Abstract:
Contrastive learning (CL) has achieved great success in various fields with self-supervised learning. However, CL under the supervised setting is not fully explored, espe...Show MoreMetadata
Abstract:
Contrastive learning (CL) has achieved great success in various fields with self-supervised learning. However, CL under the supervised setting is not fully explored, especially how to utilize the class labels in CL. We propose a novel aligned contrastive finetuning (ACF) approach in this work. Specifically, we consider the label embeddings as labeled instances and put them in an InfoNCE loss objective together with the instance representations, thus aligning the label embeddings and instance representation in the same semantic space. In addition, we design a correlation-based regularization term to alleviate the anisotropy problem. Extensive experiments are conducted on language understanding and image classification tasks, demonstrating our ACF method’s competitiveness. ACF is off-the-shelf and can be plugged into any pre-trained models without additional network architectures or computation overhead.
Published in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 04-10 June 2023
Date Added to IEEE Xplore: 05 May 2023
ISBN Information: