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ABSTRACT

The Multi-modal Information based Speech Processing (MISP)
challenge aims to extend the application of signal processing tech-
nology in specific scenarios by promoting the research into wake-up
words, speaker diarization, speech recognition, and other technolo-
gies. The MISP2022 challenge has two tracks: 1) audio-visual
speaker diarization (AVSD), aiming to solve “who spoken when”
using both audio and visual data; 2) a novel audio-visual diarization
and recognition (AVDR) task that focuses on addressing “who spo-
ken what when” with audio-visual speaker diarization results. Both
tracks focus on the Chinese language, and use far-field audio and
video in real home-tv scenarios: 2-6 people communicating each
other with TV noise in the background. This paper introduces the
dataset, track settings, and baselines of the MISP2022 challenge.
Our analyses of experiments and examples indicate the good per-
formance of AVDR baseline system, and the potential difficulties in
this challenge due to, e.g., the far-field video quality, the presence of
TV noise in the background, and the indistinguishable speakers.

Index Terms— MISP challenge, speaker diarization, speech
recognition, multimodality

1. INTRODUCTION

Modern speech-enabled systems still suffer from performance degra-
dation in real-world scenarios (e.g., at home and in meetings) due
to factors associated with adverse acoustic environments and con-
versational multi-speaker interactions. Inspired by the finding that
visual cues can help human speech perception [1], many researchers
have proposed to use the visual modality to improve acoustic ro-
bustness [2, 3]. The MISP2021 challenge [4] released a large dis-
tant multi-microphone conversational Chinese audio-visual corpus,
and some advanced audio-visual speech recognition (AVSR) sys-
tems have been proposed [5, 6]. However, these systems assume
that the correspondence between speech segments and speakers is
known in advance, which greatly limits its scope in real-world ap-
plications. For the second MISP challenge, we target the problem of
audio-visual speaker diarization (AVSD), and audio-visual diariza-
tion and recognition (AVDR) in the home-tv scenarios. Specifically,
the AVDR is an extended task from AVSR, replacing oracle speaker
diarization results with AVSD results.

Many approaches have been proposed on speaker diarization
and speech recognition under the audio-only condition. [7] utilized

*corresponding author

x-vector [8], agglomerative hierarchical clustering (AHC) and an
LSTM-based overlap detector to get diarization results, which can
be used for the guided source separation (GSS) and the deep neural
network-hidden markov model (DNN-HMM). [9] proposed a novel
system, which includes a speaker diarization module with target-
speaker voice activity detection (TS-VAD), and a speech recogni-
tion module with self-attention. However, the audio-only speaker
diarization and speech recognition task in the real scenes is still a
huge challenge because of the potential strong background noise and
high ratios of overlapping speech [10].

Facial behavior is highly correlated with speech activity [11],
and visual modality is not disturbed by harsh acoustic environment.
Researchers show great interest in audio-visual speaker diarization
(AVSD) and audio-visual speech recognition (AVSR). For AVSD
system, some related works have been proposed. [12] utilized mu-
tual information to fuse the audio and video modalities, while [13]
used a Bayesian method for audio-visual speaker diarization. In re-
cent years, many deep learning methods have emerged. [14] used
an audio-visual synchronization model, [15] proposed a diarization
method using self-supervised learning, achieving positive results.
For AVSR system, [3] proposed a ‘Watch, Listen, Attend and Spell’
(WLAS) network on the LRS data set and [2] adopted a Transformer-
based model. [16] developed a CTC/Attention model based on con-
former blocks. A DNN-HMM hybrid AVSR system with a gating
layer [17] also showed good performance. Although AVSD and
AVSR have received increased attention and have been shown to
significantly outperform conventional audio-only methods, there is
as yet little research done on audio-visual diarization and recogni-
tion (AVDR) which concentrates on AVSR with AVSD results.

The MISP2022 challenge includes two tracks: audio-visual
speaker diarization (AVSD), and audio-visual diarization and recog-
nition (AVDR). In this paper, we discuss the MISP2022 challenge,
the data, tracks, and provide a detailed description of the baseline
AVDR system, followed by a deep analysis. Besides, we point out
the difficulties that participants may encounter in this challenge,
including the low quality of far-field videos, the background noise
in the home-tv scenarios, and the existence of indistinguishable
speakers. To the best of our knowledge, we proposed a brand-new
AVDR task, and our proposed AVDR baseline system is the first
to concatenate the AVSD and AVSR into one large system. The
resulting system has broad application prospects. More challenge
details1 and the baseline code2 can be found on the websites.

1https://mispchallenge.github.io/mispchallenge2022
2https://github.com/mispchallenge/misp2022 baseline
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Fig. 1. The architecture of the audio-visual diarization and recognition baseline system

2. DATASET AND TRACKS

2.1. Training, Development, and Evaluation Sets

We adopted the same training set as in the updated AVSR corpus of
the MISP2021 challenge [18] and picked a new 3h development set
from the previous development and evaluation sets. The new devel-
opment set consists of the audio and video recordings of 8 rooms and
26 participants, including 10 males and 16 females. In the future, to
eliminate overlapping speakers in each subset, a new evaluation set
will be released and used for final ranking. The evaluation set only
contains the recordings from the far-field devices.

2.2. Track 1: Audio-Visual Speaker Diarization

Audio-visual speaker diarization aims to solve the “who spoke
when” problem by labeling speech timestamps with classes that
correspond to speaker identity using audio and video data. For
evaluation, only the far-field audio and video data is available. We
will provide the oracle speech segmentation timestamp. Participants
need to submit a rich transcription time marked (RTTM) file for each
session. RTTM files are text files containing one turn per line [10].
The start time (4th column), duration (5th column), and speaker ID
(8th column) must remain in the same columns.

Diarization error rate (DER) [19] is adopted as the evaluation
metric. The lower the DER value (with 0 being a perfect score),
the higher the ranking. It is worth noting that we do not set the “no
score” collar, and overlapping speech will be evaluated.

DER =
FA+MISS + SPKERR

TOTAL
(1)

where FA, MISS, SPKERR are the total durations of the false alarm,
missed detection and speaker error, respectively, and TOTAL is the
sum of durations of all reference speakers’ speech.

In Track 1, external audio data can be used to train the AVSD
model, such as VoxCeleb 1, 2 [20, 21], CN-Celeb [22], and other
public datasets. Additional video data is also allowed to be used.
However, participants should inform the organizers in advance about
such data sources, so that all competitors know about them and have
an equal opportunity to use them.

2.3. Track 2: Audio-Visual Diarization and Recognition

Track 2 moves beyond AVSD and also considers the task of
speech recognition, i.e., transcribing the speech into its verbatim

text. The same evaluation set is adopted as Track 1. Participants
need to submit the RTTM file, and transcription files. In each
session, participants should chronologically merge all utterances
from one speaker and provide a transcription file. Transcription
files contain two columns: the utterance ID (1st column), and
the utterance (2nd column). The format of the utterance ID is
< speaker ID > < session ID >.

With reference to the concatenated minimum-permutation
word error rate (cpWER) in [23], we use concatenated minimum-
permutation character error rate (cpCER) as the evaluation metric in
Track 2. The calculation of cpCER is divided into three steps. First,
recognition results and reference transcriptions belonging to the
same speaker are concatenated on the timeline in a session. Second,
character error rate (CER) of permutations of speakers is calculated
as follows:

CER =
S + D+ I

N
(2)

where S, D, I are the character number of the substitution error, dele-
tion error, and insertion error. N is the total number of characters.
Finally, select the lowest CER as the cpCER.

In Track 2, we restrict the rules of additional data usage. Exter-
nal audio data and video data are allowed to be used. Significantly,
participants can utilize timestamps, speaker tags, and other infor-
mation except for text contents. Participants should also inform the
organizers in advance about such data sources.

3. BASELINE AVDR SYSTEM

Fig. 1 shows the baseline AVDR system, which consists of an AVSD
module followed by an AVSR module. The AVSD module also
serves as the baseline system for Track 1. In this section, we elab-
orate the architecture and training process of the AVSD and AVSR
modules, and provide the details about joining the AVSD and AVSR
modules for decoding.

3.1. Architecture and Training of the AVSD Module

We follow our previous work [24] as our baseline. The difference is
that the preceding work used the data from the mid-field audio and
video, while the current challenge focuses on the far-field audio and
video.

As shown in the AVSD module in Fig. 1, our system has three
encoder modules. In the visual encoder module, lip ROIs are used as
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Table 1. Speaker diarization results on Dev set (in %)
System FA MISS SPKERR DER

ASD 0.01 19.88 11.36 31.25
VSD 6.64 8.17 3.89 18.69

AVSD 4.01 5.86 3.22 13.09

input of the network which consists of lipreading model [25], con-
former blocks [26], and a BLSTM layer. The whole network can be
regarded as a visual voice activity detection (V-VAD) model to gen-
erate visual embeddings and an initial diarization result. Next, we
use the audio dereverberated by NARA-WPE [27] and the diariza-
tion result from the V-VAD model to compute i-vectors as speaker
embeddings. Besides, through an FBank feature extractor and sev-
eral 2D CNN layers, audio embeddings can also be extracted. In the
decoder block, three types of embeddings are combined first and sev-
eral BLSTM with projection (BLSTMP) layers are utilized to further
extract features and get speech or non-speech probabilities for each
speaker. In the post-processing stage, we first perform thresholding
with the probabilities to produce a preliminary result and adopt the
same approaches as in [28]. Furthermore, DOVER-Lap [29] is used
to fuse the results of 6-channels audio.

The training process is as follows: first, we use the parameters
of the pre-trained lipreading and train the V-VAD model. Then, we
freeze the visual network parameters and train the audio network and
decoder block. Finally, we unfreeze the visual network parameters,
and train the whole network jointly.

3.2. Architecture and Training of AVSR Module

The AVSR model adopts a DNN-HMM hybrid system [18]. Firstly
we apply the NARA-WPE [27] and BeamformIt [30] to the far-
field 6-channel speech. Then, the FBank features extracted from
the audio and the Lip ROIs cropped from the video were seg-
mented on the basis of the speaker diarization results. The front-end
module composed of 3D convolution and ResNet-18 is used to ex-
tract lip-movement information for the video modality and outputs
embeddingV. Meanwhile, the front-end module composed of 1D
convolution and ResNet-18 is used to extract audio features and
obtain embeddingA. The audio-visual features, embeddingAV, are
extracted by the multi-stage temporal convolutional network (MS-
TCN) [31] modules. Next, the posterior probabilities are obtained
by the other MS-TCN modules. Finally, text is decoded from the
posterior probabilities by using GMM-HMM, 3-gram model and
DaCiDian.

During the training stage, oracle speaker diarization results are
used. Kaldi [32] is applied to train a GMM-HMM system on all
far-field audio data. The training of the DNN-based acoustic model
uses Cross Entropy loss and Adam optimizer for 100 epochs with
initial learning rate of 0.0003 and cosine scheduler. More details of
the experiment can be found in [18].

3.3. Joint Decoding

During inference, the RTTM file as the output of the AVSD mod-
ule contains the information of the Session, SPK,Tstart, and Tdur.
This information can be used for calculating DER in Track 1 and
preprocessing far-field video and far-field 6-channel audio in Track
2. For Sessionk, a set of utterance identifier (SPKi,T

start
j ,Tdur

j )
are available, where Sessionk and SPKi denote k-th session and i-
th speaker in this session, Tstart

j and Tdur
j denote the start time and

the duration of the j-th utterance for SPKi. For the far-field video
in Sessionk, we first segment the whole video according to Tstart

j

Table 2. Diarization and recognition results on Dev set (in %)
System S D I cpCER

ASR(OS) 40.84 27.33 0.51 68.68
AVSR(OS) 35.78 27.82 0.36 63.96

ASD+ASR 31.83 44.34 4.27 80.44
VSD+ASR 39.25 31.22 0.66 71.13

VSD+AVSR 35.17 31.01 0.61 66.79
AVSD+AVSR 35.94 29.45 0.68 66.07

and Tdur
j and crop the lip region of SPKi in every frame as the vi-

sual input of the AVSR module. For the far-field 6-channel audio
in Sessionk, we first perform WPE and BeamformIt for the raw 6-
channel audio and segment the whole beamformed audio according
to Tstart

j and Tdur
j as audio input of the AVSR module. Finally, we

concatenate the decoded text of each utterance belonging to SPKi in
Sessionk according to time order.

During the evaluation, due to the problem of permutation invari-
ant training (PIT) and annotated segment text correspondence, we
adopt cpCER as the final evaluation index.

4. RESULTS AND ANALYSIS

In this section, we first introduce the experimental results of the base-
line systems. Next, we point out the difficulties of the MISP2022
challenge by providing examples, and analyze the good performance
of AVDR system. Challenge participants can use this information to
particularly focus on solving these issues in order to improve perfor-
mance above the baseline.

4.1. Baseline Results

Table 1 shows the false alarm (FA) rate, missed detection (MISS)
rate, speaker error (SPKERR) rate, and the DER for the audio-only
speaker diarization systems (ASD), the visual-only speaker diariza-
tion system (VSD) and the audio-visual speaker diarization system
(AVSD), where the latter is the baseline system of the AVSD track.
For the ASD system, we use the VBx method [33]. For the VSD sys-
tem, we use the result from the visual encoder module as described in
Section 3.1. The ASD system has poor results, most likely due to the
loud TV background noises and high speaker overlap ratios, result-
ing in high MISS and SPKERR rates. Because the visual modality
is not disturbed by the acoustic environment, the VSD system out-
performs the ASD system in terms of MISS, SPKERR, and DER.
However, VSD system has a high FA rate, potentially due to the lip
movement in the silent segments. Combining the audio and visual
modalities in the AVSD system yields the best performance, showing
that both modalities can be combined to overcome their individual
weaknesses.

As shown in Table 2, we design 6 experiments for diarization
and recognition system. The first two experiments are the speech
recognition modules with the oracle speaker (OS) diarization re-
sults. The other experiments are the combinations of speaker di-
arization module and speech recognition module, e.g., ASD+ASR,
VSD+ASR, VSD+AVSR, and AVSD+AVSR, where the latter is the
baseline system of the AVDR track. For the ASD+ASR system, the
high MISS and SPKERR rate results in a large number of deletion
errors of target speakers. In addition, the high SPKERR rate leads to
insertion errors of interfering speakers. Comparing the ASD+ASR
system and the VSD+ASR system indicates that visual modality of
speaker diarization module dominates the performance of the whole
diarization and recognition system. In contrast to the VSD+ASR
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Fig. 3. An example in a session with the comparison of results from
different systems

system, the visual modality in speech recognition module of the
VSD+AVSR system provides distinguishable information that re-
duces substitution errors, which improves the whole system perfor-
mance. In all experiments, it is the combination of the audio and vi-
sual modalities in both modules that yields the best system: AVDR.

4.2. Analyses of difficulties

In order to let challenge participants solve problems better, we point
out the potential difficulties in this challenge. Meanwhile, we discuss
the performance of different module combinations to further explore
the impact of audio and visual modalities.

4.2.1. Far-field Video Quality

Due to the long distance between cameras and speakers, far-field
video will result in a greatly reduced proportion of each speaker’s lip
ROI in the total image, especially in the scenes with more speakers.
At the same time, lamplight, position, angle, occlusion, and other
environmental factors may lead to the reduction of video quality. We
explore how the number of lip ROIs pixels affects the performance
of the VSD and AVSD systems, as shown in Fig. 2. It is found that
as the average number of pixels decreases, the DER rises sharply.
This will also affect the subsequent speech recognition task.

According to the example in Fig. 3, it can be seen that dim-light
and far distance lead to low quality of the far-field lip ROIs, making
lip movements detection wrong or missing. There are lots of over-
lapping segment false detections and speaker confusion in the VSD
results. In fact, according to the ground truth (GT), only one speaker
(SPK 1) is talking all the time. For the module of AVSR using VSD
results, the existence of overlapping segments leads to more insertion
errors for SPK 2, and the speaker confusion leads to deletion errors

SPK 1

SPK 2

Overlap

Silence

T=0.18 T=0.92 T=1.38 T=1.64 T=2.28 T=2.52 T=2.88

Far-field Audio

GT
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GT
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Fig. 4. Another example in a session with the comparison of results
from different systems

for SPK 1. Because AVSD incorporates audio modality informa-
tion to modify video modality, the results are significantly improved
compared with VSD, and AVDR system results are also improved.

4.2.2. TV Background Noise

Since the TV is closer to the far-field microphone array, loud TV
noise may cover the voice of the target speakers in the far-field au-
dio. At the same time, due to the diversity of TV broadcast content,
the audio may contain the voice of irrelevant speakers, which may
interfere with the speaker diarization, and speech recognition. As
shown in Fig. 3, in the fourth segment utterance, because actors on
TV are talking loudly, noise received by the microphone completely
covers the voice of the target speaker, making the AVDR system un-
able to recognize the speech content. Besides, in the last segment,
due to the influence of TV background noise, ASD system wrongly
assigns the segment of SPK1 to SPK2. Although the effect of AVDR
system is better than that of single mode system, the TV background
noise is also a big challenge in MISP2022.

4.2.3. Indistinguishable Speakers

Due to the diversity of speakers, it is possible that speakers with
similar timbre appear in the same session. As shown in Fig. 4, the
similar timbre leads to speaker confusion in ASD result. In addi-
tion, peristalsis of lips, namely lip-movement without utterance, oc-
casionally occurs in video recordings. It is difficult for the model to
distinguish whether a speaker is talking or just moving his lip. In the
VSD process, due to peristalsis, speaker confusion also arises which
causes the target speaker to have more deletion errors and the inter-
fering speaker to have more insertion errors. However, in the AVSD
process, through the information complementation between audio-
visual modalities, we get the diarization result consistent with the
ground truth, which corrects the speech recognition errors caused by
the wrong diarization result.

5. CONCLUSIONS

This paper describes the MISP2022 challenge, which is the first to
propose the audio-visual diarization and recognition (AVDR) task.
We provide the analysis of this challenge, including the baseline re-
sults, the relationship between the diarization and the speech recog-
nition modules, and the difficulties of the challenge. We believe that
the research on audio-visual diarization and recognition can be better
promoted through the MISP dataset and the MISP2022 challenge.
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