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ABSTRACT

This paper proposes handling training data sparsity in speech-based
automatic depression detection (SDD) using foundation models
pre-trained with self-supervised learning (SSL). An analysis of SSL
representations derived from different layers of pre-trained foun-
dation models is first presented for SDD, which provides insight
to suitable indicator for depression detection. Knowledge transfer
is then performed from automatic speech recognition (ASR) and
emotion recognition to SDD by fine-tuning the foundation models.
Results show that the uses of oracle and ASR transcriptions yield
similar SDD performance when the hidden representations of the
ASR model is incorporated along with the ASR textual information.
By integrating representations from multiple foundation models,
state-of-the-art SDD results based on real ASR were achieved on the
DAIC-WOZ dataset.

Index Terms— Speech-based depression detection, self-supervised
learning, foundation model

1. INTRODUCTION

Depression is a serious mood disorder affecting about 280 million
people in the world [1], and at present there is no objective mea-
sure for depression detection with clinical utility [2]. In order to de-
velop a fully automatic depression detection system, a growing body
of research has demonstrated that correlations of depression are de-
tectable in spontaneous speech [3–7]. Despite encouraging progress,
speech-based depression detection (SDD) is still challenging due to
the variability in depression manifestations and lack of training data.

Foundation models refer to single universal models trained on
broad data at scale that can be used in a variety of related down-
stream tasks and domains [8]. Recently, foundation models have
sparked a research paradigm shift in many fields of artificial intel-
ligence. Self-supervised learning (SSL) is a prevalent approach to
pre-train a foundation model, in which the training labels are ex-
tracted from the input features themselves thus enabling the use of
a large amount of unlabelled training data. It has been shown that
SSL representations, the intermediate layer output of an SSL pre-
trained foundation model, are often useful for many downstream
tasks [9]. In particular, speech foundation models, such as wav2vec
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2.0 (W2V2) [10], HuBERT [11], and WavLM [12], are attracting in-
creasing attention and have achieved state-of-the-art (SOTA) results
in many speech processing tasks, including automatic speech recog-
nition (ASR) and automatic emotion recognition (AER) [13,14], etc.
Despite this great success, SSL representations have not been exten-
sively studied for SDD.

This paper studies the use of SSL-pretrained speech founda-
tion models to handle the challenges in SDD. This allows the data
sparsity issue to be handled via large amount of unlabelled data
used for SSL pre-training. Such unlabelled data can be produced
by many speakers that cover much speaker variability and hence can
help to model speaker-dependent depression manifestation variabil-
ity. A block-wise analysis was first performed to compare the SSL
representations from different layers of different foundation mod-
els and to understand what type of information is more effective in
SDD. Next, the foundation models were fine-tuned for ASR and
AER tasks separately, to investigate the knowledge transfer from
ASR and AER to SDD and the effect of fine-tuning on the inter-
mediate layers. Three different speech foundation models, W2V2,
HuBERT and WavLM, were compared. ASR transcriptions were
encoded by RoBERTa [15], a text foundation model, and incorpo-
rated. The ensemble with multiple foundation models gives SOTA
results on the benchmark DAIC-WOZ dataset [16].

The rest of the paper is organised as follows. Section 2 intro-
duces the proposed method and the experimental setup. Sections 3
and 4 present the block-wise analysis of speech foundation models
and the use of ASR transcriptions in depression detection respec-
tively. The foundation models are combined in Section 5, followed
by conclusions.

2. PROPOSED MODEL

2.1. Model structure

In this paper, SDD is formulated as a binary classification task that
determines whether the speaker is depressed or not. The model struc-
ture is illustrated in Fig. 1(a) which contains a foundation model fol-
lowed by a depression detection block. The SDD system takes a
dialogue X (i.e. a clinical interview) as input, which consists of a
sequence of sentences X = {x1, ...,xT } where T is the number of
utterances in the dialogue. The foundation model takes an utterance
St as the input and produces a vector of size (τt, D) where τt is the
number of frames in xt and D is the feature dimension. Temporal
pooling (average pooling was used in this paper) is then applied to
the output of the foundation model, producing a D dimensional (-
dim) vector for each utterance. The depression detection block then
takes a dialogue consisting of T -length sequence with D-dim vec-
tors as its to perform the diagnosis.

Three pre-trained foundation models were used in this paper:
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Fig. 1. (a) Model structure. (b) The block-wise analysis framework.

wav2vec 2.01 (W2V2), HuBERT2, and WavLM3. The base versions
were used for all three foundation models which contain twelve 768-
dim Transformer encoder blocks and about 95M parameters. The
depression detection block consists of two 128-dim Transformer en-
coder blocks with four attention heads each, followed by a fully-
connected (FC) output layer. Transformer structure was chosen as
it’s the de facto standard model in sequence modelling tasks. The
depression detection block has 0.3M parameters.

2.2. Dataset

DAIC-WOZ [16], a benchmark dataset for depression detection,
consists of 189 clinical interviews between an interviewer and a
patient. 30 out of 107 interviews within the training set and 12
out of 35 interviews within the development set are classified as
depressed. Classification performance is evaluated by the F1 score.
Following prior work [7, 17–20], results on the development subset
are reported. The model was initialised and trained for 20 different
random seeds and both the highest (F1-max) and the average (F1-
avg) value are reported, along with the standard deviation (F1-std)
across seeds.

2.3. Data augmentation

Depression is usually assessed by clinical interview and labelled at
the session-level, which results in one label per interview. Given a
certain amount of data, the number of samples in an SDD dataset is
usually much smaller than the number of utterances and frames often
used in other speech tasks (e.g. speech and speaker recognition),
which makes SDD a very data sparse scenario. For instance, DAIC-
WOZ consists of 50+ hours of speech recordings that correspond
to merely 189 samples. Privacy concerns and labelling difficulty
further increase the data sparsity issue in SDD. Furthermore, data
imbalance is another severe issue since the positive cases are much
fewer than negative cases (28% vs. 72% in training). Therefore, it is
crucial to use data augmentation to alleviate both data scarcity and
imbalance issues for SDD.

1Available at https://huggingface.co/facebook/wav2vec2-base
2Available at https://huggingface.co/facebook/hubert-base-ls960
3Available at https://huggingface.co/microsoft/wavlm-base-plus

Algorithm 1 Sub-dialogue shuffling

1: N+ ← Number of positive samples in the training set
2: N− ← Number of negative samples in the training set
3: Set number of sub-dialogues for each positive sample M+

4: M− ← N+ ×M+/N−

5: Set ϵl, ϵh satisfying 0 < ϵl < ϵh <= 1
6: for Dialogue X(n), n = 1, 2, . . . , N do
7: T ← len(X(n))

8: if X(n) is positive then M ←M+

9: else M ←M−

10: end if
11: for Sub-dialogue X(n)m ,m = 1, 2, . . . ,M do
12: Sample ϵ uniformly from [ϵl, ϵh)
13: d← ϵT − 1
14: Sample s randomly from range [0, T − d)
15: e← s+ d
16: X(n)m ← X

(n)
s:e

17: end for
18: end for

In this paper, the training set was augmented using sub-dialogue
shuffling, which samples a sub-dialogue xs:e from each complete
dialogue x1:T , where s and e are the randomly selected start and
end utterance indexes. The details are given in Algorithm 1. Firstly,
the number of positive and negative samples in the training set are
counted and M+ is set which is the desired number of sub-dialogues
for each positive dialogue (line 1-3 of Algorithm 1). To augment
while balancing the training samples, M− is computed based on
N+, N−, and M+ (line 4). Then, M+ and M− sub-dialogues
are generated for each complete dialogue belonging to the positive
and negative classes respectively (line 8-10 of Algorithm 1). ϵl and
ϵh are two variables that determine the length range of the sub-
dialogues. When generating a sub-dialogue, its length d is first de-
fined by a coefficient randomly drawn from [ϵl, ϵh) (line 12-13). The
start index s is then randomly chosen from its available range and the
end index is then determined (line 14-16).

3. BLOCK-WISE SSL REPRESENTATION ANALYSIS

It has been previously found that the output of different encoder
blocks of a speech foundation model contains different levels of in-
formation [21, 22]. The block-wise evolution of the representations
follows an acoustic-linguistic hierarchy, where the shallowest layers
encode acoustic features, followed by the word meaning informa-
tion, and phonetic and word identities. The analysis of the interme-
diate block representations can provide insights to better understand
the information relevant to SDD. In this section, we perform such
an analysis for the first time for SDD. The model structure used for
block-wise analysis is shown in Fig. 1(b). Each time output from
one intermediate Transformer block from the foundation model was
used for downstream SDD.

3.1. Effect of data augmentation

The effect of data augmentation was first investigated using the out-
put of the last (12th) Transformer block of the pre-trained WavLM
model (WavLMPT

12 ). Augmenting data trades off between generat-
ing more data and matching the true data distribution. As shown in
Table 2, the F1 score increases and standard deviation decreases as
the number of sub-dialogues for each positive sample M+ increases



W2V2PT HuBERTPT WavLMPT

Block F1-avg F1-max F1-std Block F1-avg F1-max F1-std Block F1-avg F1-max F1-std
2 0.531 0.615 0.044 2 0.557 0.615 0.033 2 0.545 0.636 0.033
4 0.549 0.667 0.055 4 0.582 0.621 0.020 4 0.571 0.629 0.029
6 0.597 0.700 0.056 6 0.606 0.667 0.046 6 0.630 0.692 0.034
8 0.627 0.667 0.043 8 0.628 0.714 0.049 8 0.700 0.750 0.024

10 0.536 0.667 0.060 10 0.667 0.762 0.052 10 0.685 0.720 0.031
12 0.519 0.636 0.066 12 0.610 0.696 0.034 12 0.647 0.714 0.033

W2V2ASR W2V2AER WavLMAER

Block F1-avg F1-max F1-std Block F1-avg F1-max F1-std Block F1-avg F1-max F1-std
2 0.556 0.696 0.051 2 0.541 0.615 0.050 2 0.537 0.600 0.022
4 0.598 0.700 0.052 4 0.579 0.643 0.043 4 0.627 0.690 0.027
6 0.639 0.690 0.045 6 0.605 0.737 0.041 6 0.638 0.667 0.027
8 0.615 0.649 0.025 8 0.640 0.688 0.036 8 0.707 0.786 0.032

10 0.558 0.645 0.040 10 0.608 0.696 0.058 10 0.720 0.769 0.036
12 0.531 0.615 0.054 12 0.558 0.667 0.045 12 0.684 0.750 0.032

Table 1. DAIC-WOZ SDD results using the outputs from different intermediate blocks of different foundation models. Highest F1 value in
each column shown in bold.

M+ 100 200 500 1000 1500

F1-avg 0.451 0.583 0.647 0.679 0.669
F1-max 0.640 0.700 0.714 0.762 0.727
F1-std 0.131 0.082 0.033 0.027 0.031

Table 2. DAIC-WOZ SDD results with increased number of aug-
mented utterances. WavLMPT

L12 used as input. M+ is the number of
sub-dialogues for each positive sample.

up until 1000, then F1 decreases and standard deviation increases.
The model runs the risk of overfitting the training data if each orig-
inal sequence is replicated too many times. M+ = 500 is used in
following experiments, weighing performance and training time.

3.2. Pre-trained SSL representations

The parameters of the three pre-trained foundation models (W2V2PT,
HuBERTPT, WavLMPT) were frozen and the SDD results using dif-
ferent intermediate blocks of the models are shown in Table 1.
F1-avg of the intermediate blocks of three models are plotted in
Fig. 2(a). For all three models, F1 first improves as the layer number
increases and then F1 decreases. Overall WavLMPT produces a F1
score higher than the other two models. Features extracted from
the 10th-block give the highest F1 for HuBERTPT while features
extracted from the 8th-block have the overall best performance for
W2V2PT and WavLMPT. It has been found [21] that the first a
few W2V2 Transformer blocks show increased similarity with Mel
filter bank (FBank) features, indicating that shallow layers encode
acoustic information much like FBank. Word meaning informa-
tion is mainly encoded in middle blocks, especially around the
8th-block [21]. Hence it can be inferred that features contain word
meaning information are useful for SDD.

3.3. ASR and AER fine-tuned representations

This section investigates how fine-tuning changes the findings in
Section 3.2. It has been implied in Section 3.2 that intermediate layer
containing information correlated with word meaning is effective to
SDD. And it has been found [20] that emotion information is also

useful to SDD. Thus, our foundation models are fine-tuned based on
ASR and AER tasks. Three fine-tuned systems are investigated in
this paper: W2V2 base model fine-tuned for ASR on the 960 hours
of Librispeech (W2V2ASR)4, W2V2 base model fine-tuned on 110
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(a) Pre-trained foundation models.
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(b) W2V2 fine-tuned on ASR and AER.
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Fig. 2. Trends of DIAC-WOZ F1-avg values at different blocks for
the foundation models.

4Available at https://huggingface.co/facebook/wav2vec2-base-960h



System F1-avg F1-max F1-std

RoBERTaHyp 0.599 0.667 0.042
RoBERTaRef 0.635 0.667 0.029

Cat{RoBERTaHyp,W2V2ASR
6 } 0.648 0.714 0.028

Table 3. Comparison of using reference and ASR transcriptions for
SDD, where Cat{·, ·} refers to a concatenation.

hours of MSP-Podcast dataset [23] for AER by adding two extra FC
layers at the end (W2V2AER), and WavLM base model fine-tuned
in the same way as W2V2AER for AER (WavLMAER). The concor-
dance correlation coefficients for valence, activation, and dominance
are 0.418, 0.658, 0.562 for W2V2AER, and 0.445, 0.667, 0.597 for
WavLMAER. The model parameters were frozen after fine-tuning.

SDD results of the fine-tuned models are shown in the bottom
half of Table 1. Comparing the results of W2V2ASR and W2V2AER

with W2V2PT , as shown in Fig. 2(b), the peak of W2V2ASR is more
towards earlier blocks while the peak of W2V2AER is towards later
blocks. As shown by Fig. 2(c), the performance of WavLMAER also
improves over WavLMPT on later layers. The fine-tuned founda-
tion models presumably learn more task-specific information. For
a W2V2 model fine-tuned with character-level connectionist tem-
poral classification loss [24], the output of the last few layers are
more directly related to the word identities. Fine-tuning the foun-
dation model for AER improves the overall performance, indicating
that emotion and depression share some para-linguistic indicators
encoded by the fine-tuned models.

4. THE USE OF ASR TRANSCRIPTIONS

It has been shown that text information is effective for SDD [6,
25]. However, reference transcriptions are usually not available in
practice. This section uses an ASR system to transcribe the de-
pression detection interview and investigates the performance of us-
ing erroneous transcriptions in SDD. Transcriptions were obtained
from the final output of the W2V2ASR model which has a word error
rate (WER) of 3.4% on LibriSpeech test-clean and 8.6% on test-
other while 40.9% on DAIC-WOZ. The ASR and reference tran-
scripts were encoded by a text foundation model, the RoBERTa base
model5 [15], and fed into the depression detection block. The SDD
results with ASR generated hypotheses and reference transcriptions
are compared in Table 3 (RoBERTaHyp, RoBERTaRef). Replacing
the reference transcriptions with ASR generated hypotheses leads to
a decrease of 0.36 in average F1 score and also a larger standard
deviation.

Utterance-level representations derived from RoBERTaHyp were
combined with those derived from the 6th-block representations
of the ASR-fine-tined W2V2 model (W2V2ASR

6 ) by concatenation.

System F1-avg F1-max F1-std

RoBERTaHyp 0.599 0.667 0.042
WavLMPT

8 0.700 0.750 0.024
WavLMAER

10 0.720 0.769 0.036

Cat{WavLMPT
8 , RoBERTaHyp} 0.725 0.759 0.021

Cat{WavLMAER
10 , RoBERTaHyp} 0.756 0.800 0.023

Table 4. Results of combining different speech and text foundation
models, where Cat{·, ·} refers to a concatenation.

5Available at https://huggingface.co/roberta-base

System Ensemble 1 Ensemble 2

W2V2PT
6

√

HuBERTPT
10

√

WavLMPT
8

√ √

WavLMAER
10

√

Cat{WavLMAER
10 , RoBERTaHyp}

√

F1-avg 0.800 0.829
F1-max 0.857 0.886

Table 5. Ensemble of foundation models. Cat{·, ·} refers to a con-
catenation.

Paper [19] [18] [7] [17] [20] ours

F1-avg 0.69 - - - - 0.83
F1-max - 0.70 0.77 0.85 0.87 0.89

Table 6. Cross comparison on DAIC-WOZ development subset.

From Table 3, this combination produced better SDD results than
using the reference transcriptions alone.

5. COMBINATIONS OF FOUNDATION MODELS

This section studies further combinations of SSL representations de-
rived from both speech and text foundation models. Similar to the
experiments in Table 3, speech SSL representations were combined
with the ASR transcriptions by a concatenation, and the results are
shown in Table 4. Combining speech and ASR-hypothesis-based
text representations can improve F1-avg and F1-max as well as re-
duce F1-std, which improves both SDD classification performance
and stability.

Finally we investigated the use of a system ensemble by voting.
Two ensembles were investigated: (i) The ensemble of systems
based on three speech foundation models: W2V2PT

6 , HuBERTPT
10,

WavLMPT
8 ; (ii) The ensemble of systems from three modalities:

WavLMPT
8 (audio modality), Cat{WavLMAER

10 , RoBERTaHyp} (text
modality), WavLMAER

10 (emotion modality).
The results of using ensembles are shown in Table 5. Refer-

ence transcriptions were not used in these ensembles and our best-
performing depression detection systems require only the speech in-
put. Table 6 cross compares our results with those published in liter-
ature. Paper [19] used W2V2 and reported the average result across
five models. Reference transcriptions were used by papers [7,17,18,
20]. The comparison shows that the ensemble of foundation models
produced competitive performance for depression detection based
on speech input only.

6. CONCLUSION

This paper studies the use of SSL representations in speech-based
depression detection. Block-wise analysis of the foundation models
implies that word meaning information is helpful in SDD. Fine-
tuning pre-trained speech foundation models for AER improves
SDD performance, indicating that some indicators are shared be-
tween AER and SDD. SDD performance when using ASR transcrip-
tions matches that of using reference transcriptions when combined
with the hidden representations derived from an ASR-fine-tuned
foundation model. The ensemble of speech and text foundation
models produced the SOTA F1 score of 0.89 on DAIC-WOZ dataset
without using the reference transcriptions.
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