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ABSTRACT

Speech emotion recognition (SER) is the task of recognising hu-
man’s emotional states from speech. SER is extremely prevalent
in helping dialogue systems to truly understand our emotions and
become a trustworthy human conversational partner. Due to the
lengthy nature of speech, SER also suffers from the lack of abundant
labelled data for powerful models like deep neural networks. Pre-
trained complex models on large-scale speech datasets have been
successfully applied to SER via transfer learning. However, fine-
tuning complex models still requires large memory space and results
in low inference efficiency. In this paper, we argue achieving a fast
yet effective SER is possible with self-distillation, a method of si-
multaneously fine-tuning a pretrained model and training shallower
versions of itself. The benefits of our self-distillation framework
are threefold: (1) the adoption of self-distillation method upon the
acoustic modality breaks through the limited ground-truth of speech
data, and outperforms the existing models’ performance on an SER
dataset; (2) executing powerful models at different depth can achieve
adaptive accuracy-efficiency trade-offs on resource-limited edge de-
vices; (3) a new fine-tuning process rather than training from scratch
for self-distillation leads to faster learning time and the state-of-the-
art accuracy on data with small quantities of label information.

Index Terms— self-distillation, speech emotion recognition,
adaptive inference, efficient deep learning, efficient edge analytics

1. INTRODUCTION

Speech emotion recognition (SER) nowadays is an idiosyncratic task
in many dialogue systems, such as Siri, Cortana, and Alexa [1].
Through classifying human speech signals into various emotional
states (e. g., happiness, surprise, anger, disgust, fear, sadness, neu-
tral, etc.), SER helps human-computer systems become more per-
sonalised and trustworthy as well as adjust the contexts accord-
ingly in car-driving, heath-diagnosis, call-center, aircraft-cockpit,
and web/mobile applications [2}(3].

Existing techniques for SER are limited by the inherent lack of
labelled data due to the expensive efforts of annotation (e.g. thou-
sands of hours of speech over nearly 7,000 spoken languages [4])).
They often rely on large deep neural networks that are pre-trained by
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unsupervised learning, contrastive learning, or self-supervised learn-
ing, such as wav2vec [5], wav2vec 2.0 [4], and vg-wav2vec [6].
However, fine-tuning large models has a high demand of memory
space and inference time [/7].

In machine learning, self-distillation has emerged as a paradigm
to develop a student model with a more lightweight architecture that
can even outperform the teacher [8]]. This has been particularly suc-
cessfully applied to computer vision [8|9]. However, in contrast to
the visual modality, the acoustic modality is significantly more chal-
lenging due to limited ground-truth. Self-distillation methods cannot
be applied directly to SER since they often require large labelled data
to simultaneously train a teacher model from scratch with shallower
student versions of itself [8]].

In this paper, we present a framework of self-distillation for fast,
yet effective speech emotion recognition. While our framework is
demonstrated on wav2vec 2.0 [4] (one of the state-of-the-art (SOTA)
pre-trained models for speech representations), it can be applied to
other models and datasets with limited ground-truth information. In
our framework (see [Figure 1)), the pre-trained wav2vec 2.0 (i. e., the
teacher model) was fine-tuned together with shallower model param-
eters from itself (i. e., the student models), when the teacher and all
students are predicting emotional states from speech samples.

To the best of our knowledge, this is the first attempt to develop
a self-distillation framework for SER. The contributions of our self-
distillation framework include: (1) the application of self-distillation
on speech data overcomes the difficulty caused by limited annota-
tions, and outperforms the existing models’ performance on an SER
dataset; (2) executing powerful models at different depths increases
the possibility to achieve adaptive accuracy-efficiency trade-offs on
resource-limited edge devices; (3) a new fine-tuning process rather
than training from scratch for self-distillation leads to faster learning
time and SOTA accuracy on data with limited ground-truth.

Related Works. Spectrum features [[10,|11] have been often used
as the input of deep neural networks for SER [12]], while selecting
the appropriate spectrum features is a time-consuming work. More-
over, the performance of SER is limited to expensive human annota-
tions; lacking of labelled data for deep learning. More recently, self-
supervised learning on speech data has shown promising to learn
effective representations, and the pre-trained models have been suc-
cessfully fine-tuned for SER tasks [[13H15]]. Therefore, we apply an
end-to-end self-supervised learning model, wav2vec 2.0, to SER.
Knowledge distillation is one of the popular methods to achieve
high efficiency by transferring knowledge from a teacher model to
a smaller student model [7]. Similar to other model compression
approaches such as pruning and quantisation, they sacrifice infor-
mation loss (thus accuracy) and could not overcome the accuracy-



efficiency trade-offs. Our self-distillation approach can achieve the
best of both worlds by reusing the architecture and allowing infer-
ence at different depths of the teacher model itself.

Different types of self-distillation methods have been developed
recently, including iteration-based [[16||17]], aggregate-based [18]],
and branch-based approaches [8|/9]]. Iteration-based methods per-
form knowledge distillation from a teacher model to a student model
with the same architecture and this procedure is repeated a few
times [16,/17]. However, the training and inference costs are not
reduced, as the teacher and the student are the same. Aggregated-
based methods use data augmentation to produce more versions of
the teacher model on different augmentations and then combine the
outputs [[18]]. However, existing data augmentations are domain-
specific and are not applicable to acoustic modality. Our work re-
lates closely to the branch-based approaches, which add branches
at different depths of the teacher model using bottlenecks/attention-
blocks and shallow classifiers [8}/9]. However, these layers are not
applicable for wave2vec 2.0, as it already contains transformer lay-
ers. Our work is also different from the layer-wise knowledge dis-
tillation, which fine-tunes a student model from the teacher model
itself for predicting deep layers of the teacher [7]. The layer-wise
knowledge distillation can produce a general student model, while it
requires fine-tuning efforts for a specific task. The fixed number of
model parameters of the student is limited for performance improve-
ment with a deeper structure and lacks of flexibility.

2. METHODOLOGY
2.1. Preliminaries

Self-supervised Learning with wav2vec 2.0. Self-supervised learn-
ing has shown its superiority compared to supervised learning on
many audio tasks, such as speaker recognition [[19] and SER [20].
Wav2vec 2.0 [4] was trained on the large-scale Librispeech cor-
pus [21] in a self-supervised learning framework. Wav2vec 2.0
has been widely used to extract effective representations for SER
tasks [13122]]. A Wav2vec 2.0 model consist of multi-layer convolu-
tional neural networks (CNNs) (i.e., encoder) and multiple trans-
former layers (i.e., context network). The latent representations
learnt from the encoder are discretised into a set of quatisation rep-
resentations, which are then processed with the output of the context
network in a contrastive task.

2.2. Self-Distillation Framework: The Case of Wav2vec 2.0
2.2.1. Model Architecture

Teacher Model. We assume the input data of wav2vec 2.0 is rep-
resented as (X, y), where X is the raw speech signals and y is
the emotional states. The final (i.e., N-th) transformer layer T'n
of wav2vec 2.0 is followed by two linear layers (L' and L?) with
output dimensions of D and D5, where D> is the number of emo-
tional classes (see Figure [T). Regarding the intermediate features,
the output of each transformer layer has a dimension of (B, F, R),
where B is the sample number in a batch, F' represents the num-
ber of time steps, and R denotes the dimension of representations at
each time step. With the goal of classification, the N-th transformer
layer’s output is pooled into Hy with a dimension of (B, R) before
being fed into the two linear layers.

Student Model. To reduce the model parameters of wav2vec 2.0
with self-distillation, additional layers are added after the interme-
diate transformer layers of wav2vec 2.0 (see Figure[I). In a student
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Fig. 1: The framework of self-distillation on wav2vec 2.0. The
output of an intermediate transformer layer is processed by a block
model and two linear layers. The output of each second linear layer
is the predicted probabilities on emotional classes. The backward
process is implemented via three types of loss functions. ‘—-’:
cross-entropy loss, ‘- - -’: Kullback—Leibler (KL) divergence loss,

s 3

-e-Jor e ’: similarity loss.

model, the transformer layer 7,;, 1 < ai < N, is followed by a
distillation model, including a block M,; and two linear layers (L}li
and L2,). M,; is a neural network, and L2, is trained for predicting
emotional classes. Herein, as M,; is expected to learn representa-
tions similar to those from 7'y, the output of Ty; is directly fed into
the block model without pooling. Therefore, the output of M,; has a
dimension of (B, F, R), and is pooled into Hys,, with a dimension
of (B, R). Hay,, is then fed into L, for further process.

Apart from the above single distillation model, multiple distil-
lation models could be learnt together in self-distillation to improve
the flexibility for different depths of models. For instance, two dis-
tillation models in Figure [T] are developed after transformer layers
Tai and Ty  to build SER models with different numbers of model
parameters.

2.2.2. Loss Function

As the pre-trained wav2vec 2.0 has already strong capability of
learning representations from speech, we initialise the teacher
model’s parameters with the pre-trained wav2vec 2.0. We assume
N, distillation models are built after transformer layers indexed by
A = {al,a2,...}. The representations Hy, and H,, are learnt from
L' and L., respectively. The outputs of the second linear layers L
and L2, are represented as O and O,;. The model parameters are
optimised with the loss function in self-distillation:

L=Lc~+aly+ BLs, (1)

where L. is the cross-entropy loss, Ly is the Kullback—Leibler (KL)
divergence loss, L is the similarity loss, and e and 3 are constant
values.

Cross-entropy Loss. To train wav2vec 2.0 and distillation models
for performing SER, the cross-entropy loss contains i) the cross en-
tropy loss on the teacher model (i.e., L', L?, and wav2vec 2.0),
and ii) the cross entropy loss on the student models (i. e., distillation
models and partial model parameters of wav2vec 2.0):

1
Lo=Lee(0,y) +75 D Lee(Oairy), @)

@ aicA



where Lce is the typical cross entropy loss for training a model in
supervised learning, and +y is a constant value.

KL Loss. The outputs of the distillation models are expected to be
similar to that of the linear layer L2, which is the final layer of the
teacher model. With this target, the Kullback-Leibler (KL) loss aims
to regularise the outputs O and Og;:
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Similarity Loss. Apart from the loss functions computed on the
model outputs, loss functions on the interval features learnt from
the intermediate layers can further help train strong student models.
In this work, we compare three loss functions, including L1, Lo,
and cosine similarity. Their combinations are also compared with
single functions. Furthermore, these loss functions could be either
on the outputs of the N-th transformer layer and the blocks (Hn and
Hyy,,), or on the output of the first linear layers (Hy, and Hp,):

1 1
Ls= N, Z Lgim(HN, Hu,; ) OR N, Z Lgim(He, Hi,,),
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where £ is a loss function of L1, L2 or negative cosine similarity.

sim
2.3. Dynamic Inference

Although the deep layers of wav2vec 2.0 can often learn higher-
level reresentations than shallow ones, self-distillation can provide
dynamic inference models [9] via training both shallow and deep
student models with good performance. Shallow distillation models
require less parameters than deep ones, and deep ones may perform
better than shallow ones. The flexibility of self-distillation enables
SER applications to be applied to various hardwares, from wearable
devices to work stations.

3. EXPERIMENTS

3.1. Database

The database of elicited mood in speech (DEMoS) [23] is used to
verify the self-distillation for SER. DEMoS with 9365 emotional
and 332 neutral Italian speech samples was collected from 68 speak-
ers (f: 23, m: 45) [23]]. Each speech sample was annotated with one
of the eight classes: anger, disgust, fear, guilt, happiness, sadness,
surprise, and neutral. To implement experiments that can be com-
pared to other studies [24}25] on DEMoS, the minor neutral class
is not used, and the speaker-independent training/development/test
sets are the same to our prior study [24]. The detail of the data dis-
tribution on the seven emotional classes can be found in [24]).

3.2. Experimental Settings

Evaluations Metrics. In this study, the unweighted average recall
(UAR) is employed to evaluate the performance of SER models. A
UAR is computed as the average of all class-wise recalls.

Implementation Details. With the goal of classifying emotion
states, the wav2vec 2.0 model is followed by two linear layers with
the numbers of output neurons {256, 7}, respectively. In each dis-
tillation model, the block could be one of the three layers: CNN
(number of output channels: 1, kernel size: (1, 1)), Long Short-Time
Memory recurrent neural networks (LSTM-RNN) (number of output
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Fig. 2: Comparison of the performance (UAR [%]) of the teacher
models and the student ones, each of which has single convolutional

distillation layer. The loss function is L2 loss.

features: 768), Gated Recurrent Unit (GRU) RNN (number of out-
put features: 768). The two linear layers in each distillation model
also have the numbers of output neurons {256, 7}, respectively.

Each model is trained on the training set and validated on the de-
velopment set, and further trained on the combination of the training
and development sets, and validated on the test set. During training,
the hyperparameters of the loss function are setas « = f = v = 1.
All training procedures of self-distillation are optimised by an Adam
optimiser with a learning rate of 3e — 5, and stopped at the 20-th
epoch, when the batch size is 16.

Reproducibility Environments. To improve the reproducibility,
the code of this work is released at: https://github.com/
leibniz-future-lab/SelfDistill-SER.

3.3. Sensitivity Analysis

Figure[2]shows the performance of self-distillation with single CNN-
based distillation model. We can see that, on both development set
(Figure|2| (a)) and test set (Figure|2| (b)), the performance is increas-
ing when the distillation layer is going deeper. This indicates that
deeper model layers of wav2vec 2.0 can learn more abstract repre-
sentations than shallower ones. The teacher models perform better
than shallow student models, but are comparable with deep student
models, especially after the 7-th distillation layer.

As the distillation layers at the embedding level perform slightly
better than those at the linear level, the embedding level is selected in
the next experiments for self-distillation. To provide different model
sizes with self-distillation, we group the distillation layers into three
groups and select layers which have the best performance on the
development set. Therefore, we use layers {3, 8, 10} for multi-layer
self-distillation in the following experiments.
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Table 1: Comparison of the performance (UAR [%]) of multi-layer self-distillation (distillation layers: {3, 8, 10}). The best performance of

)

the deepest model is highlighted with ‘__

, and the best performance of distillation layers is highlighted with bold fonts.

Deepest Layer 3 Layer 8 Layer 10 Fusion
NN Loss Devel| Test | Devel| Test | Devel| Test | Devel| Test | Devel| Test
Ly 873 | 89.0 | 75.2 | 824 | 869 | 83.8 | 87.1 | 88.9 | 857 | 88.3
Lo 88.3 | 89.3 | 70.2 | 81.6 | 88.6 | 89.4 | 88.2 | 89.2 | 86.8 | 88.5
Self-distillation w/ CNN Cosine sim. 89.6 | 89.7 | 76.0 | 81.5 | 89.5 | 89.9 | 89.7 | 89.7 | 88.7 | 89.8
Ly + Cosine sim. | 88.4 | 87.8 | 774 | 77.5 | 884 | 88.1 | 884 | 878 | 87.5 | 874
Ly + Cosine sim. | 88.1 | 89.7 | 77.5 | 81.5 | 88.8 | 89.3 | 88.4 | 89.5 | 874 | 89.0
Ly 914 | 90.2 | 833 | 857 | 91.7 | 90.7 | 91.8 | 90.5 | 90.5 | 89.9
Lo 90.7 | 91.2 | 785 | 86.7 | 91.0 | 91.1 | 90.8 | 90.9 | 89.6 | 90.8
Self-distillation w/ LSTM | Cosine sim. 90.8 | 888 | 79.2 | 752 | 91.1 | 87.9 | 90.8 | 88.5 | 90.1 | 87.1
Ly + Cosine sim. | 90.3 | 90.6 | 77.7 | 86.5 | 90.1 | 90.3 | 90.3 | 90.5 | 88.8 | 90.5
Lo + Cosine sim. | 91.8 | 91.4 | 833 | 84.7 | 91.1 | 914 | 91.7 | 91.2 | 90.1 | 90.9
Ly 86.3 | 91.0 | 80.2 | 85.5 | 84.7 | 91.6 | 84.5 | 91.2 | 86.1 | 90.8
Lo 909 | 90.7 | 82.0 | 84.1 | 91.2 | 904 | 91.1 | 90.6 | 90.0 | 90.0
Self-distillation w/ GRU Cosine sim. 90.2 | 89.6 | 748 | 822 | 90.3 | 89.5 | 89.9 | 89.4 | 88.7 | 889
Ly + Cosine sim. | 91.2 | 90.0 | 79.5 | 83.7 | 914 | 90.2 | 91.0 | 90.1 | 89.5 | 89.7
Ly + Cosine sim. | 88.1 | 91.6 | 722 | 85.1 | 87.5 | 91.5 | 86.5 | 91.7 | 86.8 | 90.7

3.4. Ablation Study

With the distillation layers {3, 8, 10}, we compare the three block
models (i. e., CNN, LSTM-RNN, and GRU-RNN) with various sim-
ilarity loss functions (i. e., Lgjp,,). From Table we can find that all
similarity loss functions perform comparably for each block model.
Particularly, the single similarity loss functions (i. e., L1, L2, and co-
sine similarity) perform better than the combinations of them. This
might be related to the setting of hyperparameters in the loss func-
tions. Furthermore, the LSTM-RNN and the GRU-RNN models
outperform the CNN one when comparing the three models blocks.
This may be because RNNs can better learn sequential information
than CNNs. Regarding the self-distillation, the performance of the
student models at layers 8 and 10 is comparable with the deepest
model. Layer 3 performs slightly worse than layers 8 and 10, as the
corresponding student model of layer 3 is shallower than those of
layers 8 and 10. Finally, the fusion results of the three distillation
models are comparable with the results of layer 10.

3.5. Comparison with SOTA

We compared the results of self distillation with the other SOTA
models, including the following three groups of models. (1) CNN-
4, VGG-16, ResNet-50, and VGG-16 with adversarial training are
trained from scratch [24]. (2) The models of wav2vec 2.0 with fine-
tuning are trained for 20 epochs based on the pre-trained wav2vec
2.0, when the transformer layers after finetuned layers are frozen.
(3) The layer-wise models are trained via the layer-wise knowledge
distillation in [[7]. As wav2vec 2.0 has 12 transformer layers, which
is the same as the number of encoder layers in HuBERT in [[7], the
layer-wise models are mostly developed according to the settings in
[7]. The teacher model is the pre-trained wav2vec 2.0, and the stu-
dent model is part of the pre-trained wav2vec 2.0 itself (from the first
layer to the second transformer layer). Notably, all parameters of the
teacher model are frozen. The layer-wise models are trained at two
stages: 1) training the student model to predict layers {4, 8, 12}) of
the teacher model, and ii) fine-tuning the student model on DEMoS
for SER. To train a strong student model, the first stage is trained
with 20 epochs. To implement fair experimental comparisons, the
second stage also consists of 20 epochs.

As wav2vec 2.0 was pre-trained on the large-scale speech
database, The models based on wav2vec 2.0 are mostly better than
models trained from scratch (CNN-4, VGG-16 (+ adversarial train-
ing), and ResNet-50). When comparing fine-tuned wav2vec 2.0

Table 2: Comparison of the performance (UAR [%]) between our
approach (lower lines) and the state-of-the-art (SOTA).

NN Devel Test #Param
CNN-4 [24] 82.6 83.6 43M
VGG-16 [24] 79.8 83.6 147M
ResNet-50 [24] 71.9 81.3 235M
VGG-16 + adversarial training [24] 87.5 86.7 147M
Wav2vec?2 (layer 3) + fine-tuning 77.1 83.4 31.5M
Wav2vec?2 (layer 8) + fine-tuning 90.1 90.9 66.9M
Wav2vec2 (layer 10) + fine-tuning 91.7 89.2 81.1M
Wav2vec?2 (deepest) + fine-tuning 91.1 90.6 952M
Layer-wise distillation w/ CNN 54.3 72.5 24.4M
Layer-wise distillation w/ LSTM 70.8 79.0 38.5M
Layer-wise distillation w/ GRU 73.1 774 35.0M
Self-distillation (layer 3) 83.3 85.7 36.2M
Self-distillation (layer 8) 91.7 90.7 71.6 M
Self-distillation (layer 10) 91.8 90.5 85.8M
Self-distillation (teacher) 91.8 914 100.0M

models and self-distillation, the student model at layer 3 outperforms
the corresponding fine-tuned one. The fine-tuned models are compa-
rable with self-distillation at layers 8 and 10, while self-distillation
trains student models at different layers in single training procedure.
Our self-distillation outperforms layer-wise distillation at all three
layers. This may be caused by the shallower student models (en-
coder and two transformer layers) in layer-wise distillation. For a
specific task, self-distillation requires less training epochs (20 in our
work) than layer-wise distillation (40 in our study), increasing the
training efficiency.

4. CONCLUSIONS AND FUTURE WORK

This work aimed to reduce model parameters via self-distillation
for fast and effective speech emotion recognition. The experiments
were implemented on the Database of Elicited Mood in Speech (DE-
MoS) [23]] with the pre-trained wav2vec 2.0. The experimental re-
sults demonstrated that the student model at a shallow layer (layer
3) outperformed the corresponding fine-tuned wav2vec 2.0, and self-
distillation achieved comparable performance with that of fine-tuned
wav2vec 2.0 at deep layers. Moreover, self-distillation performed
better than layer-wise knowledge distillation. In future work, the
self-distillation approach will be verified on multiple databases. We
will also investigate to further reduce the wav2vec 2.0 model by the
state-of-the-art model compression approaches [26,27].
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