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ABSTRACT

Zero-Shot Sketch-Based Image Retrieval (ZSSBIR) is an
emerging task. The pioneering work focused on the modal
gap but ignored inter-class information. Although recent
work has begun to consider the triplet-based or contrast-based
loss to mine inter-class information, positive and negative
samples need to be carefully selected, or the model is prone
to lose modality-specific information. To respond to these
issues, an Ontology-Aware Network (OAN) is proposed.
Specifically, the smooth inter-class independence learning
mechanism is put forward to maintain inter-class peculiar-
ity. Meanwhile, distillation-based consistency preservation is
utilized to keep modality-specific information. Extensive ex-
periments have demonstrated the superior performance of our
algorithm on two challenging Sketchy and Tu-Berlin datasets.

Index Terms— Zero-shot, Sketch-based image retrieval,
Ontology-aware, Inter-class peculiarity, Modality-specific

1. INTRODUCTION

ZSSBIR [1] has been popular recently, which is more chal-
lenging than Sketch-Based Image Retrieval (SBIR) due to
lacking the knowledge of unseen test categories. It is well
known that the modal gap between sketches and images
makes it difficult for SBIR to obtain good results. However,
the ZSSBIR has to consider not only the inevitable modal gap
between sketches and images but also the transfer of knowl-
edge from seen classes to unseen classes, which motivates
this community to gain more attention.

Coming to the zero-shot learning-based methods, auxil-
iary semantic information needs to be considered to assist the
model to obtain good results. Seen attribute vectors [12] are
projected onto a semantic similarity embedding space, where
the unseen class is regarded as a mixture of seen classes. Se-
mantic autoencoder [14] is proposed with additional recon-
struction constraint, proving to be a good explanation for un-
seen classes. When talking about the ZSSBIR family, both
the knowledge transfer and domain gap should be considered.
The pioneering works, such as ZSIH and PCYC [2, 3], at-
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tempted a two-CNN network to preserve the association be-
tween sketch modality and real image modality, where the
teacher network is employed to spread knowledge [8]. Se-
mantic preserving network [4] is put forward by considering
both semantic and visual features. A latent space is sought in
which a cross-aligned latent learning method [16] is applied
to fuse multimodal features. Besides, a dual learning frame-
work [17] is utilized cyclically to map the sketch and image
features to a common semantic space. However, the important
thing is the inter-class peculiarity is not mined by the above-
mention approaches. A discriminative model [5] is realized
by using triplet loss to bridge the domain gap through a gradi-
ent reversal layer. Data augmentation and a memory bank [6]
are used to eliminate intra-class variability, and a pre-trained
CNN model is employed to keep knowledge. This kind of
model could preserve category-level properties at the expense
of modality-specific information, resulting in model suppres-
sion. Additionally, the sample selection is crucial, and the
large batch size leads to expensive training costs.

In this paper, an Ontology-Aware Network is proposed,
and our contributions can be summarized as follows:
I. For ZSSBIR, an model is shown in Fig. 1, namely OAN,
which is free of sample selection with moderate training cost.
II. To keep inter-class peculiarity, the smooth inter-class inde-
pendence learning mechanism is put forward.
III. Meanwhile, the proposed distillation-based consistency
preservation can protect modality-specific information.

2. ONTOLOGY-AWARE NETWORK

The dataset in the OAN is defined as R : {Rs,Ru}, and
the Rs and Ru represent the seen and unseen dataset, re-
spectively. xsi and ysi represent the sketches and real images,
where i ∈ {s, u}. During the learning period, xs and ys are
used to train the model, and {xs, ys} ∈ Rs. Meanwhile, the
unseen datasetRu = {xu, yu} is used for testing.

2.1. Smooth Inter-class Independence Learning

Recent works learned a common space for sketches and real
images to cope with the modal gap and utilized triplet-based
loss or contrast-based loss to maintain intra-class consistency.
However, the positive and negative samples need to be care-
fully selected, which leads to complex mining methods. Be-
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Fig. 1. The general framework of our work. Firstly, CSE-ResNet50 is adopted as a feature extractor to map sketches and
images to common space. Secondly, feature embedding is realized by full connection layers. Thirdly, our OAN, i.e. Ontology-
Aware Network, is used to perform the smooth inter-class independence learning mechanism and distillation-based consistency
preservation on embedded features, which can keep their inter-class peculiarity and modality-specific information, respectively.

sides, the expansion of batch size gives rise to extremely high
training costs.

Our work is distinguished from other models. In this
paper, we only focus on the feature vectors within the
mini-batch and treat each sketch or image ontology of
the mini-batch as a core, implicitly pushing away irrele-
vant cores from the current ontology core. Inspired by the
work [9], the smooth inter-class independence supervised
learning method is proposed. Concretely, feature dictio-
nary Q = {K1 : V1,K2 : V2, · · · ,Kn : Vn} is cre-
ated, where the K store the ontology weights and the V
memorize feature vectors. In the dictionary Q, the key
Ki in a mini-batch corresponds to the value Vi. Every in-
stance zi including sketches xsi and images ysi is captured
in the batch dataflow to create the instance feature vector
set V = {Fsz1 , · · · ,F

s
zi , · · · F

s
zn |zi ∈ (xsi , y

s
i )} for the cur-

rent batch. Let Fszi = f(zi), i ∈ {1, 2, · · · , n}, where
the function f(·) is responsible for capturing the feature
representation of the current instance. In our work, the fea-
ture vector Vi of instance i is mapped to 2048d. Then,
Ki ← wKi + (1 − w)Vi and Ki ← Ki

||Ki||2 are adopted to
update Ki for each i, and constant w is set to 0.01.

As stated before, our smooth inter-class independence
learning treats the instance ontology as a category center. To
achieve the goal, the probability of each category in a batch
is computed and implicitly other targets are pushed away
by maximizing the inner product of ontology instances and
ontology weights. At the same time, to avoid overconfidence
and improve generalization, we propose smooth inter-class
independence loss Lin , which is computed as Eq.1:

Lin = ξ

n∑
i=1

log
exp(βK>i Vi)∑Nbc

n=1 exp(βK>i Vi)
+ η

∑
log(ppredzi )

Ncls
(1)

, where Ncls denotes the batch sample numbers, and Nbc is
the number of batch categories. The ppredzi is predicted prob-
ability of instance i, η is a smooth parameter that can be used
to improve generalization, ξ = − 1

Ncls
− η, and β is a temper-

ature parameter that balances the scale of distributions.

2.2. Distillation-based Consistency Preservation

In the task of ZSSBIR, the well-known way is to extract
depth features from the sketches and image candidate gallery.
Appointing the established Euclidean distance or other simi-
larity metrics performs the retrieval task. To maintain feature
consistency, both sketches, as well as images, are usually
used as positive and negative samples. However, this ap-
proach results in the loss of modality specificity information,
which in turn affects discriminability. For this reason, we
propose consistency of self-distillation and teacher-student
distillation that adopt the hypersphere consistency constraint
[7]. The feature embedding layers are trained to preserve
the modal specificity. First, the paired distance between
the logit layer G and the classification layer C can be mea-
sured as dV(zm, zn) = ||Vszm − V

s
zn ||

2
2, where V ∈ {G, C}

and Vsz can be regarded as the output of logit layer or clas-
sification layer. The dV(·) represents Euclidean distance
operator and zm 6= zn. The similarity measure can be writ-
ten as D(dV) = ρ

δV
√
2π

exp(− (dV−µV)2

2δ2V
), in which δV and



µV represent variance and mean, respectively. Furthermore,
dV ∼ (0, 12 ) and ρ is defined as a constant used to force the
scope of D(dV) within [0, 1]. To maximize the similarity
between D(dV) and D(dG), Eq.2 is used.

LIhcr = −D(dC)logD(∗)− (1−D(dC))log(1−D(∗)) (2)

,where ∗ = dGT /dGS . LIhcr is the loss of self-distillation part
and Thcr or Shcr denote the constraint of teacher or student
model, which is shown in Fig. 1. GT and GS represent the
output of the logit layer of the Thcr or Shcr, respectively.

2.3. Classification Loss

To help the model learn specific information well, the cross
entropy loss is used, which is computed in Eq.3.

Lcls = − 1

Ncls

Ncls∑
j=1

log
exp(CSzj )∑

c∈T s exp(CSzc,j )
(3)

, where Lcls represents the probability of CSzj that the instance
j in the seen domain S belongs to the category c, and T s
denotes the number of categories in S and Ncls denotes the
number of samples in a batch. Motivated by the paper [8], we
adopt the teacher with semantic information E to regulate the
student, which can be computed in Eq.4.

Lse = − 1

Nse

Nse∑
t=1

∑
k∈M

Et,klog
exp(GSzt)∑

q∈M exp(GSzq,t)
(4)

, where Lse represents the probability of GSzt that the instance
t in the semantic information,M denotes the category num-
ber of semantic labels, and Nse is regarded as the sample
number in a batch.

2.4. The Overall Loss Function

L = Lcls + λ1Lse + λ2Lin + λ3LIhcr (5)

The overall Loss function L is computed in Eq.5, where λ1,
λ2, and λ3 are the hyperparameters, and they can balance the
contributions of different parts. Here, the experience of paper
[8] is followed, and λ1 is set to 1.

3. EXPERIMENT ANALYSIS

3.1. Datasets

To verify the effectiveness of our OAN, two challenging
datasets, i.e. Sketchy[10] and Tu-Berlin[11], are employed.
Sketchy includes 125 categories, 75,471 sketches, and 73,002
natural images; There are about 250 categories in Tu-Berlin,
with a total of 20,000 sketches and 204,489 natural images.
We follow the previous work [8] to select 100 categories in

Sketchy for training and the rest is for testing. In addition,
21 categories are selected as the test set in Sketchy-B. In
Tu-Berlin, 220 categories are selected for training, and other
categories are used for testing.

3.2. Experiment Setting

Our method is implemented with PyTorch on RTX 3090 GPU
and pre-trained CSE-ResNet50 is used to provide semantic
support or logit output. In our general parameter settings, the
batch size is set to 96, and the epoch is set to15. Finally,
λ1, λ2, and λ3 are set to 1, 0.001 and 0.1 in all experiments,
unless otherwise stated.

3.3. Ablation Study

In this subsection, different modules are validated and abla-
tion studies are carried out on Sketchy, which is shown in
Table 1. Conclusions can be drawn that our method signif-
icantly improves the baseline. Specifically, benefit from the
Lin, our model, i.e. OAN, does not require forced alignment
in modality and only needs to focus on mini-batch, where
each category is regarded as its own center. The ontology
center of other categories does not belong to it, which nat-
urally alienates the center of other categories. Similarly, by
adding LShcr , the model can learn a more powerful feature
representation for each category in the training process, which
illustrates self-distillation makes the model stick out. More-
over, when the LThcr and LShcr are considered together, met-
ric mAP@all is slightly improved, while metric Prec@100 is
not improved but decreased, and the overall performance of
the system suffers a small but non-negligible loss, which indi-
cates that the highly knowledgeable teacher model has obsta-
cles in transferring knowledge to the less able student model.
To sum up, only the combination ofLin+LShcr is the optimal
choice of our OAN.

Table 1. Ablation study about Lin, LThcr and LShcr , and the
best test values of objective metrics are marked in black bold

Baseline [8] Lin LThcr LShcr Prec@100 mAP@all
! 8 8 8 0.6920 0.5470
! 8 8 ! 0.6941 0.5678
! ! 8 8 0.7170 0.5914
! ! ! 8 0.7174 0.5946
! ! 8 ! 0.7233 0.5994
! ! ! ! 0.7216 0.6008

3.4. Experiment Analysis and Visualization.

In view of ZSSBIR, our OAN is compared with several SOTA
algorithms, such as CAAE [1], ZSIH [2], PCYC [3], DSN [5],
SAKE [8], LCALE [16], OCEAN [17], StyleGuide [18], and
other algorithms [12, 13, 14, 15]. As shown in Table 2, our



Table 2. Comparisons with the existing SOTA discriminative algorithms and the best and second best results are marked in
black bold and blue bold, and subscript b indicates the binary hashing results.

Task Methods
Sketchy Sketchy-B Tu-Berlin

mAP@all Prec@100 Prec@200 mAP@all Prec@100

ZSL

SSE (ICCV’2015) [12] 0.108 0.154 - 0.096 0.133
ZSHb (ACM MM’2016) [13] 0.165 0.217 - 0.139 0.174

SAE (CVPR’2017) [14] 0.210 0.302 0.238 0.161 0.210
FRWGAN (ECCV’2018) [15] 0.127 0.169 - 0.110 0.157

ZSSBIR

CAAE (ECCV’2018) [1] 0.169 0.284 0.260 - -
ZSIH (CVPR’2018) [2] 0.258 0.342 - 0.223 0.294
PCYC (CVPR’2019) [3] 0.349 0.463 - 0.297 0.426
PCYCb (CVPR’2019) [3] 0.344 0.399 - 0.293 0.392
SAKE (ICCV’2019) [8] 0.547 0.692 0.598 0.475 0.599
SAKEb (ICCV’2019) [8] 0.364 0.487 0.477 0.359 0.481
LCALE (AAAI’2020) [16] 0.476 0.583 - - -
OCEAN (ICME’2020) [17] 0.462 0.590 - 0.333 0.467

StyleGuide (TMM’2021) [18] 0.376 0.484 0.400 0.254 0.355
DSN (IJCAI’2021) [5] 0.583 0.704 0.597 0.481 0.586
DSNb (IJCAI’2021) [5] 0.581 0.700 - 0.484 0.591

Proposed OAN 0.599 0.723 0.616 0.500 0.617
Proposed OANb 0.617 0.737 0.621 0.505 0.625

OAN shows strong cross-modal retrieval capability. More-
over, it can produce very competitive results whether for the
real image or binary image hashing. Particularly, when comes
to real value retrieval, our algorithm outperforms the SAKE
by about 9.5% in Sketchy and 5.3% in Tu-berlin. When the
feature is encoded as a binary hash value, our model receives
0.737 in the Prec@100, improving 5.3% and 5.8% than DSNb

in Tu-berlin. Evaluated on the challenging Sketchy-B, our
model comes out in front which outperforms the suboptimal
algorithm by 3.0%.
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Fig. 2. Analysis of parameter λ2 and λ3.

As is mentioned above, λ1 is a constant set to 1. There-
fore, the analysis of parameters is only carried out in λ2 and
λ3. Obviously, as is seen in Fig. 2, the model achieves the
best performance when the λ2 and λ3 are set to 0.001 and
0.1 accordingly. The top-5 retrieval results on the Tu-Berlin
dataset are presented in Fig. 3 and the images in the green
border are the correct retrieval results. The result of the false
retrieval can be easily understood because there is a great
structurally similarity between the sketch of the boat and the
banana in the real image.
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Fig. 3. Visualization results.

4. CONCLUSION

In this paper, an effective model called Ontology-Aware Net-
work is proposed. First, the smooth inter-class independence
learning mechanism is put forward to keep inter-class pecu-
liarity. At the same time, to resist the loss of specific informa-
tion, distillation-based consistency preservation is adopted for
modality-specific information. Extensive experiments have
proven the excellent performance of our algorithm on two
challenging datasets, namely Sketchy and Tu-Berlin.
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