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ABSTRACT

Entity alignment (EA) for knowledge graphs (KGs) plays a critical
role in knowledge engineering. Existing EA methods mostly focus
on utilizing the graph structures and entity attributes (including lit-
erals), but ignore images that are common in modern multi-modal
KGs. In this study we first constructed Multi-OpenEA — eight
large-scale, image-equipped EA benchmarks, and then evaluated
some existing embedding-based methods for utilizing images. In
view of the complementary nature of visual modal information
and logical deduction, we further developed a new multi-modal
EA method named LODEME using logical deduction and multi-
modal KG embedding, with state-of-the-art performance achieved
on Multi-OpenEA and other existing multi-modal EA benchmarks.

1. INTRODUCTION

Entity alignment (EA) aims to find out entities referring to the same
real-world object from different knowledge graphs (KGs). It plays a
critical role in KGs application and NLP field [1, 2]. With the devel-
opment of representation learning [3], embedding-based EA meth-
ods have taken the dominant position in recent research [4, 5, 6].
Despite quite a few positive results have been achieved, these meth-
ods still have some limitations. They over-rely on the structure and
literal (entity names) information [7, 8]. In dealing with long-tailed
entities which have little structural information as the evidence for
alignment, the performance is relatively poor.

We find entities of many modern KGs are associated with im-
ages which are often known as the visual modality; e.g., each entity
in DBpedia is associated with 6.2 images in average. In building do-
main KGs, such as goods KG in e-commerce [9], it’s also common to
add images. These images often contain strong evidences for check-
ing the equivalence of entities. Different from the literals, the images
are less heterogeneous w.r.t. feature learning, even when they come
from different KGs. However, as far as we know, the entity images
are ignored by most existing EA methods and benchmarks.

Although, some recent approaches [10, 11] utilize images for
EA, they cannot effectively utilize multiple images but can only han-
dle single images. Worse, they fail to perform logical deduction in
the inference phase like some conventional non-embedding based
methods, which has proved to be quite useful by recent study[4].
Especially in multi-modal scenarios, visual modal information and
logical deduction capabilities are highly complementary [12]: for
long-tailed entities (containing less structural information) that don’t
allow effective deduction, multiple images can provide high-quality
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visual alignment signals; while for non-long-tailed entities, espe-
cially some central entities with high degrees (e.g., US, China), they
have plenty of related images and no single representative image can
denote this entity alone. This is when visual modals fail, but logi-
cal inference can carry out effective inconsistency repair and holistic
estimation with the assurance of extensive symbolic knowledge [13].

Meanwhile, there is a shortage of benchmarks for evaluating EA
methods that consider the visual modality. The benchmarks by [10]
have limited scales and low image coverage (roughly 70% of the en-
tities have images and each entity has at most one image), and thus
they do not match the real-word scenarios and hinder the develop-
ment of multi-modal EA.

In this work we first constructed a series of large-scale multi-
modal EA benchmarks named Multi-OpenEA with a high ratio of
image equipped entities and multiple images per entity, based on
the OpenEA benchmarks [4]. We then evaluated four competitive
unimodal embedding-based EA models for thier compatibility with
visual modalities, including BootEA [14], MultiKE, RDGCN [15]
and IMUSE [16]. As a result, the visual modality improves the per-
formance of all these models with an average of 12% Hit@1 rise,
demonstrating that visual modality has general and significant valid-
ity for existing embedding-based methods.

In view of the complementary nature of visual modal informa-
tion and logical deduction, we finally propose a self-supervised EA
model LODEME that iteratively performs LOgical DEduction and
Multi-modal Embedding. We also developed a structure-aware at-
tention mechanism such that the entity embeddings can incorporate
multiple images with different emphases. LODEME outperforms
the modified embedding-based models and other multi-modal EA
methods, with Hit@1 exceeding 95% on the Multi-OpenEA bench-
marks. With this empirical study1, we also conducted exhaustive
ablation experiments.

2. MULTI-OPENEA BENCHMARKS

We proposed a generic multi-modal EA benchmarks construction
process and constructed new multi-modal EA benchmarks based on
the eight existing OpenEA benchmarks2 by adding multiple images
to each entity. The construction includes the following three steps:
Step 1. Entity Name Acquisition. The entities in the original Ope-
nEA benchmarks are from either DBpedia (DBP) or Wikidata (WD).
For a DBpedia entity, its name is extracted from its Uniform Re-
source Identifier (URI) via regular expressions. For a Wikidata en-
tity, its named is accessed via Wikidata SPARQL endpoint3 using

1The source codes and benchmarks will be public.
2https://github.com/nju-websoft/OpenEA
3https://query.wikidata.org/
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the built-in property rdfs:label.
Step 2. Entity Image Acquisition. We search the entity name
through the Google search engine and get ten most relevant images
for each entity. If the search engines returns less than ten images,
we get the remaining entity images from the original KGs (DBpedia
and Wikidata) by SPARQL query.
Step 3. Image Sampling. We randomly sampled 3 images for each
entity without considering search engine ranking which may cause
bias.

Table 1. Our Multi-OpenEA benchmarks vs the existing multi-
modal EA benchmarks. Ours have larger scale (#Entity), more enti-
ties associated with images (Coverage), and more images per entity
(Ratio).

Benchmark KGs #Entity #Images Ratio Coverage Similarity

FB15K-DB15K
[17]

FB15K 14,951 13,444 0.899 90.0% -
DB15K 12,842 12,837 0.999 99.9%

DBP-WD(norm)
[10]

DBP 15,000 8,517 0.517 57.1% -
WD 15,000 8,791 0.586 58.6%

EN-FR-15K-V1 EN15K(V1) 15,000 44,657 2.977 99.7% 0.757
FR15K(V1) 15,000 42,286 2.819 94.5%

EN-FR-15K-V2 EN15K(V2) 15,000 44,932 2.995 99.9% 0.767
FR15K(V2) 15,000 42,622 2.841 94.5%

EN-FR-100K-V1 EN100K(V1) 100,000 296,934 2.969 99.6% 0.751
FR100K(V1) 100,000 280288 2.803 94.1%

EN-FR-100K-V2 EN100K(V2) 100,000 299,403 2.994 99.9% 0.752
FR100K(V2) 100,000 282,063 2.821 94.4%

D-W-15K-V1 DBP15K(V1) 15,000 44,776 2.985 99.8% 0.829
WD15K(V1) 15,000 44,823 2.988 99.8%

D-W-15K-V2 DBP15K(V2) 15,000 44,911 2.994 99.9% 0.820
WD15K(V2) 15,000 44,945 2.996 99.9%

D-W-100K-V1 DBP100K(V1) 100,000 296.749 2.9867 99.5% 0.833
WD100K(V1) 100,000 297,354 2.974 99.6%

D-W-100K-V2 DBP100K(V2) 100,000 299,338 2.993 99.9% 0.832
WD100K(V2) 100,000 299,607 2.996 99.9%

We constructed 8 Multi-OpenEA benchmarks which are named
as X-Y-Z. X denotes the KG source with the values of {D-W, EN-
FR}. D-W is a cross-KGs version, whose KGs are derived from DB-
pedia and Wikidata respectively. EN-FR is a cross-lingual version,
whose KGs are derived from English version and French version of
DBpedia respectively.; Y denotes the KG scale (entity number) with
values of {15K, 100K}; Z has the values of V1 and V2, which cor-
respond two different versions of the original OpenEA benchmarks
with different average relation degrees. Specifically, average relation
degrees of V2 is roughly twice that of V1. In Table 1, we compare
Multi-OpenEA benchmarks with the existing multi-modal bench-
marks used in MMEA [17] and EVA [10]. Due to larger scales, more
entities associated with images and higher image number per entity,
the Multi-OpenEA benchmarks are more consistent with practical
scenarios and more challenging for the methods. The image similar-
ities between alignment entity pairs in the last column illustrate that
the visual modality provides a high-quality alignment signal, which
are calculated by the cosine similarity of the CLIP embeddings.

To further evaluate the quality of the automatically acquired im-
ages, we randomly selected 3000 images corresponding to 1000 enti-
ties and employed 3 annotators to judge whether the correspondence
between images and entities was correct. The average accuracy rate
was 88.1% with an inter-annotator agreement of 0.853, measured by
Fleiss’s Kappa [18].
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Fig. 1. The Architecture of LODEME.

3. METHODS

In this section, we introduce how to extend some typical embedding-
based EA methods as well as our LODEME for utilizing the visual
modality.

3.1. Modified Embedding-based Models

We consider BootEA, MultiKE, RDGCN and IMUSE for extension
since they are very recent and typical embedding-based methods, of-
ten achieving state-of-the-art performance on many EA benchmarks
without images [4, 5]. The modified models are named by adding
the suffix “-V”.
BootEA-V. BootEA is a semi-supervised method based on some
translation-based KG embedding models such as TransE. In BootEA-
V, We used a multi-modal translation-based model [19], whose
energy function leverages both visual and structural information.
MultiKE-V. MultiKE utilizes multi-view learning to encode entities
based on the views of names, relations and attributes. We used the
multi-modal pre-training model CLIP [20] with fixed parameters as
the feature extractor for images. Then we leveraged wide-used PCA
[21] algorithm to reduce the dimensionality of the image embedding
to that of the name embedding. Finally, MultiKE-V treats visual
information as an additional view of the entity, just like entity name.
RDGCN-V. RDGCN is a Graph Convolutional Network-based mod-
els which uses Word2Vec embeddings [22] of entity names as the
initial weights of entities. Instead, RDGCN-V sets the weights of
entities to the average of entity name embeddings and image embed-
dings.
IMUSE-V. IMUSE is an interactive method which calculates entity
alignment and attribute alignment alternately. The entity similarity
is calculated based on the literal (attribute value) similarity. IMUSE-
V uses the entity image as a special literal and refines the entity
similarity with the cosine similarity of the image embeddings.

3.2. LODEME

3.2.1. Architecture and Pipeline

As shown in Figure 1, LODEME consists of a probabilistic reason-
ing (PR) module and a multi-modal semantic embedding (SE) mod-
ule. It runs Step 1 only once as an initialization, and then runs Steps
2 and 3 alternately by several times.
Step 1. Run PR Module. The PR module gets the mappings by iter-
ative name matching and probabilistic reasoning (see Section 3.2.2
Probabilistic Reasoning Module).·
Step 2. Run Multi-modal SE Module. The entity mappings from
the PR module are used as the seed mappings (input) of the SE mod-
ule for training. The SE module encodes multi-modal information
and outputs entity embeddings (see Section 3.2.3 Multi-Modal Em-
bedding Module).



Step 3. Re-run PR Module. Unlike Step 1, the reasoning in this
step, which takes into account the similarity of entity embeddings,
enabling the PR module to possess multi-modal information and thus
reason more accurately.

3.2.2. Probabilistic Reasoning Module

The PR module in LODEME is developed based on the conventional
reasoning-based system PARIS [23]. First, PARIS pre-calculates the
functionalities F(r) and inverse functionality F−1(r) of the rela-
tions in KGs, which are used to portray the uniqueness of the cor-
responding tail (head) entities for a certain relation given the head
(tail) entity.

Then, PARIS mines the initial entity mapping by lexical match-
ing, and updates the probabilities of entity mappings Pr (e1 ≡ e2)
and relation mappings (subordination) P (r1 ⊆ r2) alternatively
based on relation functionalities. Notice that these two probabili-
ties are interdependent, so PARIS self-iterates multiple times until
convergence. Finally, the PARIS outputs entity mappings with prob-
abilities to the SE module. We highly recommend referring to [23]
for more details.

In Step 1, the PR module just uses original PARIS, while in
Step 3, the PR module is adapted with some changes. It refines
the probability estimation of entity alignment by multi-modal en-
tity embedding similarity. The revised PR module to exploit not
only logical reasoning but also the KGs’ multi-modal information
encoded by the SE module. Specifically, the equivalence probabil-
ity of entities is redefined as Pr

′
(e1 ≡ e2) := αPr (e1 ≡ e2) +

(1− α) cos sim (~e1,~e2), where the first term is the original proba-
bility estimate in PARIS and the second term represents the cosine
similarity of the corresponding multi-modal entity embeddings.

3.2.3. Multi-Modal Embedding Module

The high-quality seed mappings unsupervisedly generated by the PR
module are fed to the SE module where the KG modalities are en-
coded in the following way.
Structure embedding. To capture the structural information of the
KGs, we utilize the Graph Convolution Network (GCN) in [24]. We
used the output of the last layer of a three-layer GCN as the graph
structure embedding FG.
Relation and attribution embedding. The correlation between re-
lations and between attributions can also be used as important infor-
mation for finding equivalent entities. Inspired by [25], we encode
the relation and attribute information of entities separately as:

FR = WR ·R+ bR,FA = WA ·A+ bA, (1)

where R ∈ Rm×r and A ∈ Rm×a are count matrices for relations
and attributes respectively. m, r, a denote the number of entities,
relations and attributes. WR and WA are trainable weight matrices.
bR and bA are trainable bias matrices.
Entity name embedding. We used the mean pooling of token repre-
sentations from the final layer of Multi-lingual BERT [26] to encode
entity name FN = WN ·M-BERT(name)+bN , where WN and
bN are trainable matrices.
Image embedding. We used CLIP for image feature extraction.
Since an entity corresponds to multiple images, we developed a
structure-aware attention mechanism to make the model place dif-

ferent emphasis on different images in different entities:

FI =

n∑
i=0

[
eFG·FIi∑n
j=0 e

FG·FIj
· FIi

]
,FIi = WI · CLIP(Ii) + bI ,

(2)

We concatenate the embeddings of all the modalities with trainable
weights as the entity embedding:

~e =
⊕

F∈{FG,FR,FA,FN ,FI}

[softmax(W) · F] , (3)

where W denotes the weights of modalities.
For training, we employ the widely used [27, 28] margin-based

alignment loss function L, which expects greater similarity between
positive pairs in alignment mappings and less similarity between
negative pairs generated. Formally, L is defined as follows:

L =
∑

( ~e1, ~e2)∈P

∑
(
~e′1,

~e′2

)
∈N

max
{
0, sim( ~e′1,

~e′2)− sim( ~e1, ~e2) + γ
}

(4)
where sim(·) is the cosine similarity and γ>0 is a margin hyper-
parameter. P are the entity pairs contained in the alignment map-
pings provided by PR module. We generate negative pairs N by
hard negative sampling for stronger distinguishing capability. Given
a positive pair (e1, e2), we choose K nearest entities of e1 (e2) in
another KG to replace e2 (e1) to form hard negative pairs.

For inference, We simply used greedy nearest neighbour search
and cross-domain similarity local scaling (CSLS) [29] over entity
embeddings as the final result.

4. EXPERIMENTS

4.1. Experimental Setup

For the original embedding-based models, we follow the setting in
[4]. We report the higher of the results we reproduce and the re-
sults reported in [4].4 We also use the latest multi-modal EA method
EVA [10] and homochronous MSNEA [11] as baselines. 5-fold
cross-validation is used in performance measurement. For fairness,
all models use the Multi-lingual BERT and CLIP as encoders for text
and images.

Table 2. Overall results on the Multi-OpenEA benchmarks.
15K-V1 15K-V2 100K-V1 100K-V2

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR
BootEA 0.618 0.795 0.697 0.488 0.704 0.584 0.516 0.685 0.594 0.766 0.892 0.822
BootEA-V 0.730 0.901 0.805 0.728 0.926 0.814 0.643 0.837 0.730 0.830 0.937 0.866
MultiKE 0.426 0.513 0.471 0.561 0.723 0.636 0.291 0.352 0.324 0.327 0.410 0.371
MultiKE-V 0.737 0.771 0.754 0.727 0.765 0.746 0.743 0.766 0.755 0.687 0.727 0.707
RDGCN 0.561 0.714 0.722 0.640 0.777 0.702 0.362 0.485 0.420 0.421 0.528 0.473
RDGCN-V 0.683 0.800 0.736 0.686 0.817 0.744 0.537 0.656 0.592 0.489 0.704 0.584
IMUSE 0.327 0.523 0.419 0.581 0.778 0.671 0.276 0.437 0.355 0.431 0.631 0.525
IMUSE-V 0.404 0.593 0.492 0.606 0.806 0.696 0.351 0.521 0.432 0.494 0.701 0.590
PARIS 0.734 - - 0.840 - - 0.667 - - 0.795 - -
MSNEA 0.962 0.988 0.973 0.971 0.974 0.989 0.946 0.957 0.952 0.982 0.988 0.989
EVA 0.971 0.989 0.978 0.990 0.998 0.994 0.968 0.989 0.976 0.991 0.998 0.994

D
-W

LODEME 0.991 0.998 0.994 0.996 1.000 0.998 0.973 0.992 0.973 0.994 0.999 0.996
BootEA 0.507 0.718 0.603 0.660 0.850 0.745 0.389 0.561 0.474 0.640 0.806 0.716
BootEA-V 0.717 0.918 0.806 0.807 0.898 0.845 0.509 0.732 0.611 0.706 0.786 0.744
MultiKE 0.796 0.876 0.834 0.868 0.920 0.892 0.629 0.680 0.655 0.642 0.696 0.670
MultiKE-V 0.916 0.961 0.937 0.936 0.964 0.949 0.661 0.739 0.699 0.675 0.725 0.705
RDGCN 0.817 0.909 0.858 0.847 0.919 0.880 0.640 0.732 0.683 0.715 0.787 0.748
RDGCN-V 0.862 0.927 0.891 0.900 0.956 0.925 0.730 0.928 0.816 0.779 0.934 0.846
IMUSE 0.569 0.717 0.639 0.607 0.760 0.678 0.439 0.546 0.492 0.461 0.605 0.529
IMUSE-V 0.663 0.776 0.715 0.736 0.862 0.792 0.568 0.6710 0.618 0.570 0.700 0.631
PARIS 0.903 - - 0.934 - - 0.848 - - 0.881 - -
MSNEA 0.978 0.990 0.981 0.982 0.998 0.990 0.927 0.941 0.938 0.965 0.985 0.973
EVA 0.982 0.996 0.988 0.993 1.000 0.996 0.940 0.968 0.950 0.971 0.995 0.980

E
N

-F
R

LODEME 0.989 0.997 0.992 0.997 1.000 0.998 0.966 0.983 0.972 0.978 0.996 0.985

4Except for BootEA on D-W-15K-V2, where the claimed result far ex-
ceeds the reproduced result.



4.2. Main Experiments

Table 2 shows the overall results on the Multi-OpenEA benchmarks.
We have the following observations. First, LODEME achieves the
best performance on all the eight benchmarks. Although MSNEA
and EVA are competitive, they are supervised while LODEME is
unsupervised (self-supervised). The good performance of LODEME
can be explained in two aspects: its PR module considers the holistic
logical consistency via reasoning and provides SE module with high-
quality seed mappings; its SE module fully utilizes the images. Sec-
ond, the four modified embedding-based models are also effective in
utilization of the images, with an average rise of 0.125 on Hit@1.
Note the highest rise on each benchmark is underlined. BootEA-
V, MultiKE-V and IMUSE-V achieve higher performance rise than
RDGCN. Third, the improvement due to the visual modality varies
from KG to KG. Comparing V1 (by sparse KGs with lower average
relation degree) and V2 (by dense KGs with higher average relation
degree), the visual modality leads to an average rise of 0.143 and
0.106 on Hit@1, respectively. This indicates that images are ideal
complementary information for long-tailed entities or sparse KGs
with limited structural information.

4.3. Ablation Experiments on Modalities

We report the results of the ablation experiments on different modal-
ities in Table 3, where Name indicates entities names, Rel. & Attr.
indicates indicates relations & attributes (including literals), w/o in-
dicates not using a modality. After removing the name informa-
tion, the performance of EVA shows a severe decline compared to
LODEME, indicating that EVA relies more on the name information,
while LODEME adequately captures the visual information leading
to less reliance on the name information.

In terms of the importance of different modalities, after dropping
the structural information, Hit@1 of LODEME decreases by an av-
erage of 8.6%, indicating that structural information is still the most
important modality, which is consistent with the findings in [10].
Relatively, the visual modality play a more important role than en-
tity names, and entity attributes & relations. Hence, we recommend
that future studies use more visual information and discard entity
names, considering the name bias problems also mentioned in many
recent works [30, 31]. Removing all (three) images causes a Hit@1
drop of 2.6% and 3.9% on two benchmarks, which are higher than
the drop by removing entity names or entity relations & attributes.
Besides, we analyzed removing different numbers of images.

Table 3. Results of ablation experiments on modalities.

Model D-W-100K-V1 EN-FR-100K-V1

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

EVA 0.968 0.989 0.976 0.940 0.968 0.950
w/o Name 0.822 0.910 0.854 0.712 0.836 0.752

LODEME 0.973 0.992 0.973 0.966 0.983 0.972
w/o Structure 0.870 0.917 0.887 0.897 0.952 0.918
w/o Name 0.967 0.986 0.968 0.931 0.962 0.942
w/o Rel. & Attr. 0.948 0.963 0.945 0.963 0.978 0.969
w/o 1 Image 0.963 0.978 0.968 0.956 0.972 0.962
w/o 2 Images 0.958 0.972 0.960 0.952 0.969 0.959
w/o 3 Images 0.947 0.967 0.953 0.927 0.968 0.948

4.4. Ablation Experiments on Use Strategy of Multiple Images

In LODEME, we utilize the structure-aware attention mechanism to
exploit the information of multiple images. To verify its effective-
ness, we compare the operation of mean pooling of multiple images

directly. Another stronger strategy is to retain only the image pairs
with the highest similarity among the aligned pairs (there is informa-
tion leakage due to the need to know the aligned pairs in advance).

The results are shown in Table 4, where the attention mechanism
achieves better results compared to the mean pooling, proving its
effectiveness. Also retaining the most similar image pairs achieves
competitive results, which guides future work to investigate from
the perspective of how to compute image similarity more accurately,
such as similarity based on regions rather than complete images.

Table 4. Ablation experiments on use strategy of multiple images.

Strategy D-W-100K-V1 EN-FR-100K-V1

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

Attention 0.973 0.992 0.973 0.966 0.983 0.972
Mean 0.954 0.962 0.958 0.942 0.966 0.957
Highest Similarity 0.970 0.994 0.965 0.960 0.979 0.964

4.5. Overall Results On Existing Benchmarks

We conducted experiments on the existing multi-modal EA bench-
marks, and since images of DB15K are not public for the FB15K-
DB15K dataset in Table 1, we conducted experiments on the DBP-
WD(norm) dataset only, as shown in Table 5. LODEME also
achieved state-of-the-art results. However, due to the low image
coverage, the visual information of the DBP-WD(norm) dataset does
not bring as much gain as Multi-OpenEA for the four embedding-
based models.

Table 5. Overall results on existing benchmarks.
DBP-WD(norm)

Hit@1 Hit@5 MRR
BootEA 0.323 - 0.420
BootEA-V 0.362 0.581 0.474
MultiKE 0.096 0.210 0.159
MultiKE-V 0.187 0.346 0.257
RDGCN 0.138 0.268 0.203
RDGCN-V 0.169 0.312 0.238
IMUSE 0.104 0.231 0.174
IMUSE-V 0.143 0.269 0.211
PARIS 0.834 - -
EVA 0.985 - 0.989
LODEME 0.991 0.998 0.992

5. CONCLUSION AND DISCUSSION

In this study we constructed eight large-scale EA benchmarks with
multi-modal KGs, and evaluated four typical embedding-based en-
tity alignment models which were extended for incorporating en-
tity images. We further proposed a new multi-modal EA method
named LODEME using logical deduction and multi-modal KG em-
beddings. The evaluation shows that the visual modality is always
quite effective in all these methods while LODEME always achieves
the best performance.

Images have great potential to further augment the EA methods.
We show the results of some ablation experiments in Section 4.3,
where we find that the visual modality has a more positive impact on
aligning more sparse KGs with weaker structure information. This
motivates us to consider different image embedding and utilization
solutions for KGs with different sparsities in the future. Meanwhile,
we recommend that future studies use more visual information and
discard entity names, considering the name bias. LODEME doesn’t
not consider fine-grained semantic types of the image objects, which
could be utilized to avoid image noise. We leave this to be explored
in future work.
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