polynomial transform inspired

by [7]. However, a new issue arises. In the scalar

observation case, we use the fundamental theorem

of algebra to construct a unique mapping between

the roots of a polynomial and the coefficients of the

2Strictly speaking θ1, θ2, θ3 are factors. The root is the negative of a factor.

polynomial. Unfortunately, in general the fundamental

theorem of algebra does not extend to polynomials in

two variables. The key point we will exploit below is

that the ring of two-variable polynomials is a unique

factorization domain over the ring of one-variable poly-

nomials. This gives us a constructive method to extend

Theorem 1 to sets of vector observations (D ≥ 2). This

is the content of our main result Theorem 2.

c) The final issue is that of homogeneity of the symmetric

transform. In the scalar case, the homogeneity property

is crucial in the proof of Theorem 1. We construct a

suitable multidimensional generalization for the vector

case in order to prove Theorem 2.

3) Asymptotic Covariance of Adaptive Filtering Algorithm:

Sec. III-D analyzes the convergence and asymptotic co-

variance of the adaptive filtering algorithm (28). In the

stochastic approximation literature [8], [9], the asymp-

totic rate of convergence is specified in terms of the

asymptotic covariance of the estimates. We study the

asymptotic efficiency of the proposed adaptive filtering

algorithm. Specifically we address the question: How

much larger is the asymptotic covariance due to use of

the symmetric transform to circumvent anonymization,

compared to the classical LMS algorithm when there is

no anonymization?

4) Mixture Model for Noisy Matrix Permutations: We can

assign a probability law to the permutation process σ in

the anonymized observation model (1), (2) as follows:

y(k)
L×D

= σ(x(k))
L×L

θo

L×D

ψ(k)
D×D

+ σ(x(k)) v(k)
L×D

(6)

Here σ(x(k)) denotes a randomly chosen L × L per-

mutation matrix that evolves according to some random

process x. So (6) is a probabilistic mixture model. The

matrix valued observations y(k) are random permutations

of the rows of matrix θoψ(k) corrupted by noise. Given

these observations, the aim is to estimate the matrix θo.

Note that there are L! possible permutation matrices σ.

In the context of mixture models, Section IV and Ap-

pendix A present two results:

(i) Mean-preserving Blackwell dominance and Anonymity

of permutation process: Section IV uses the error prob-

ability of the Bayesian posterior estimate of the random

permutation state x(k) in (6) as a measure of anonymity.

This is in line with [10] where anonymity is studied in

the context of mutual information and error probabilities.

We will then use Blackwell dominance and a novel result

in mean preserving spreads to relate this anonymity to the

covariance of our proposed adaptive filtering algorithms.

(ii) Recursive Maximum likelihood estimation of θo In

Appendix A, we discuss a recursive maximum likelihood

estimation (MLE) algorithm for the parameters θo. This

requires knowing the density of v and the mixture prob-

abilities (of course these can be estimated, but given the

L! state space dimension, this becomes intractable). A

more serious issue is that the likelihood is not necessarily

concave in θ. In comparison, our symmetric function ap-

proach yields a convex stochastic optimization problem.
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C. Applications of Anonymized Observation Model

We classify applications of the anonymized observation

model (1), (2) into two types: (i) Due to sensing limitations, the

sensor provides noisy measurements from multiple processes,

and there is uncertainty as to which measurement came

from which process and (ii) examples where the identities of

the processes generating the measurements are purposefully

hidden to preserve anonymity.

1. Sensing/Tracking Multiple Processes with Unlabeled Ob-

servations: The classical observation model comprises a sensor

(e.g. radar) that generates noisy measurements where, due

to sensing limitations, there is uncertainty in the origin of

the measurements. The observations are unlabeled and not

assigned to a specific target process [1]. In this context,

estimating the underlying parameter θo of the target processes

is identical to our estimation objective. As mentioned earlier,

data association is widely studied in Bayesian estimation for

target tracking. In this paper we focus on stochastic optimiza-

tion with anonymized observations. for example, to estimate

the underlying parameters, or more generally adaptively opti-

mize a stochastic system comprising L parallel process.

2. Adaptive Estimation with k-Anonymity and l-diversity:

We now discuss examples where the labels (identities) of

the L processes are purposefully hidden. Anonymization of

trajectories arises in several applications including health care

where wearable monitors generate time series of data uniquely

matched to an individual, and connected vehicles, where

location traces are recorded over time.

The concept of k-anonymity3 (we will call this L-anonymity

since we use k for time) was proposed by [11]. It guarantees

that there are at least L identical records in a data set that are

indistinguishable. In our formulation, due to the anonymiza-

tion step (2), the identities (indexes) l of the L processes are

indistinguishable. More generally, in the model (1), (2), the

identity l of each target itself can be a categorical vector

[l1, . . . , lN ]. For example if each process models GPS data

trajectories of individuals, the categorical data ψl(k) records

discrete-valued variables such as individuals identity, specific

locations visited, etc. To ensure L-anonymity, these categorical

vectors are all allocated a single vector, thereby maintaining

anonymity of the categorical data. Thus the analyst only sees

the anonymized observation set y(k).

Note that L-anonymity hides identity l but discloses at-

tribute information, namely the noisy observation set y(k).
To enhance L-anonymity, the attributes in L-anonymized data

are often M -diversified4 [12]: each equivalence class is

constructed so that there are at least M distinct parameters. In

our notation, if at least M processes have distinct parameter

vectors θl, l = 1, . . . ,M , then M -diversity of the attribute

data is achieved.

3Data anonymity is mainly studied under two categories: k-anonymity
and differential privacy. Differential privacy methods typically add noise to
trajectory data providing a provable privacy guarantee for the data set. Even
though we consider Laplacian noise for v in the numerical studies and this can
be motivated in terms of differential privacy; we will not discuss differential
privacy in this paper.

4The terminology used in the literature is “l-diversified”; but we use l for
the index of the target process.

In our formulation, the input signal matrices ψ(k) are the

same for all L processes. Thus the input matrices also preserve

L-anonymity. If the analyst could specify a different input

signal ψl to each system l, then the analyst can straightfor-

wardly estimate θol for each target process l, thereby breaking

anonymity; see Remark 6 after Theorem 1 below.

3. Product Sentiment given Anonymized Ratings: Reputation

agencies such as Yelp post anonymized ratings or products.

Market analysts aim to estimate the true sentiment of the group

of users given these anonymized ratings [13].

4. Evaluating Effectiveness of Teaching Strategy given

Anonymized Responses: A teacher instructs L students with

input signal ψ(k). Each student l has prior knowledge θol .

and responds to the teaching input with answer yl(k). The

identity l of the student is hidden from the teacher. Based on

these anonymous responses, the teacher aims to estimate the

students prior knowledge θo. See also [14] for other examples.

Anonymized trials are also used in evaluating the effectiveness

of drugs vs placebo.

II. ADAPTIVE FILTERING WITH SCALAR ANONYMIZED

OBSERVATIONS

For ease of exposition, we first discuss the problem of

estimating the true parameter θo when the observation yl(k) of

each process l is a scalar; so D = 1 in (1) and ψ(k) is a scalar.

Since there are L independent scalar processes in (1), the

parameters generating these L processes is θo = {θo1, . . . , θ
o
L}.

Given the anonymized observation set y(k) =
{y1(k), . . . , yL(k)} at each time k, our main idea is

to construct a pseudo-measurement vector z(k) ∈ R
L.

Suppressing the time dependency (k) for notational

convenience, we construct the L pseudo-measurements

zl, l ∈ [L] via a symmetric transform5 [15] as follows:

z = S{y} ⇐⇒ zl = Sl{y1, . . . , yL}
defn
=

∑

i1<i2<···<il

yi1 yi2 · · · yil , l ∈ [L] (7)

Recall our notation [L] = {1, . . . , L}. It is easily shown

using the classical Vieta’s formulas [16], that the pseudo-

measurements zl, l ∈ [L] in (7) are the coefficients of the

following L-order polynomial in variable s:

S{y}(s)
defn
=

L
∏

l=1

(s+ yl) = sL +
L
∑

l=1

zl s
L−l (8)

As an example, consider L = 3 independent scalar pro-

cesses. Then the pseudo-observations using (7) are given

by (4). The reader can verify that the pseudo-observations

z1, z2, z3 are the coefficients of the polynomial (s + y1)(s +
y2)(s+ y3).

Note that each zl is permutation invariant: any permutation

of the elements of {y1, . . . , yL} does not affect zl. That is why

our notation above involves the set {y1, y2, . . . , yL}.

5By symmetric transform Sl , we mean Sl{y1, . . . , yL} = Sl{P ·
{y1, . . . , yL}} for any permutation P of {y1, . . . , yL}. Thus while the
elements {y1, . . . , yL} are arbitrarily ordered, the value of Sl{·} is unique.
Eq (8) gives a systematic construction of such symmetric transforms that is
uniquely invertible, see (14).
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Remark: It is easily verified from (7) that the symmetric

transforms Sl is homogeneous of degree l: for any c ∈ R,

Sl{c θ1, . . . , c θL} = cl Sl{θ1, . . . , θL}, l ∈ [L] (9)

A. Symmetric Transform and Estimation Objective

Given the set valued sequence of anonymized observations,

y(1), y(2), . . . y(k), . . . generated by (1), our aim is to estimate

the true parameter set θo = {θo1, . . . , θ
o
L}. To do so, we first

construct the pseudo measurement vectors z(1), z(2), . . . , z(k)
via (7). Denoting θ = {θ1, . . . , θL}, our objective is to

estimate the set θ∗ = {θ∗1 , . . . , θ
∗
L} that minimizes:

θ∗ = argmin
θ

∑

l∈[L]

E |zl − Sl

{

ψ θ1, ψ θ2, . . . , ψ θL
}

|2

where zl = Sl

{

ψ θo1 + v1, . . . , ψ θ
o
L + vL

}

(10)

Recall the symmetric transform Sl is defined in (7). Finally,

define the symmetric transforms on the model parameters as

λ = S{θ} ⇐⇒ λl = Sl{θ1, . . . , θL}, l ∈ [L]. (11)

Note that λ = [λ1, . . . , λL]
′ is an L-dimension vector whereas

θ is a set with L (unordered) elements.

From (10), we see that θ∗ is a second order method of

moments estimate of θo wrt pseudo observations. Importantly,

this estimate is independent of the anonymization map σ.

B. Main Result. Consistent Estimator for θo.

We are now ready to state our main result, namely an adap-

tive filtering algorithm to estimate θo given anonymized scalar

observations. The result says that while objective (10) is non-

convex in θ, we can reformulate it as a convex optimization

problem in terms of λ defined in (11). The intuition is that the

objective (10) is non-convex in the roots of the polynomial

(namely, θ) , but is convex in the coefficients of the polynomial

(namely, λ); and by the fundamental theorem of algebra there

is a one-to-one map from the coefficients λ to the roots θ.

Therefore, by mapping observations to pseudo observations

(coefficients of the symmetric polynomial), we can construct

a globally optimal estimate of (10).

Theorem 1. Consider the sequence of anonymized observa-

tion sets (y(k), k ≥ 1) generated by (1) and (2), where ψ(k)
is a known iid scalar sequence. Then

1) The objective (10) can be expressed as L decoupled con-

vex optimization problems in terms of λ defined in (11):

min
λl

E|zl − ψlλl|
2 where

zl(k) =
(

ψ(k)
)l
λol + wl(k)

(12)

The process w(k) is defined explicitly in (59) below.

2) The global minimizer θ∗ of objective (10) is consistent in

the sense that θ∗ = θo.

3) With pseudo observations z(k) = S{y(k)} defined in (7),

consider the following bank of L decoupled adaptive fil-

tering algorithms operating on z(k): Choose λ(0) ∈ R
L.

Then for l ∈ [L], update as

λl(k + 1) = λl(k) + ǫ ψl(k)
(

zl(k)− ψl(k)λl(k)
)

θ(k + 1) = Re
(

S−1(λ(k + 1))
)

(13)

Here S−1 is defined in (14) and Re denotes the real

part of the complex vector. The estimates θ(k) converge

in probability and mean square to θ∗ (see Theorem 3).

Discussion: 1. Theorem 1 gives a tractable and consis-

tent method for estimating the parameter set θo of the L
stochastic systems given set valued anonymized observations

y(1), y(2), . . .. We emphasize that since the observations y(k)
are set-valued, the ordering of the elements of θo cannot be

recovered; Statement 1 of the theorem asserts that the set-

valued estimate θ∗ converges to θo. Statement 2 of the theorem

gives an adaptive filtering algorithm (13) that operates on the

pseudo observation vector z(k). Applying the transform S−1

to the estimates λ(k) generated by (13) yields estimates θ(k)
that converge to the global minimum θ∗. Since by assumption

θo ∈ R
L, the second step of (13) chooses the real part of the

possibly complex valued roots.

2. An important property of the symmetric operator S is

that it is uniquely invertible since any L-th degree polynomial

has a unique set of at most L roots. Indeed, given λ = S{θ},

θ = S−1(λ) are the unique set of roots {θ1, . . . , θL} of the

polynomial with coefficients λl, l ∈ [L], that is,

θ = S−1(λ) ⇐⇒ sL +

L
∑

l=1

λl s
l−1 =

L
∏

l=1

(s+ θl) (14)

Note that S−1(·) maps the vector λ to unique set θ. Recall

that S{·} maps set θ to unique vector λ. Computing the roots

of a polynomial is equivalent to computing the eigenvalues of

the companion matrix e.g., Matlab command roots.

3. Typically the roots of a polynomial can be a sensitive

function of the coefficients. However, this does not affect

algorithm (13) since it operates on the coefficients only. The

roots are not fed back iteratively into algorithm (13). In

Section III-D and Theorem 6 below, we will quantify this sen-

sitivity in terms of the asymptotic covariance of algorithm (13).

4. The adaptive filtering algorithm (13) uses a constant step

size; hence it converges weakly (in distribution) to the true

parameter θo [9]. Since we assumed θo is a constant, weak

convergence is equivalent to convergence in probability. Later

we will analyze the tracking capabilities of the algorithm when

θo evolves in time according to a hyper-parameter.

5. A stochastic gradient algorithm operating directly on

objective (10) is

θ(k+1) = θ(k)−ǫ∇θ

∑

l∈[L]

|zl(k)−Sl

{

ψ(k) θ1(k), , . . . , ψ(k) θL(k)
}

|2

(15)

We show via numerical examples in Sec.V that objective (10)

has local minima and stochastic gradient algorithm (15) can

get stuck at these local minima. In comparison, the formulation

involving pseudo-measurements yields a convex (quadratic)

objective and algorithm (13) provably converges to the global

minimum. There is also another problem with (15). If the

initial condition θ(0) is chosen with equal elements, then since

the gradient ∇θ is symmetric (wrt y and θ), all the elements

of the estimate θ(k) have equal elements at each time k,

regardless of the choice of θo, and so algorithm (15) will not

converge to θo.
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6. Anonymization of input signal ψ(k): We assumed that the

input signal matrices ψ(k) are the same for all L processes.

If the analyst can specify a different input signal ψl to

each system l, then the analyst can estimate θol for each

target process l via classical least squares, thereby breaking

anonymity as follows: Minimizing E{
∑

l∈[L] yl − ψlθl}2 =

E{z1 −
∑

l∈[L] ψlθl}2 wrt θl yields the classical least squares

estimator. Thus the analyst only needs the pseudo observations

z1(k) =
∑

l yl(k) to estimate θol and thereby break anonymity.

In our formulation, since the regression input signals ψl

are identical, minimizing E{z1−ψ
∑

l∈[L] θl}
2 only estimates

the sum of parameters, namely
∑

l θ
o
l ; the individual param-

eters are not identifiable. This is why we require pseudo-

observations z1, . . . , zL to estimate the elements θol , l ∈ [L].

III. ADAPTIVE FILTERING GIVEN VECTOR ANONYMIZED

OBSERVATIONS

We now consider the case D ≥ 2, namely, for each process

l ∈ [L], the observation yl(k) in (1) is a D-dimensional vector.

We observe the (unordered) set y(k) = {y1(k), . . . , yL(k)} at

each time k. That is, we do not know which observation vector

yl(k) came from which process l. Given the anonymized

observation set (2), the aim is to estimate θo ∈ R
L×D.

Remark. For each observation vector yl ∈ R
D, let yl,i

denote the i-th component. Note that the elements of each

vector yl are ordered, namely yl = [yl1, . . . , ylD]′, but the

first index l (identity of process) is anonymized yielding the

observation set y = {y1, . . . , yL}.

As mentioned in Sec.I, for this vector case, three issues

need to be resolved: First, naively applying the scalar sym-

metric transforms element wise yields “ghost” parameter esti-

mates that are jumbled across the various stochastic systems.

(We discuss this in more detail below.) Second, we need

a systematic way to encode the observation vectors via a

symmetric transform that is invertible. We will use a two-

variable polynomial transform. However, a new issue arises;

in general the fundamental theorem of algebra, namely that

an L-th degree polynomial has up to L complex valued

roots, does not extend to polynomials in two variables. We

will construct an invertible map for two-variable polynomials.

This gives us a constructive method to extend Theorem 1

to vector observations D ≥ 2. The final issue is that of

homogeneity of the symmetric transform. Recall in the scalar

case, the homogeneity property (9) was crucial in the proof of

Theorem 1. We l need to generalize this to the vector case. The

main result (Theorem 2 below) addresses these three issues.

A. Symmetric Transform for Vector Observations

This section constructs the symmetric transform S for vector

observations. The construction involves a polynomial in two

variables, s and t. It is convenient to first define the symmetric

transform for an arbitrary set α = {α1, . . . , αL} where αl ∈
R

D. The symmetric transform is defined as

S{α}(s, t) =
L
∏

l=1

(s+

D
∑

i=1

αl,i t
i−1) = sL +

L
∑

l=1

Ml
∑

m=1

Sl,m{α} sl−1 tm−1

where Ml
defn
= (L− l)(D − 1) +D

(16)

So the symmetric transform is the array of polynomial coef-

ficients Sl.m{α} of the above two variable polynomial. We

write this notationally as

S{α} = [Sl.m{α}, m = 1, . . . ,Ml, l ∈ [L]]

When D = 1, we see that the symmetric transform (16)

specializes to (7).

Another equivalent way of expressing the above symmetric

transform involves convolutions: The Ml dimensional vector

Sl{α} = [Sl1{α}, . . . , SlMl
{α}]′ satisfies

Sl{α} =
∑

i1<i2<···<il

αi1 ⊗ αi2 ⊗ · · · ⊗ αil , l ∈ [L] (17)

where ⊗ denotes convolution. Eq. (17) serves as a constructive

computational method to compute the symmetric transform of

a set α.

With the above definition of the symmetric transform,

consider the observation set y(k) = {y1(k), . . . , yL(k)} at

each time k. We define the pseudo-observations as

z(k) = S{y(k)} (18)

Example. To illustrate the polynomial S{y}(s, t), consider

L = 2 independent processes each of dimension D = 2.

Then with y1 = [y11, y12]
′, y2 = [y21, y22]

′, the symmetric

polynomial (16) in variables s, t is

S{y}(s, t) = (s+ y11 + y12t) (s+ y21 + y22t) (19)

Then the pseudo observations zlm specified by the RHS of (16)

are the coefficients of this polynomial, namely

z11 = y11 y21, z12 = y11 y22 + y12 y21, z13 = y12 y22,

z21 = y11 + y21, z22 = y12 + y22 (20)

In the convolution notation (17), the pseudo-observations are

z1 = [z11, z12, z13]
′ = y1 ⊗ y2, z2 = [z21, z22]

′ = y1 + y2

We see from this example that the pseudo-observations (20)

generated by the vector symmetric transform (16) is a superset

of the scalar symmetric transforms applied to each component

of the vector observation. Specifically pseudo-observations for

the first elements of y1 and y2, namely y11, y2,1 are z11,

z21. Similarly pseudo-observations or the second elements

of y1 and y2, namely y12, y22 are z13, z22. But z12 in (20)

is the extra pseudo-observation that cannot be obtained by

simply constructing symmetric transforms of each individual

element. In Sec.III-A below, we will discuss the importance

of the above vector symmetric transform compared to a naive

application of scalar symmetric transform element-wise.

Why a naive element-wise symmetric transform is not use-

ful: Instead of the vector symmetric transform defined in (16),

why not perform the scalar symmetric transform on each of

the D components separately? To make this more precise, let

us define the naive vector symmetric transform which uses the

scalar symmetric transform Sl, l ∈ [L] in (8) as follows:

z̄lj = S̄l,j{y} = Sl{y1,j, . . . , yL,j}, j ∈ {1, . . . , D} (21)

This is simply the scalar symmetric transform S{y1j, . . . , yLj}
applied separately to each component j = 1, . . . , D.
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In analogy to (10), we can define the estimation objective

in terms of the naive vector transform as

θ̄∗ = argmin
θ

∑

l∈[L]

D
∑

j=1

E|z̄lj − S̄l,j{ψθ1, ψθ2, . . . , ψθL}|
2

(22)

The naive symmetric transform S̄ in (21), (22) loses order-

ing information of the vector elements; for example given two

processes (L = 2) each of dimension D = 2, S̄ does not

distinguish between observation set {[y1,1, y1,2], [y2,1, y2,2]}
and the observation set {[y1,1, y2,2], [y2,1, y1,2]}. It follows that

θ̄∗ in (22) is not a consistent estimator for θo; see remark

following proof of Statement 4 of Theorem 2. Specifically, if

the true parameters are θo = {[θo11, θ
o
12], [θ

o
21, θ

o
22]}, then the

estimates can converge to the parameters of the “ghost pro-

cesses” {[θo11, θ
o
22], [θ

o
21, θ

o
12]}. That is, the parameter estimates

get jumbled between the stochastic systems. Such “ghost”

target estimates are common in data association in target

tracking, and we will demonstrate a similar phenomenon in

numerical examples of Sec.V when using the naive symmetric

transform on anonymized vector observations.

In comparison, the vector symmetric transform (16) system-

atically encodes the observations with no information loss.

For example in the D = 2, L = 2 case, the extra pseudo-

observation z12 in (19) allows to distinguish between these

observation sets. (See also Appendix A for the example

D = 3, L = 3.) To summarize, the vector symmetric transform

is fundamentally different to the scalar symmetric transform.

We will use the vector symmetric transform as a consistent

estimator for θo below.

B. Main Result. Consistent Estimator for θo

We first formalize our estimation objective based on the

anonymized observations. Then we present the main result.

Denoting θ = {θ1, . . . , θL}, our objective is to estimate the

set θ∗ = {θ∗1 , . . . , θ
∗
L} that minimizes the following expected

cost (where ‖ · ‖F denotes the Frobenius norm): Compute

θ∗ = argmin
θ

E‖S{y1, . . . , yL} − S{ψ θ1, ψ θ2, . . . , ψ θL}
∥

∥

2

F

(23)

Recall that θl ∈ R
D for each l ∈ [L]. For notational conve-

nience we use {ψθ} to denote the set {ψ θ1, ψ θ2, . . . , ψ θL
}

.

Also y = {y1, . . . , yL} is the (anonymized) observation set.

Remark. As in the scalar case, we note that θ∗ in (23) is a

second order method of moments estimate of θo wrt pseudo

observations, independent of anonymization map σ.

We are now ready to state our main result, namely an adap-

tive filtering algorithm to estimate θo given the anonymized

observation vectors. As in the scalar case, the main idea is

that we have a convex optimization problem in the symmetric

transform variables (denoted as λ below), and the variables θ
can be evaluated by inverting the symmetric transform.

Theorem 2. Consider the sequence of anonymized obser-

vation sets, (y(k), k ≥ 1) generated by (1), (2), where

ψ(k), k ≥ 1 is a known iid sequence of D × D matrices.

Then

1) The symmetric transform polynomial S{y}(s, t) in (16)

can be decomposed into signal and noise polynomials as

S{y}(s, t) = S{ψθo}(s, t) + w(s, t) (24)

where w(s, t) is a noise polynomial whose coefficients

are zero mean. (We define w(s, t) in (63) below.)

2) The symmetric transform S has the following homogene-

ity property: With λl,m
defn
= Sl,m{θ}, then

Sl,m{ψθ} =
∑

n∈Ml

λl,n Sl,n{ψ
l,m}, l ∈ [L] (25)

Here for λm,n =
∑

i1≤i2≤···≤il
θ1,i1 θ2,i2 · · · θl,il , we

construct ψl,m as the following D× l matrix of elements

from input matrix ψ:

ψl,m defn
=











ψi1,1 ψi2,1 · · · ψil,1

ψi1,2 ψi2,2 · · · ψil,2

...
... · · ·

...

ψi1,D ψi2,D · · · ψil,D











(26)

3) With pseudo observations z = S{y} defined in (7) and

ψl,m defined in (26), the objective (23) can be expressed

as L decoupled convex optimization problems:

[λ∗l1, . . . , λ
∗
l,Ml

] = argmin
λl1,...,λlMl

∑

m∈Ml

E|zlm

−
∑

n∈Ml

λl,n Sl,n{ψ
l,m}|2 l ∈ [L]

θ∗ = S−1(λ∗)

(27)

4) The global minimizer θ∗ of objective (23) is consistent in

the sense that θ∗ = θo.

5) With pseudo-observations z(k) = S{y(k)} computed

by (17), consider the following L decoupled adaptive fil-

tering algorithms operating on quadratic objective (27):

Choose initial condition λl,m(0) ∈ R arbitrarily. Update

each element of λl.m, m ∈Ml, l ∈ [L] as

λl,m(k + 1) = λl,m(k) + ǫ Sl,m(ψlm(k))

×
∑

m∈Ml

(

zl,m(k)−
∑

n∈Ml

λl,n(k)Sl,n{ψ
lm(k)}

)

,

θ(k + 1) = Re
(

S−1(λ(k + 1))
)

(28)

Here ǫ > 0 is the algorithm step size, S−1 is evaluated

via (31), (32), ψl,m is constructed in (26), and Sl,n{·}
is computed in (17). Then the estimates θ(k) converge in

probability and mean square to θ∗ (see Theorem 3).

C. Discussion of Theorem 2

Despite the complex notation, the important takeaway

from (25) is that Sl,m{ψθ} is a linear function of λl,n =
Sl,m{θ}. Therefore the objective (23) becomes a convex

(quadratic) optimization problem (27). Thus similar to the

scalar case in Theorem 1, we have converted a non-convex

problem in the roots of a two-dimensional polynomial to a

convex problem in the coefficients of the polynomial. Since

the map between the set of roots and vector of coefficients

roots is uniquely invertible, the optimization objectives (23)

and (27) are equivalent.
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Homogeneity of Symmetric Transform: The fundamental

theorem of symmetric functions states that any symmetric

polynomial can be expressed as a polynomial in terms of el-

ementary symmetric functions [17, Theorem 4.3.7]. However,

Theorem 2 exploits the linear map ψθ to obtain the specific

result (25), namely Sl,m{ψθ} =
∑

n∈Ml
Sl,n{θ}Sl,n{ψl,m}.

This qualifies as a vector version of the homogeneity prop-

erty (9) in the scalar case. The scale factor is Sl,n{ψl,m}.

As a simple example of evaluating the matrix ψl.m in (26),

suppose L = 3, D = 3. Then since λ11 = θ11θ21θ31, it follows

from (26) and (16) that

ψ11 =





ψ11 ψ11 ψ11

ψ12 ψ12 ψ12

ψ13 ψ13 ψ13



 , S11{ψ
11} = ψ3

11, (29)

S12{ψ11} = 3ψ2
11ψ12. Also, since λ12 = θ11θ21θ32 +

θ11θ22θ31 + θ12θ21θ31, it follows from that

ψ12 =





ψ11 ψ11 ψ21

ψ12 ψ12 ψ22

ψ13 ψ13 ψ23



 , S11{ψ
12} = ψ2

11 ψ21,

S12{ψ
21} = ψ2

11ψ12 + ψ11ψ12ψ21 + ψ12ψ11ψ21

(30)

S is uniquely invertible: The fundamental theorem of

algebra, namely that an L-th degree polynomial has up to

L complex valued roots, does not, in general, extend to

polynomials in two variables. However, the above special

construction which encodes the observations as coefficients of

powers of t, ensures that S is a uniquely invertible transform

between the set of observations and matrix of polynomial

coefficients. This is because the ring F (s, t) of two-variable

polynomials is a unique factorization domain over the ring

F (s) of one-variable polynomials [16, Theorem 2.25].

Evaluating S−1: Given the observations y, the transform

S{y} computes the pseudo-observations via convolution (17).

We now discuss how to compute θ = S−1(λ) given λ. This

computation is required in (27) to compute θ∗ and also in the

adaptive filtering algorithm (28) below.

As in the scalar case (8), given λ1,1, . . . , λL,1, we first com-

pute θ1,1, . . . , θL,1 by solving for the roots of the polynomial:

L
∏

l=1

(s+ θl,1) = sL +

L
∑

l=1

λl,1 s
L−l (31)

Next, solve for the remaining elements of θl,m iteratively over

m = 2, 3, . . . , D. For each m ≥ 2, given λ1,m, . . . , λL,m and

{θ1,n, . . . , θL,n}, n = 1, . . . ,m − 1, we solve the following

linear system of equations6 for θ1,m, . . . , θL,m:

S1,m{θ1,m, . . . , θL,m} = λ1,m

S2,m{θ1,m, . . . , θL,m} = λ2,m
...

SL,m{θ1,m, . . . , θL,m} = λL,m

(32)

By the property of elementary symmetric polynomials, the

linear system (32) has full rank.

6It follows from the definition that Si,m is linear in θ1,m, . . . , θL,m with
linear coefficients specified by {θ1,n, . . . , θL,n}, n = 1, . . . , m− 1

To summarize, computing S−1 for the vector case requires

solving a single polynomial equation (as in the scalar case)

and then D − 1 additional linear algebraic equations.

D. Convergence of Adaptive Filtering Algorithm and Asymp-

totic Efficiency

This section analyzes the convergence and asymptotic co-

variance of the adaptive filtering algorithm (28). The conver-

gence is typically studied via two approaches: mean square

convergence and weak convergence (since θo is assumed

to be a constant, weak convergence to θo is equivalent to

convergence in probability). We refer to the comprehensive

books [18], [9], [8] for details. Below we state the main

convergence result (which follows directly from these ref-

erences). More importantly, we then discuss the asymptotic

efficiency of the adaptive filtering algorithm (28). Specifically

we address the question: How much larger is the asymptotic

covariance with the symmetric transform and anonymized

observations, compared to the classical LMS algorithm with

no anonymization?

The algorithm (28) can be represented abstractly as

λ(k + 1) = λ(k) + ǫΨ(k)
(

z(k)−Ψ(k)λ(k)
)

(33)

where Ψ(k) is the block diagonal matrix diag(Slm, l ∈
[L],m ∈Ml).

Let Fk be the σ-algebra generated by {Ψ(n), v(n), n <
k, λ(n), n ≤ k}, and denote the conditional expectation with

respect to Fk by Ek. We assume the following conditions:

(A) The signal {Ψ(k), v(k)} is independent of {λ(k)}. Either

{Ψ(k), v(k)} is a sequence of bounded signals such that

there is a symmetric and positive definite matrix Q such

that EΨ(k)Ψ′(k) = Q

∣

∣

∞
∑

n=k

Ek[Ψ(n)Ψ′(n)−Q]
∣

∣ ≤ K,
∣

∣

∞
∑

n=k

EkΨ(k)e(n)
∣

∣ ≤ K,

(34)

or {Ψ(k), v(k)} is a sequence of martingale dif-

ference signals satisfying E|Ψ(k)|4+∆ < ∞ and

E|Ψ(k)v(k)|2+∆ <∞ for some ∆ > 0.

Assumption A includes correlated mixing processes [19,

p.345]. and where the remote past and distant future are

asymptotically independent. The boundedness is a mild re-

striction, for example, one may consider truncated processes.

Practical implementations of stochastic gradient algorithms

use a projection: when the estimates are outside a bounded set

H , they are projected back to the constrained set H . [9] has ex-

tensively discusses such projection algorithms. For unbounded

signals, (A) allows for martingale difference sequences.

Theorem 3 ([9]). Consider the adaptive filtering algo-

rithm (33). Assume (A). Then

1) (Mean Squared convergence). For sufficiently large k, the

estimates λ(k) from adaptive filtering algorithm (28) have

mean square error E{‖λ(k)− λo‖2} = O(ǫ).
2) (Convergence in probability) limǫ↓0 P (supt≤T |λǫ(t) −

λo| > η) = 0 as T → ∞ for all η > 0. Here

λǫ(t) = λ(k), t ∈ [ǫk, (ǫ+ 1)k) denotes the continuous-

time interpolated process constructed from λ(k).



9

3) (Asymptotic Normality). As k → ∞, for small ǫ, the es-

timates λ(k) from algorithm (28) satisfy the central limit

theorem (where
D
−→ denotes convergence in distribution)

ǫ−1/2
(

λ(k)− λo
) D
−→ N

(

0,Σ
)

(35)

Here the asymptotic covariance Σ satisfies the algebraic

Lyapunov equation

QΣ+ ΣQ = R (36)

4) (Asymptotic Covariance of Estimates). Therefore, the

estimates θ(k) = S−1(λ(k)) satisfy

ǫ−1/2
(

θ(k)− θo
) D
−→ N(0, Σ̄),

Σ̄ =
(

∇S−1(λo)
)′
Σ∇S−1(λo).

(37)

Remarks. (i) Statements 1,2 and 3 of the above result are

well known [9]. The expression for Σ̄ in (37) follows from

the “delta-method” for asymptotic normality [20]. The delta-

method requires that S−1 is continuously differentiable. This

holds since the solutions of a polynomial equation are contin-

uously differentiable in the coefficients of the polynomial.

(ii) Recall θ(k) = S−1(λ(k)) is a set (and not a vector). So

we interpret (37) after ordering the elements in some specific

way. In the scalar case, we can impose that the elements are

ascending ordered, namely, θ1 ≤ θ2 · · · ≤ θL. For the vector

case, θ can be ordered such that the first elements of the

parameter vector of the L processes are in ascending order,

θ11 ≤ θ21 ≤ · · · ≤ θL1.

(iii) In the stochastic approximation literature [8], [9], the

asymptotic rate of convergence is specified in terms of the

asymptotic covariance of the estimates, namely Σ in (35)

and Σ̄ in (37). Since we want to quantify the asymptotic

convergence rate, we will focus on evaluating Σ and Σ̄.

Loss in Efficiency due to Anonymity

We now evaluate the asymptotic covariance matrices Σ
in (35) and Σ̄ in (37) to quantify the asymptotic rate of

convergence of adaptive filtering algorithm (28). To obtain

a tractable closed form expression, we consider the scalar

observation case D = 1. So Σ and Σ̄ are L × L covariance

matrices. (Recall there are L anonymized processes.)

We assume that the zero mean noise process v(k) is iid

across the L processes with Var{vl(k)} = σ2
l . Also we choose

the regression input matrix as ψ(k) ∼ N(0, IL×L). Using (13)

it follows that for l ∈ [L],

Q = diag[Cov(ψ2l)], Cov(ψ2l) = (2l − 1)(2l− 3) · · · 1
(38)

Next define Rl = Cov[ψl(k)(zl(k) − ψl(k)λl)] evaluated at

λol . We have

Rl = Cov(ψl(ψl(λol − λl) + wl))|λ=λo = Cov(ψlwl) (39)

These can be evaluated using the expression for w in (59).

Finally from Theorem 6 in Appendix, the sensitivity of the

l-th polynomial root θl wrt m-th coefficient λm is

∇S−1(λ) = [
dθl
dλm

], where
dθl
dλm

=
(−1)m+1 (−θl)L−m

dS{θ}(−θ)
dθ |θ=θl

(40)

The above formula assumes that the polynomial does not

have repeated roots; otherwise the sensitivity is infinite since

dS(−θ)/dθ = 0 at a repeated root.

With the above characterization of Q,R,∇S−1(λ), we now

evaluate Σ and Σ̄ explicitly for L = 2.

Lemma 1. Consider the anonymized model (1), (2) with D =
1, L = 2. Assume the zero mean noise process v(k) is iid

across the L processes with Var{vl(k)} = σ2, and ψ(k) ∼
N(0, IL×L). Then the asymptotic covariance Σ̄ (see (37)) of

the estimates θ(k) generated by algorithm (13) satisfies

Tr(Σ̄) =
6σ2(θ21 + θ22) + σ4

(θ1 − θ2)2
(41)

Remark. From (41), inf Tr(Σ̄) = 3σ4 when θ1 = −θ2 →
∞. In comparison, for the classical LMS algorithm when the

observations are not anonymized, the asymptotic covariance

for D = 2 is Tr(Cov(LMS)) = σ2. So for D = 2, at best, the

adaptive filtering algorithm (13) with anonymized observations

is 3 times less efficient than the classical LMS.

Proof. From (38), Q =

[

1 0
0 3

]

. Also (39) yields R =

Cov

[

ψ(v1 + v2)
ψ2(ψv2θ1 + ψv1θ2 + v1v2)

]

= diag(2σ2, 15σ2(θ21 +

θ22)+ 3σ4). Finally (40) yields ∇S−1(λ) =

[ θ1
θ1−θ2

θ2
θ2−θ1

1
θ2−θ1

1
θ1−θ2

]

.

Then evaluating Σ = 1
2Q

−1R, and Σ̄ using (37)

yields (41).

To summarize, Lemma 1 shows that for D = 2, at best,

adaptive filtering with anonymized data has three times the

asymptotic variance compared to the classical LMS algorithm.

E. Analysis for Tracking a Markov hyper-parameter

So far we assumed that the true parameter θo was constant.

An important property of a constant step size adaptive filtering

algorithm (28) is the ability to track a time evolving true

parameter. Suppose the true parameter θo(k) evolves according

to a slow Markov chain with unknown transition matrix. How

well does the adaptive filtering algorithm track (estimate)

θo(k)? Our aim is to quantify the mean squared tracking error.

(B) Suppose that exists a small parameter µ > 0 and θo(k)
is a discrete-time Markov chain, whose state space is

Ml = {a1, . . . , am}, ai ∈ R
L×D, i = 1, . . . ,m, (42)

and whose transition probability matrix Pµ = I + µQ.

where I is an R
m×m identity matrix and Q = (qij) ∈

R
m×m is an irreducible generator (i.e., Q satisfies qij ≥ 0

for i 6= j and
∑m

j=1 qij = 0 for each i = 1, . . . ,m) of a

continuous-time Markov chain.

The time evolving parameter θo(k) is called a hyperparam-

eter. Although the dynamics of the hyperparameter θo(k) are

used in our analysis below, the implementation of the adaptive

filtering algorithm (13), does not use this information.

Define the tracking error of the adaptive filtering algo-

rithm (28) as λ̃(k)
defn
= λ(k)− λo(k). The aim is to determine

bounds on the tracking error λ̃(k) and therefore θ̃(k).
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Theorem 4. Under (A), (B), for sufficiently large k,

E|λ̃(k)|2 = O(ǫ + µ+ µ2/ǫ) (43)

Therefore, choosing µ = O(ǫ), the mean squared-tracking

error is E|λ̃(k)|2 = O(ǫ) and so E|θ̃(k)|2 = O(ǫ)

The proof follows from [21]. The theorem implies that

even if the hyperparameter θo evolves on the same time scale

(speed) as the adaptive filtering algorithm, the algorithm can

track the hyperparameter with mean squared error O(ǫ).

IV. MIXTURE MODEL FOR ANONYMIZATION

This section uses a Bayesian interpretation of the anonymity

map σ in (2) to present a performance analysis of the adaptive

filtering algorithm (28). Thus far we have assumed nothing

about the permutation (anonymization) process σ in (2). The

symmetric transform based algorithms proposed in Sections II

and III are oblivious to any assumptions on σ. Below we

formulate a probabilistic model for the permutation process σ.

Based on this probabilistic model, we address two questions:

1) How do noisy observations of the permutation process

affect anonymity of the identity of the target processes?

We will consider the expected error probability of the

maximum posterior estimate of the permutation process

as a measure of the anonymity of the permutation process.

This is in line with [10] where the error probability of

an estimator (and also mutual information) is used as a

measure of anonymity.

2) How does anonymity of process σ in terms of Bayesian

error probabilities relate to the asymptotic covariance of

the adaptive filtering algorithm (28)? Our main result be-

low (Theorem 5) shows that if the observation likelihood

of noise process one Blackwell dominates that of noise

process two, then anonymity of the permutation process

two is higher than that of one; and also the asymptotic

covariance of the parameter estimates of the adaptive

filtering algorithm (28) is higher.

From a probabilistic point of view, the anonymized observa-

tion model (1), (2) can be constructed as the following random

permutation mixture model of the rows of matrix θo:

y(k)
L×D

= σ(x(k))y(k) = σ(x(k))
L×L

θo

L×D

ψ(k)
D×D

+ σ(x(k)) v(k)
L×D

(44)

Here σ(x(k)) denotes a randomly chosen L× L permutation

matrix that evolves according to a random process

x ∈ X , X ⊆ {1, 2, . . . , X} where X = L!

since there are L! possible permutations. Also y(k) =
[y1(k), . . . , yL(k)]

′ where each yl(k) ∈ R
D. Recall that

ψ(k) is a known input (regression) matrix and v(k) =
[v1(k), . . . , vL(k)]

′ is a L × D matrix valued noise process

whose elements are zero mean. As previously, we assume for

simplicity that vl(k) and vm(k), l 6= m are iid vectors in R
D.

A. Anonymity of Permutation Process x and asymptotic co-

variance of adaptive filtering algorithm

This section characterizes the anonymity of the permutation

process x in terms of average error probability of the maximum

aposteriori (MAP) state estimate. Our assumptions are:

1) The permutation process x is iid with known probabilities

π(i)
defn
= P (x(k) = i).

2) The regression matrix ψ(k) = I . From a Bayesian point

of view, this is without loss of generality since ψ(k) is

known and invertible. So we can post-multiply (44) by

ψ−1(k) to obtain an equivalent observation process.

Given the observation model (44), define the L × D-variate

observation likelihood given state x(k) = i as

Biy = p(y(k) = y |x(k) = i) ∝ pv
(

y − qi
)

,

where qi
defn
= σ(i) θo ∈ R

L×D
(45)

Here pv denotes the L×D-variate density of noise process v.

Since the L noise processes are independent, with yl = y′ el
where el ∈ R

L is the unit vector with 1 in the l-th position,

Biy =
L
∏

l=1

Biyl
, Biyl

=
D
∏

m=1

Bi,yl,m
, Bi,yl,m

= pvlm(ylm−θolm)

(46)

The anonymity of the x depends on the prior π of the

permutation process x and the observation likelihood B.

Perfect Anonymity. If all X permutations are equi-probable,

i.e., π(i) = 1/X , then clearly P (x(k) = i|y(k)) = 1/X . So

the probability of error of the maximum aposteriori estimate

x̂k is P (x̂(k) 6= x(k)) = (X−1)/X which is the largest pos-

sible value. So for discrete uniform prior on the permutation

process, perfect anonymity of the identities of the L processes

holds (even with no measurement noise).

Zero Anonymity. If π(x) = 1 for some state x = i∗, then

the error probability is zero and there is no anonymity.
Anonymity of Permutation Process x wrt observation likeli-

hood: In the rest of this section, we analyze the anonymity of

a Bayesian estimator of the permutation process x in terms of

the observation likelihood B, or equivalently, the noise v(k).
We start with Bayes formula for the posterior of permutation

state x(k) given observation y(k). Define the diagonal matrix

By = diag[B1y, . . . , BXy]. Then given the prior π and

observation y(k), the posterior π(k) = [π1(k), . . . πX(k)]′

where πi(k) = p(x(k) = i | y(k)) is given by Bayes formula:

π(k) = T (π, y(k))
defn
=

By(k)π

σ(π, y(k))
, where σ(π, y) = 1′By(k)π

(47)

Finally, given the posterior computed by (47), define the

maximum aposteriori (MAP) permutation state estimate as

x̂(k) = argmax
i

πi(k)

Lemma 2. The expected error probability of the MAP state

estimate is (where Y below denotes the observation space)

Pe(π;B) = Ey{P (x(k) 6= x̂(k)|y)} = 1−

∫

Y

max
i
e′iBy πdy

where el ∈ R
X is the unit vector with 1 in the i-th position.

We normalize the expected error probability by defining the

anonymity of permutation process x as

A(π,B) = Pe(π;B)
X

X − 1
∈ [0, 1] (48)

So the anonymity A = 0 when Pe(π;B) = 0, and A = 1
when Pe(π;B) = X−1

X .
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B. Blackwell Dominance and Main Result

We now use a novel result involving Blackwell dominance

of mean preserving spreads to relate the anonymity to the

covariance of adaptive filtering algorithm (28).

Definition 1 (Blackwell ordering of stochastic kernels). We

say that likelihood B Blackwell dominates likelihood B̄, i.e.,

B ≥B B̄ if B̄ = BM where M is a stochastic kernel. That

is,
∫

Y
Mȳ,y dy = 1 and Mȳ,y ≥ 0.

Intuitively B̄ is noisier than B. Thus observation y with

conditional distribution specified by B is said to be more

informative than (Blackwell dominates) observation ȳ with

conditional distribution B̄, see [2] for several applications.

When y belongs to a finite set, it is well known [23] that

B≥B
B̄ implies that B̄ has smaller Shannon capacity than B.

Main Result: First we list the main assumptions:

(A1) B ≥B B̄
(A2)

∫

Y Biy ydy = qi and
∫

Y B̄iy ydy = qi (zero mean noise)

Recall qi is defined in (45).

Since the observations of the L processes are independent,

Blackwell dominance of the l individual likelihoods Biyl
≥B

B̄iyl
, l ∈ [L] is sufficient for (A1). The mean preserving spread

assumption (A2) on B and B̄ implies that the observation

noise is zero mean. This is a classical assumption for the

convergence of the stochastic gradient algorithm (28).

We are now ready to state the main result. Theorem 5 shows

that Blackwell ordering of observation likelihoods yields an

ordering for error probabilities (anonymity) and also a partial

ordering on the asymptotic covariance matrices of the adaptive

filtering algorithm (28). So the more the anonymity of the

permutation process, the higher the asymptotic covariance

of the adaptive filtering algorithm (28). To the best of our

knowledge, this result is new.

Theorem 5. Consider observations y(k) generated by (44).

1) CovB(y) � CovB̄(y) implies CovB(S{y}) �
CovB̄(S{y}) for the symmetric transform S.

2) Assume (A1). Then the average error probabilities sat-

isfy Pe(π;B) ≤ Pe(π; B̄), and therefore the anonymity

satisfies A(π,B) ≤ A(π, B̄).
3) Assume (A1), (A2). Then CovB(y) � CovB̄(y). There-

fore, the asymptotic covariance of λ(k) in (35) of the

adaptive filtering algorithm satisfies Σ(B) ≤ Σ(B̄).
Also the asymptotic covariance of θ(k) in (37) satisfies

Σ̄(B) ≤ Σ̄(B̄).

The proof in the appendix uses mean-preserving convex

dominance from Blackwell’s classic paper [5]. Note that

Theorem 5 does not require the noise to be Gaussian; for

example, the noise can be finite valued random variables.

To summarize, we have linked anonymity of the obser-

vations (error probability of the Bayesian MAP estimate) to

the asymptotic covariance (convergence rate) of the adaptive

filtering algorithm (28).

V. NUMERICAL EXAMPLES

Example 1: Symmetric Transform for Scalar case D = 1:

The aim of this example is to show that objective (10) has local

minima wrt θ; and therefore the classical stochastic gradient

algorithm (15) gets stuck in a local minimum. In compari-

son, the objective (12) in terms of pseudo-measurements is

convex (quadratic) wrt λ and therefore the adaptive filtering

algorithm (13) converges to the global minimum θ∗.

We consider L = 3 independent scalar processes (D = 1)

with anonymized observations generated as in (2). The true

model that generates the observations is θo = [−2, 5, 8]′.
The regression signal ψ(k) ∼ N(0, σ2) where σ = 1. The

noise error v(k) ∼ N(0, σ2
v) where σv = 10−2.

We ran the adaptive filtering algorithm (13) on a sample

path of 2 × 105 anonymized observations generated by the

above model with step size ǫ = 10−4. For initial condition

θ(0) = [1, 2, 3]′, Figure 2a shows that the estimates generated

by Algorithm (13) converges to θo. As can be seen from

Figure 2a, the sample path of the estimates initially are

coalesced, and then split. This is because the estimates θ1(k)
and θ2(k) are initially complex conjugates; since we plot the

real parts, the estimates of θ1(k) and θ2(k) are identical.

We also ran the classical stochastic gradient algorithm (15)

on the anonymized observations. Recall this algorithm min-

imizes (10) directly. The step size chosen was ǫ = 10−7

(larger step sizes led to instability). For initial condition θ(0) =
[1, 2, 3]′, Figure 2(b) shows that the estimates converge to a

local stationary point [−2.02, 6.12, 6.45]′ which is not θo. On

the other hand for initial condition θ(0) = [3, 6, 9]′, we found

that the estimates converged to θo. This provides numerical

verification that objective (10) is non-convex. Besides the non-

convex objective, another problem with the algorithm (15) is

that if we choose θ(0) = [c, c, c] for any c ∈ R, then all

elements of θ(k) are identical, regardless of θo.

There are two takeaways from this numerical example. First,

despite the anonymization, one can still consistently estimate

the true parameter set θo. Second, the objective (10) is non-

convex in θ but convex - so a classical stochastic gradient

algorithm can gets tuck in a local minimum. But since the

objective is convex in the polynomial coefficients λ, which

are constructed as pseudo-observations via the symmetric

transform, algorithm (13) converges to the global minimum.

Example 2: Recursive Maximum Likelihood vs Symmetric

Transform: The recursive EM algorithm ((55) (REM) in

Appendix) requires knowledge of the noise distribution and

probabilities of permutation process x. When these are known,

REM performs extremely well. But in the mis-specified case,

where the assumed noise distribution is different to the actual

distribution, REM can yield a significant bias in the estimates.

We simulated anonymized observations (1), (2) for D =
1, L = 2 with zero mean iid Laplacian noise v with standard

deviation 2. The true parameter is θo = [4, 5] for k ≤ 3 ×
105 time points and then changes to [1, 3]. We ran REM (55)

assuming unit variance Gaussian noise. The step size ǫ = 5×
10−5 and initial estimate θ(0) = [1, 2]′. Figure 3a shows that

the algorithm yields a significant bias in the estimate for θo;

the estimates θ(k) converge to [3.5590, 5.4559]′ for the first

3× 105 points and then to [0.7405, 3.2658]′.
We then computed the pseudo-observations (7) using the

scalar symmetric transform (11) and ran the adaptive filtering

algorithm (13) with step size ǫ = 2×10−5 and initial condition
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θ(0) = [1, 2]′. Figure 3b displays the sample path estimates

θ(k). We see empirically that the convergence of adaptive

filtering algorithm is slower than the recursive EM, but the

estimates converge to the true parameter θo (with no bias).

Example 3: Symmetric Transform for Vector case. D = 2,

L = 2: We consider L = 2 independent processes each of

dimension D = 2 with anonymized observations generated

by (2). The true models that generate the observations for the

two independent processes via (1) are θo1 = [−2, 6]′, θo2 =
[4, 5]′. The 2 × 2 input regression matrix in (1) was chosen

with iid elements ψij(k) ∼ N(0, 1). The 2-dimensional noise

error vector v(k) has iid elements N(0, σ2
v) where σv = 10−1.

Given the anonymized observations, we constructed the

pseudo-observations using the vector symmetric trans-

form (16). We ran the adaptive filtering algorithm (28) with

step size ǫ = 10−4 on these pseudo-observations. Figure 4a

shows that the estimates converge to the true model set θo.

Next we constructed the naive pseudo observations from the

anonymized observations by using the naive transform S̄ (21).

We then ran the adaptive filtering algorithm (28) with step size

ǫ = 10−5 on these naive pseudo-observations. We see from

Figure 4b that the estimates converge to {[−2, 5]′, [4, 6]′}
instead of the true model set {[−2, 6]′, [4, 5]′}. So naively

applying the scalar symmetric transform element-wise can

result in estimates that swap the elements of θo. In comparison,

the vector symmetric transform together with algorithm (28)

yield consistent estimates of θo.

Example 4: Mid-sized Example: In Appendix G (supple-

mentary document) we consider the case L = 4 and D = 10.

We show that algorithm (28) successfully estimates the pa-

rameters. In comparison, the naive symmetric transform loses

ordering information resulting in ghost process estimates.

VI. CONCLUSIONS

We proposed a symmetric transform based adaptive filtering

algorithm for parameter estimation when the observations are

a set (unordered) rather than a vector. Such observation sets

arise due to uncertainty in sensing or deliberate anonymization

of data. By exploiting the uniqueness of factorization over

polynomial rings, Theorems 1 and 2 showed that the adaptive

filtering algorithms converge to the true parameter (global

minimum). Lemma 1 characterized the loss in efficiency due

to anonymization by evaluating the asymptotic covariance of

the algorithm via the algebraic Liapunov equation. Theorem 4

characterized the mean squared error when the underlying true

parameter evolves over time according to an unknown Markov

chain. Finally Theorem 5 related the asymptotic covariance

(convergence rate) of the adaptive filtering algorithm to a

Bayesian interpretation of anonymity of the observations via

mean preserving Blackwell dominance.

The tools used in this paper, namely symmetric transforms

to circumvent data association, polynomial rings to charac-

terize the attraction points of an adaptive filtering (stochastic

gradient) algorithm, and Blackwell dominance to relate a

Bayesian interpretation of anonymity to the convergence rate

of the adaptive filtering algorithm, can be extended to other

formulations. In future work, it is worth addressing distributed

methods for learning with unlabeled data, for example, [3]

proposes powerful distributed methods. Also the effect of

quantizing the anonymized data can be studied using [26].

Supplementary Document. The supplementary document

contains all proofs, additional simulation examples and de-

scription of a recursive maximum likelihood estimator for θo.
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(a) Algorithm (13) converges to global optimum θo.
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(b) Classical stochastic gradient algorithm (15) gets stuck
in local minimum.

Fig. 2: Anonymized estimation problem in Example 1 of Sec V. The initial condition is θ(0) = [1, 2, 3]′ and the true parameter

is θo = [−2, 5, 8]′. Fig.2a shows that the parameter estimates generated by Algorithm (13) converge to θo. Fig.2b shows that

the parameter estimates generated by stochastic gradient algorithm (15) operating on (10) do not converge to θo.
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(a) Recursive EM Algorithm (55).
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(b) Adaptive Filtering algorithm (13).

Fig. 3: Recursive Expectation Maximization algorithm vs Symmetric Transform based Adaptive Filtering algorithm. Both

algorithms operate on anonymized observations (1), (2) corrupted by Laplacian noise. The true parameter is θo = [4, 5]′.
The recursive EM shows a significant bias in the mis-specified case; in comparison the symmetric transform based algorithm

converges to the true parameter value but the convergence is slower. The parameters are specified in Example 2.
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(a) Algorithm (28) operating on vector symmetric trans-
forms converges to global optimum θo.
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(b) Algorithm (28) operating on pseudo-observations
generated by the naive symmetric transform (21)
converges to the ghost process parameters
{[−2, 5]′, [4, 6]′} instead of the true model set
{[−2, 6]′, [4, 5]′}.

Fig. 4: Anonymized estimation problem in Example 3 of Sec. V.
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APPENDIX

Supplementary Document
Adaptive Filtering Algorithms for Set-Valued

Observations–Symmetric Measurement Approach to

Unlabeled and Anonymized Data

by Vikram Krishnamurthy

Abstract—This supplementary document contains:
1) Description of the maximum likelihood estimator of the

parameter θo via a recursive Expectation Maximization
algorithm in Sec. A.

2) Proofs of the theorems stated in the main paper.
3) A medium sized simulation example illustrating the adaptive

filtering algorithm and ghost processes in Sec.G
4) Example of the symmetric transform S for D = 3, L = 3

in Sec.H.

A. Maximum Likelihood Estimation

This section discusses maximum likelihood (ML) estimation

of θo given observations generated by (1), (2). The results of

this section are not new - they are used to benchmark the

symmetric transform based algorithms derived in the paper.

To give some context, we mentioned in the Introduction

that given an observation set y (instead of a vector), feeding it

in an arbitrary order into a bank of LMS algorithms will not

converge to θo in general. A more sophisticated approach is to

order the elements of the observation set at each time based on

an estimate of the permutation map σk. We can interpret the

recursive MLE algorithm below as computing the posterior of

σk and then feeding it into a stochastic gradient algorithm.

Before proceeding it is worthwhile to summarize the disad-

vantages of the MLE approach of this section:

1) The density function of the noise process v in (1) and

the probability law of the random process x in (44) need

to be known. For example if x was an iid process, the

in principle one can recursively estimate the probabilities

of x. However if x is an arbitrary non-stationary process,

then the MLE approach is not useful.

2) The state space dimension of x is L!, i.e., factorial in the

number of processes L. In comparison, for the symmetric

function approach, the number of coefficients of the

symmetric transform polynomial is O(L2), see (16).

3) The likelihood is not necessarily concave in θ and so

computing the global maximum of the likelihood can be

intractable. However, when v in (1) is Gaussian, then

(44), (49), imply that the likelihood is concave in θ.

4) Why not use the MLE approach together with the

symmetric transform? This is not tractable since after

applying the symmetric transform, the noise distribution

has complicated form (63) that is not amenable to MLE.

We assume that the permutation process x in (44) is an L!
Markov chain with known transition matrix

P (x(k + 1) = j |x(k) = i) = Pij , i, j ∈ X (49)

Then (44) is a Hidden Markov model (HMM) or dynamic

mixture model. Notice that the matrix valued observations

y(k) are generated as random (Markovian) permutations of

the rows of matrix θoψ(k) corrupted by noise. Given these

observations, the aim is to estimate the matrix θo.

In this section, our aim is to compute the MLE for

θo. Given N data points, the MLE is defined as θ̂ =
arg supθ∈Θ log p(y(1), . . . y(N); θ). We assume that Θ is a

compact subset of RL×D and so the MLE is

θ̂ = argmax
θ∈Θ

log pθ(y(1:N)),

where y(1:N)
defn
= (y(1), . . . , y(N))

(50)

Under quite general conditions the MLE θ̂ of a HMM

is strongly consistent (converges w.p.1 to θo) and efficient

(achieves the Cramer-Rao lower bound), see [1].

Remark. With suitable abuse of notation, note that y(k)
in (44) is a matrix, whereas y(k) in (2) is a set. In the proba-

bilistic setting that we now consider, this distinction is irrele-

vant. For example, we could have denoted the anonymization

operation (2) as choosing amongst the permutation matrices

with equal probability 1/L!. In the symmetric transform for-

mulation in previous sections, we did not impose assumptions

on how the elements of the observation set are permuted; the

algorithm (28) was agnostic to the order of the elements in

the set y(k). In comparison, in this section we postulate that

the Markov process x permutes the observations.

Expectation Maximization (EM) Algorithm: The process x
is the latent (unobserved) data that permutes the observations

from the L processes yielding the matrix y(k) in (44). The

Expectation Maximization (EM) algorithm is a convenient

numerical method for computing the MLE when there is latent

data. Starting with an initial estimate θ0, the EM algorithm

iteratively generates a sequence of estimates θi, where each

iteration i = 1, 2, . . . comprises two steps:

Step 1. Expectation step: Compute the auxiliary likelihood

Q(θ, θi)
defn
= E{log pθ(y(1:N), x(1:N)|y(1:N), θi} (51)

where y(1:N) = (y(1), . . . , y(N)) and x(1:N) =
(x(1), . . . , x(N)). In our case, from (1), (44), (49), imply

Q(θ, θi) =

N
∑

k=1

X
∑

i=1

πi(k|N) log pv
(

y(k)−σ(i)ψ(k) θ
)

(52)

The smoothed probabilities πi(k|N) are computed using a

forward backward algorithm [2]; we omit details here.

Step 2. Maximization step: Compute θi+1 =
argmaxθQ(θ, θi).

Under mild continuity conditions of Q(θ, θi) wrt θ, it is

well known [4] that the EM algorithm climbs the likelihood

surface and converges to a local stationary point θ∗ of the log

likelihood log p(y(1) . . . , y(N); θ).

Recursive EM Algorithm for Anonymized Observations –

IID Permutations: We are interested in sequential (on-line)

estimation that generates a sequence of estimates θ(k) over

time k. So we formulate a recursive (on-line) EM algorithm.

In the numerical examples presented in Sec. V, we will

consider the case where permuting process x is iid with

π(i)
defn
= P (x(k) = i), rather than a more general Markov

chain. (Recursive EM algorithms can also be developed for

HMMs, but the convergence proof is more technical.)
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Since x and y are iid processes, assuming

|Eθo{E{log pθ(y(k), x(k))|y(k), θ̄}}| < ∞, it follows

from Kolmogorov’s strong law of large numbers that

lim
N→∞

1

N
Q(θ, θ̄) = lim

N→∞

1

N

N
∑

k=1

E{log pθ(y(k), x(k))|y(k), θ̄}

= Eθo{E{log pθ(y, x)|y, θ̄}} w.p.1

(53)

The recursive EM algorithm is a stochastic gradient ascent

algorithm that operates on the above objective:

θ(k + 1) = θ(k) + ǫ∇θE{log pθ(y, x)|y, θ(k)}
∣

∣

θ=θ(k)
(54)

where ǫ > 0 is a constant step size. Then starting with initial

estimate θ(0), the recursive EM algorithm generates estimates

θ(k), k = 1, 2 . . . , as follows:

θ(k + 1) = θ(k) + ǫ
∑

i∈X

πi(k)∇θ

[

log pv
(

y(k)− σ(i)ψ(k) θ(k)
)]

πi(k) ∝ π0(i) pv
(

y(k)− σ(i)ψ(k)θ(k)
)

(55)

So (55) uses a weighted combination of the posterior proba-

bility of all possible permutations to scale the gradient of the

auxiliary likelihood Q; and these scaled gradients are used in

the stochastic gradient ascent algorithm.

Remark. Let us explain the rationale behind the recursive

EM algorithm (55). First, assuming Eθo | log pθ(y)| < ∞, it

follows by Kolmogorov’s strong law of large numbers that

the log likelihood satisfies

lim
N→∞

1

N
log pθ(y(1:N)) = Eθo{log pθ(y)} w.p.1 (56)

Next Fisher’s identity relates the gradient of the log likelihood

to that of the auxiliary likelihood Q:

∇θ log pθ̄(y(1:N)) = ∇θQ(θ, θ̄)
∣

∣

θ=θ̄

Thus for N → ∞, it follows from Fisher’s identity, (53)

and (56) that

∇θ log pθ(y)
∣

∣

θ̄
= ∇θE{log pθ(y, x)|y, θ̄}}

∣

∣

θ=θ̄
(57)

The regularity conditions for (57) to hold are (i) L(θ) is

differentiable on Θ. (ii) For any θ̄ ∈ Θ, Q(θ, θ̄) is con-

tinuously differentiable on Θ. (iii) For any θ ∈ Θ, both

| log pθ(y, x)| ≤ α and ‖∇θ log pθ(y, x)‖ ≤ β for all y
with E{α} < ∞, E{β} < ∞. Note that (ii) and (iii)

are sufficient (via the dominated convergence theorem) for

∇θE{log pθ(y, x)|y, θ̄}} = E{∇θ log pθ(y, x)|y, θ̄}}.

In light of (57), we see that (55) is a stochastic gradient

algorithm to maximize the objective Eθo{log pθ(y)} wrt θ.

Moreover, we can rewrite this objective in terms of the

Kullback Liebler (KL) divergence:

argmax
θ∈Θ

Eθo{log pθ(y)}

= argmin
θ∈Θ

Eθo{log pθo(y)} − Eθo{log pθ(y)}

= argmin
θ∈Θ

D(θo||θ)

(58)

where D(θo||θ) is the KL divergence between pθo(y) and

pθ(y). To summarize, the recursive EM algorithm (55) is

a stochastic gradient algorithm to minimize the KL diver-

gence (58).

Proofs of Theorems

B. Proof of Theorem 1

Starting from (8), by expanding the symmetric polynomial

coefficients we have in polynomial notation

S{y1, . . . , yL}(s) = S{ψθo1, . . . , ψθ
o
L}(s) + w(s),

where w(s)
defn
=

∑

I⊆[L],I6=∅

∏

l∈I

vl S{ψθ
o
i , i ∈ [L]− I}(s)

(59)

The definition of the noise polynomial w in (59) involves the

summation over all non-empty subsets I of [L].

Remark. To illustrate formula (59), consider L = 2. First

expanding out we have

S{y1, y2}(s) = (s+ ψθo1 + v1)(s+ ψθo2 + v2)

= (s+ ψθo1)(s+ ψθo2) + w(s)

w(s) = s(v1 + v2) + ψθo1v2 + ψθo2v1 + v1v2

(60)

Let us verify the expression for w(s) in (59): Since, [L] =
{1, 2}, for I = {1}, S{ψθo2}(s) = (s + ψθo2); for I = {2},

S{ψθo1}(s) = (s + ψθo1); and for I = {1, 2}, S{∅} = 1.

Then w(s) = v1 S{ψθ
o
2}(s) + v2 S{ψθ

o
1}(s) + v1v2 S{∅}

which yields the above expression. Note that for I = ∅,

S{ψθo1, ψθ
o
2}(s) = (s+ ψθo1)(s+ ψθo2).

From (59), since vl are zero mean mutually independent,

clearly E{w(s)} = 0; equivalently, the vector w is zero mean,

i.e., E{wl} = 0, l ∈ [L]. We can then express (59) component-

wise by reading off the L coefficients of the polynomial:

zl = Sl{ψ θ
o
1, . . . , ψ θ

o
l }+ wl

= ψl Sl{θ
o
1, . . . , θ

o
l }+ wl = ψl λol + wl, l ∈ [L]

(61)

where the second equality follows from (9). So we can rewrite

objective (10) as L decoupled convex optimization problems

in terms of the variables λ:

min
λl

E|zl − ψlλl|
2 where zl(k) =

(

ψ(k)
)l
λol + wl(k),

(62)

Notice that each of the L objectives in (62) are quadratic

(convex) in λl. It is easily verified that λl = λo, l ∈ [L] is the

unique minimizer that solves (62). Since λ = λo is the unique

minimizer of (62) and S is uniquely invertible (see (14)), it

follows that θ = S−1(λ) = S−1(λo) = θo is the unique

minimizer of (10).

Finally, because each stochastic optimization problem (12)

is quadratic, the adaptive filtering algorithm (13) yields esti-

mates λ(k) that converge to λo in probability. Therefore the

unique set of roots θ(k) = S−1(λ(k)) converges to θo in

probability. (Recall from (14) that θ(k) are the set of roots of

the polynomial with coefficients λ(k).)
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C. Proof of Theorem 2

Statement 1. Evaluating (16) with y in (1) we obtain

S{y1, . . . , yL}(s, t) = S{ψθo1, . . . , ψθ
o
L}(s, t) + w(s, t)

w(s, t)
defn
=

∑

I⊆[L],I6=∅

∏

l∈I

[

D
∑

j=1

vl,j t
j−1

]

S{ψθoi , i ∈ [L]− I}(s, t)

(63)

The definition of the noise polynomial w in (63) involves the

summation over all non-empty subsets I of [L].

Since vl are zero mean mutually independent, it follows

from (63) that E{w(s, t)} = 0; equivalently, the matrix w
comprising the coefficients of the polynomial w(s, t) is zero

mean, i.e., E{wl,m} = 0, m ∈Ml, l ∈ [L].

Remark. Since the notation in (63) is complex, we illustrate

formula (63) for the case L = 2, D = 2. Let ψi denote the

i-th row of ψ. Evaluating (16) with y given by (1), we obtain

the polynomial

S{y}(s, t) = (s+ ψ′
1θ

o
1 + tψ′

2θ
o
1) (s+ ψ′

1θ
o
2 + tψ′

2θ
o
2)

+ w(s, t)

where w(s, t) = (s+ ψ′
1θ

o
1 + tψ′

2θ
o
1) (v2,1 + v2,2t)

+ (s+ ψ′
1θ

o
2 + tψ′

2θ
o
2) (v1,1 + v1,2t)

+ (v1,1 + v1,2t) (v2,1 + v2,2t)
(64)

We now show that (63) gives the same expression for w(s, t)
as (64). For [L] = {1, 2}, we evaluate each subset I and the

corresponding term in (63). For I = {1}, S{ψθo2}(s, t) =
(s+ ψ′

1θ
o
2 + tψ′

2θ
o
2) and the multiplying noise term is v1,1 +

v1,2t. For I = {2}, S{ψθo1}(s, t) = (s + ψ′
1θ

o
1 + tψ′

2θ
o
1) and

the multiplying noise term is v2,1 + v2,2t. Finally for I =
{1, 2} , S{∅} = 1 and the multiplying noise term is (v1,1 +
v1,2t) (v2,1 + v2,2t). Adding these three terms as in (63), we

obtain noise polynomial w(s, t) in (64). Note that for I =
∅, S{ψθo1, ψθ

o
2}(s, t), we obtain the signal polynomial (s +

ψ′
1θ

o
1 + tψ′

2θ
o
1) (s+ ψ′

1θ
o
2 + tψ′

2θ
o
2).

Statement 2. To keep the notation manageable we prove

the result for L = 3, The general proof is identical but the

notation becomes unreadable.

Suppose Slm{θ} =
∑

i,j,k θ1i θ2j θ3k where this sum is

symmetric over indices [i, j, k] in a certain set. We denote

this symmetric sum as Slm{θ} = [θ1iθ2jθ3k] ◦ [i, j, k].
Example. If D = 3, L = 3, S12(θ) = θ11θ21θ32+θ11θ22θ31+
θ12θ21θ31 = [θ1i θ2j θ3k] ◦ [1, 1, 2].

Then

Slm{ψθ} =
∑

i,j,k

ψ′
iθ1 ψ

′
jθ2 ψ

′
kθ3 = [ψ′

iθ1 ψ
′
jθ2 ψ

′
kθ3] ◦ [i, j, k]

We want to show that this yields the RHS of (25). The trick

is to encode the above expression in terms of a polynomial in

variable t:

Slm{ψθ}(t) =
∑

i,j,k

D
∑

p=1

ψ′
i,pθ1pt

p−1
D
∑

q=1

ψ′
j,qθ2qt

q−1

×
D
∑

r=1

ψ′
k,rθ3rt

r−1

= [ψipψjqψkrθ1pθ2qθ3r] ◦ [([p, q, r] ∈ t0)

+ ([p, q, r] ∈ t1) + ([p, q, r] ∈ t2) + · · · ] ◦ [i, j, k]
(65)

where we grouped the symmetric coefficients of powers of t
in the last equation above. Clearly Slm{ψθ} = Slm{ψθ}(1),
i.e., by setting t = 1.

Next examining (65), we see that for each n, the symmetric

coefficients of tn−1 satisfy

[ψipψjqψkrθ1pθ2qθ3r] ◦ ([p, q, r] ∈ tn−1) ◦ [i, j, k]

= Sln{ψ
lm}Sln{θ}

(66)

ψlm =











ψi,1 ψj,2 ψk,3

ψi,2 ψj,2 ψk,3

...
...

...

ψi,D ψj,D ψk,D











Thus (65), (66) with coefficients λln = Sln(θ) yields

Slm{ψθ}(t) = Sl1{ψ
l,m}λl1 + Sl2{ψ

l,m}λl2t+ . . .

+Sl,Ml
{ψl,m}λl,Ml

tMl

Statement 3. This follows immediately by substituting (24),

(25) into (23).

Statement 4. For notational convenience we use {ψθ} to

denote the set {ψ θ1, ψ θ2, . . . , ψ θL
}

. Let Sl,m, m ∈ Ml,

l ∈ [L] denote the coefficients of the polynomial S{ψ θ
}

.

Using (24), Sl,m{y} = Sl,m{ψθo + v} = Sl,m{ψθo} + wl,m

where wl,m is zero mean iid over time; so we can rewrite the

estimation objective (23) as

argmin
θ

E{
∑

l∈[L]

∑

m∈Ml

‖Sl,m{ψθ} − Sl,m{ψθo}‖2}

Clearly the above minimum is achieved by choosing θ∗ such

that the polynomial coefficients satisfy

Sl,m{ψθ∗} = Sl,m{ψθo} w.p.1, m ∈Ml, l ∈ [L]

Next since S is uniquely invertible, applying S−1 to the

polynomial coefficients yields the unique set of roots

{ψθ∗l ,m ∈Ml, l ∈ [L]} = {ψθol ,m ∈Ml, l ∈ [L]} w.p.1

for all random variable realizations ψ. This in turn implies

{θ∗l ,m ∈Ml, l ∈ [L]} = {θol ,m ∈Ml, l ∈ [L]}.

Remark. The reader may wonder why the above proof

breaks down for the naive symmetric transform (21). We

note that for the naive vector symmetric transform (21), the

above proof of Statement 4 does not hold. Even though

S̄l,j{ψθ∗} = S̄l,j{ψθo} for all l, j, it does not follow that

{ψθ∗l ,m ∈ Ml, l ∈ [L]} = {ψθol ,m ∈ Ml, l ∈ [L]} w.p.1.

This is because as discussed below (22), the naive symmetric

transform does not preserve the ordering of vectors.



17

D. Sensitivity of Symmetric Transform Polynomial

Here we derive the expression in (40).

Theorem 6. Suppose θ = {θ1, . . . , θL} is the set of factors

of the polynomial S{θ}(s) = sL +
∑L

l=1 λls
L−l. That is,

S{θ}(s) =
∏L

l=1(s + θl). Assume θ ∈ θ is a distinct (non-

repeated) factor. Then

dθ

dλl
= (−1)l+1 θL−l

[

dS{θ}(−θ)

dθ

]−1

(67)

Proof: The proof follows from the following two lemmas.

Lemma 3. Suppose θ = {θ1, . . . , θL} is the set of factors

of the polynomial S{θ}(s) = sL +
∑L

l=1 λls
L−l. That is,

S{θ}(s) =
∏L

l=1(s + θl). Then θ is also the set of roots of

the polynomial S{θ}(−s) = sL+
∑L

l=1(−1)lλls
L−l. That is,

for any θ ∈ θ, it follows that S{θ}(−θ) = 0.

Lemma 4. Suppose Pβ(θ)
defn
= θL +

∑L−1
m=0 βm θm = 0, i.e.,

θ is a root of the polynomial Pβ(θ). Assume θ is a distinct

(non-repeated) root. Then

dθ

dβm
= −θm

[

dPβ

dθ

]−1

(68)

We now use Lemma 4 with Lemma 3 to obtain an expres-

sion for dθ/dλl. Note that S{θ}(−θ) = Pβ(θ) by choosing

βm = (−1)L−mλL−m for m = 0. . . . , L − 1. Then from

Lemma 4,

dθ

dλL−m
= −(−1)L−m θm

[

dPβ

dθ

]−1

(69)

dPβ

dθ
= (L− 1)θL−1 +

L−1
∑

m=0

mβm θm−1

= (L− 1)θL−1 +

L−1
∑

m=0

m(−1)L−m λL−m θm−1(Lemma 3)

= (L− 1)θL−1 +

L
∑

l=1

(L − l) (−1)l λl θ
L−l−1

choosing l = L−m

=
dS{θ}(−θ)

dθ

Therefore plugging l = L−m in (69), we obtain (67).

E. Proof of Lemma 2

The MAP estimate is correct when the event I(x̂(k) =
x(k)) occurs. Denoting i∗ = argmaxi πi, the conditional

probability that the MAP estimate is correct given observation

y(k) is

E{I(x(k) = i∗)|y(k)} =

X
∑

i=1

πi(k) I(i
∗ = i) = max

i
πi(k)

The error event is 1 − I(x(k) = x̂(k)). Therefore the error

probability of the MAP estimate is 1 − maxi πi(k) = 1 −

maxi e
′
i T (π, y(k)). Finally, the expected error probability of

the MAP estimate over all possible realizations of y is

Pe(π;B) =

∫

Y

(

1−max
i
e′iT (π, y)

)

σ(π, y) = 1−

∫

Y

max
i
e′iBy π

(70)

Here
∫

Y denotes integration wrt Lebesgue measure when y ∈
R

L×D or counting measure when y is a subset of integers.

F. Proof of Theorem 5

Statement 1. Since yl are independent wrt l,
CovB(y) � CovB̄(y) implies VarB(yl) ≤ VarB̄(yl).
Next Cov(S{y}) is a L × L diagonal matrix with l element
∑

i1<i2<···<il
Var yi1 Var yi2 · · ·Var yil . This together with

VarB(yl) ≤ VarB̄(yl) implies CovB(S{y}) � CovB̄(S{y}).

Statement 2. The proof below exploits that facts that

Pe(π,B) = 1 −
∑

y maxiByπ is concave in π, and that

(A1), namely, B ≥B B̄ holds. In particular, (A1) implies the

following factorization of Bayes formula:

T (π, ȳ; B̄) =

∫

Y

T (π, y;B)
σ(π, y;B)

σ(π, ȳ; B̄)
My,ȳ

where σ(π, ȳ; B̄) =
∑

y σ(π, y;B)My,ȳ . So
σ(π,y;B)
σ(π,ȳ;B̄)

My,ȳ

qualifies as a measure wrt y. Since Pe(T (π, ȳ, B̄)) = 1 −
maxi T (π, ȳ; B̄) is concave in π, it follows using Jensen’s

inequality that

Pe(T (π, ȳ; B̄)) = Pe(

∫

Y

T (π, y;B)
σ(π, y;B)

σ(π, ȳ; B̄)
My,ȳ)

≥

∫

Y

Pe(T (π, y;B))
σ(π, y;B)

σ(π, ȳ; B̄)
My,ȳ

So cross multiplying by σ(π, ȳ; B̄) and integrating wrt y
implies

∫

Y

Pe(T (π, ȳ; B̄))σ(π, ȳ; B̄) ≥

∫

Y

Pe(T (π, y;B))σ(π, y;B)

which in turn implies Pe(π; B̄) ≥ Pe(π;B).

Statement 3. Blackwell’s classic paper [5, Theorem 3]

shows that (A1) and (A2) imply that
∑

ylm
Biylm

y2lm ≤
∑

ylm
B̄iylm

y2lm, i.e., CovB(y) ≤ CovB̄(y). Here we give the

proof in more transparent notation. Below we omit the l,m
subscripts. Using Blackwell dominance (A1), it follows that

∫

Y

yB̄iy =

∫

Y

y

∫

Ȳ

Bi,ȳMȳ,y =

∫

Ȳ

Bi,ȳ

∫

Y

yMȳ,y

by Fubini’s theorem assuming
∫

Y |y|B̄iy < ∞. The mean

preserving assumption (A2) implies that the above expression

equals
∫

Ȳ
ȳBiȳ . Therefore Blackwell dominance (A1) and

mean preserving spread (A2) imply that the kernel M satisfies

∫

Y

yMȳ,y = ȳ (71)
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Next for any convex function φ, applying Blackwell domi-

nance, it follows that
∫

Y

φ(y) B̄i,y =

∫

Ȳ

Biȳ

∫

Y

φ(y)Mȳ,y

≥

∫

Ȳ

Biȳ φ(

∫

Y

yMȳ,y) (by Jensen’s inequality)

=

∫

Ȳ

Biȳ φ(ȳ) (by (71))

(72)

So choosing φ(y) = y2, it follows that CovB(y) ≤ CovB̄(y).
Therefore, from Statement 1, we have, CovB(S{y}) ≤

CovB̄(S{y}), or equivalently, R(B) � R(B̄) (wrt positive

definite ordering).

Next, it can be shown [6] by differentiation that the solution

of the algebraic Lyapunov equation (36) satisfies

Σ(B) =

∫ ∞

0

exp
(

sQ
)

R(B) exp
(

sQ
)

ds

So clearly if R(B) � R(B̄), then Σ(B) � Σ(B̄). Finally,

since Σ̄ = ∇S−1′Σ∇S−1, it follows that Σ̄(B) � Σ̄(B̄).

G. Simulation Example. Noisy Matrix Permutation

The aim of this section is to provide a medium-sized

numerical example of estimating θo with the vector symmetric

transform and adaptive filtering algorithm (28). We also show

that applying the naive symmetric transform (21) element wise

(as opposed to the vector symmetric transform) loses order

information.

We consider the case L = 4 and D = 10. The true

parameter is

θo =









1 3 4 5 7 9 10 11 12 13
2 4 5 10 8 7 1 8 9 10
3 1 2 7 6 5 4 5 7 9
6 12 18 24 36 43 50 10 1 3









The regression matrix ψ(k) was chosen as I3×3. The

anonymized D-dimension observation vectors were generated

according to (1), (2).

The pseudo observation vectors are constructed at each time

k using (17) as

z1 = y1 + y2 + y3 + y4,

z2 = y1 ⊗ y2 + y1 ⊗ y3 + y1 ⊗ y4 + y2 ⊗ y3 + y2 Cov y4

+ y3 ⊗ y4,

z3 = y1 ⊗ y2 ⊗ y3 + y1 ⊗ y2 ⊗ y4 + y1 ⊗ y3 ⊗ y4

+ y2 ⊗ y3 ⊗ y4,

z4 = y1 ⊗ y2 ⊗ y3 ⊗ y4
(73)

where ⊗ denotes the convolution operator and each yi(k) ∈
R

D, i = 1, . . . , 4.

We ran 100 independent trials of the adaptive filtering algo-

rithm (28) on 100 independent pseudo observation sequences.

We computed the relative error of the average estimate θavg(k)
over the 100 trials at time k = 50, 000:

|θavg
ij (k)− θoij |/θ

o
ij ≤ 7× 10−4

Thus algorithm (28), based on the vector symmetric transform,

successfully estimates the parameters.

Next, we ran adaptive filtering algorithm using the naive

symmetric transform (21). We see from the estimate θ(k) at

k = 50.000 below, that all order information is lost (the boxes

indicate the nearest estimates to the first row of θo):











1.0052 1.0053 1.9923 5.0129 6.0105 5.0033

2.0041 2.9971 4.0048 7.0028 6.9913 7.0086

3.0023 4.0016 4.9988 9.9934 8.0095 9.0024

5.9997 12.0000 17.9965 24.0002 36.0066 43.0028











0.9939 4.9955 1.0032 2.9986
3.9995 7.9970 6.9999 8.9985

9.9936 9.9942 8.9969 10.0001

50.0024 10.9959 12.0031 12.9960









We found in numerical examples that when rows of θo

are different from each other, the naive transform is able to

estimate the order; but when the elements of two rows are

close, then the estimate can switch rows resulting in a ghost

estimate.

H. Symmetric Transform for D = 3, L = 3.

This final section of the supplementary document gives a

complete evaluation of the symmetric transform S for D =
3, L = 3 to illustrative (17) in the paper.

Recall λl,m is the coefficient of sl−1tm−1 in the polynomial

S{θ}(s, t):
λ11 = [1, 1, 1] λ21 = [0, 1, 1]
λ12 = [1, 1, 2] λ22 = [0, 1, 2]
λ13 = [1, 1, 3] + [1, 2, 2] λ23 = [0, 1, 3] + [0, 2, 2]
λ14 = [1, 2, 3] + [2, 2, 2] λ24 = [0, 2, 3]
λ15 = [1, 3, 3] + [2, 2, 3] λ25 = [0, 3, 3]
λ16 = [2, 3, 3]
λ17 = [3, 3, 3]

λ31 = [0, 0, 1], λ32 = [0, 0, 2], λ33 = [0, 0, 3].
To explain the compact notation above: [a, b, c] =

∑

σ{a,b,c} θ1aθ2bθ3c = θ1aθ2bθ3c + θ1aθ2cθ3b + θ1bθ2aθ3c +
θ1bθ2cθ3a + θ1cθ2aθ3b + θ1cθ2bθ3a and we set θi0 = 1 for all

i.
So λ11 = [1, 1, 1] = θ11 θ21 θ31 since σ{1, 1, 1} = {1, 1, 1}.

Also, λ12 = [1, 1, 2] is constructed by taking all permutations

of [1, 1, 2]; so λ12 = θ11θ21θ32 + θ11θ22θ31 + θ12θ21θ31.

Similarly, λ23 = [0, 1, 3]+[0, 2, 2] = θ11θ23+θ21θ33+θ11θ33+
θ12θ22 + θ12θ32 + θ22θ32 since θi0 = 1 by convention.

In the convolution notation of (17) we can express λ1 ∈
R

7, λ2 ∈ R
5, λ3 ∈ R

3 as:

λ1 = θ1⊗θ2⊗θ3, λ2 = θ1⊗θ2+θ1⊗θ3+θ2⊗θ3, λ3 = θ1+θ2+θ3
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