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ABSTRACT

GAN inversion has been exploited in many face manipulation tasks,

but 2D GANs often fail to generate multi-view 3D consistent images.

The encoders designed for 2D GANs are not able to provide suffi-

cient 3D information for the inversion and editing. Therefore, 3D-

aware GAN inversion is proposed to increase the 3D editing capabil-

ity of GANs. However, the 3D-aware GAN inversion remains under-

explored. To tackle this problem, we propose a 3D-aware (3Da)

encoder for GAN inversion and face editing based on the powerful

StyleNeRF model. Our proposed 3Da encoder combines a para-

metric 3D face model with a learnable detail representation model

to generate geometry, texture and view direction codes. For more

flexible face manipulation, we then design a dual-branch StyleFlow

module to transfer the StyleNeRF codes with disentangled geometry

and texture flows. Extensive experiments demonstrate that we real-

ize 3D consistent face manipulation in both facial attribute editing

and texture transfer. Furthermore, for video editing, we make the se-

quence of frame codes share a common canonical manifold, which

improves the temporal consistency of the edited attributes.

Index Terms— Neural Radiance Field (NeRF), GAN Inversion,

3D Consistent Face Manipulation

1. INTRODUCTION

Face editing via GAN (Generative Adversarial Network) inver-

sion [1] enables users to flexibly edit a wide range of facial attributes

in real face images. Existing methods [2, 3, 4, 5] first invert face

images into the latent space of 2D GANs such as StyleGAN [6], then

manipulate the style codes, and finally feed the edited codes into the

pre-trained generator to obtain the edited face images. However,

2D GANs lack the knowledge of the underlying 3D structure of the

faces, and their 3D consistency in multi-view generation is limited,

as shown in Fig. 1.

In order to increase the 3D consistency of the generators in the

GAN-inversion-based manipulation pipeline, one intuitive idea is re-

placing the 2D GANs with 3D-aware GANs [11, 12, 13, 14, 15].

However, the vanilla encoders designed for 2D GAN inversion fail

to provide sufficient 3D information for the 3D-aware GAN inver-

sion. Furthermore, the SOTA 2D encoders like e4e [16] bring much

variety in the inversion stage, which degrades the video consistency

in video editing. Therefore, to obtain better 3D consistency in multi-

view facial attribute editing, we propose a 3D-aware (3Da) StyleN-

eRF [13] encoder which encodes geometry and texture separately to

have more flexible manipulation capability.

Our proposed 3Da encoder combines a parametric 3D face

model with a learnable detail representation model to generate the
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Fig. 1. The comparisons of the multi-view editing effects, using

StyleRig [7], InterfaceGAN [8], GANSpace [9], StyleFlow [10] and

ours. Our method not only achieves better results in novel views, but

also preserves the multi-view 3D consistency of the edited results.

geometry, texture and view direction codes. By introducing the 3D

face model, we can enhance the stability of the generated faces.

The 3D-aware inversion codes are then fed into a well trained dual-

branch StyleFlow [10] module which makes for the flexible face

manipulation. We realize the 3D consistent face manipulation in

both facial attribute editing and texture transfer. Moreover, we ex-

tend our pipeline to video editing. We make the video frames share

a common canonical representation manifold, which improves the

temporal consistency of the edited attributes.

The main contributions of this work are as follows: We propose

the first 3D-aware (3Da) StyleNeRF encoder for the face editing.

Our 3Da encoder is able to encode geometry, texture and view di-

rection information separately, achieving multi-view generation and

facial attribute editing simultaneously. By introducing the paramet-

ric 3D face model, we are able to enhance the stability of the gener-

ated faces, which aligns the facial details with the morphable model

adaptively.

2. METHOD

2.1. 3D-Aware StyleNeRF Inversion for Face Embedding

The StyleNeRF [13] is adopted as our pre-trained generator. It has

two inputs for conditioning the style and camera view respectively.

Its NeRF-based [17] architecture performs volume rendering only to

produce a low-resolution feature map, and progressively applies up-
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Fig. 2. The framework of our 3D-aware (3Da) encoder. Note that when embedding the video frames, the shape β and albedo α should be the

same for the same face among different frames, i.e., frame-irrelevant. Therefore, in the video setting, we first extract these two coefficients

for all the frames. Then we use the averaged β and α for encoding all the frames.
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Fig. 3. The portrait manipulation pipeline with our 3Da StyleN-

eRF encoder for the image and video setting. Our 3D-aware GAN

inversion module realizes the disentanglement of canonical and mor-

phable modulations, as well as the separate editing of geometry and

texture. Our attribute editing module extends the StyleFlow [10] to

two branches for texture and geometry, respectively. Note that our

3Da encoder is able to disentangle the frame-irrelevant information

when encoding the video frame code sequence, which is beneficial

to increase temporal consistency of the video editing.

sampling in 2D to obtain high-resolution images. Our first motiva-

tion is that, two branches of geometry and texture should be adopted

to match the 3D-aware architecture. The second motivation is the

disentanglement of canonical and morphable information. So we

adopt the parametric 3D face model DECA [18] as 3D prior and

use the ResNet-based [19] encoder to provide the detail informa-

tion. This has two benefits: (1) For training, the sampled style codes

with their corresponding synthetic images are used to train the en-

coder for encoding the images into the GAN space. Our proposed

methods can accelerate the convergence and avoid overfitting to the

synthetic data. (2) For the video setting, this can guide every code in

the code sequence of video frames to share a canonical representa-

tion manifold of the target face, preserving temporal consistency of

the inversion and editing.

Encoder. As shown in Fig. 2, for the geometry style code, wgeo =

wmorph
geo +∆geo. For the texture style code, wtex = wmorph

tex +
∆tex. The addition operation combines the 3D information and

content details. The CNN-based encoding networks Egeo and Etex

are used to extract the detail codes ∆geo and ∆tex respectively.

For the morphable codes wmorph
geo , w

morph
tex and view direction

code d, DECA [18] is used to extract the semantic feature vectors

Inversion Age Glasses Beards/HairOriginal

StyleNeRF

+ 3Da

StyleGAN

+ e4e

StyleNeRF

+ 3Da

StyleGAN

+ e4e

Fig. 4. The edited face images of different attributes. Zoom in the

digital version for better view.

Fig. 5. The multi-view generation of multi-attribute editing.

of geometry g, texture t and camera direction c. Then, geometry g

and texture t are input into fully-connected mapping networks Mgeo

and Mtex to obtain the morphable codes of geometry wmorph
geo and

texture w
morph
tex . Camera direction c is input into Mcam to get the

view direction codes d. Specifically, geometry g is concatenated by

shape β and expression ψ and displacement δ. Texture t is concate-

nated by albedo α, light l. The camera direction c is concatenated

by camera C and pose θ.

Discriminator. To encourage the style codes to lie within the distri-

bution of the latent style code space of StyleNeRF, denoted asW , a

discriminator Dw is used to discriminate between real samples from

the W space and the learned latent space of our 3Da encoder. This

discriminator is important because it is able to not only accelerate

convergence, but also avoid the mode collapse (see Fig. 9).
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Fig. 6. Texture transfer. The images in the first row provide the

source geometry, and the images in the first column provide the tar-

get texture. Our 3Da encoder is able to transfer the target texture to

the source geometry.

Method Age ↑ Glasses ↑ Beards ↑ Hair ↑

StyleGAN + e4e 0.637 0.653 0.651 0.694
StyleNeRF + 3Da 0.794 0.791 0.803 0.811

Table 1. The identity consistency scores of edited face images.

Loss Function. For formulation, we denote Ew(x) = {wi}1≤i≤N

as style codes and Ed(x) = d as view direction codes, where N

is the number of style modulation layers (N = 21 for StyleNeRF).

The Ew and Ed represent the networks of our 3Da encoder. Note

that each code in {wi}1≤i≤7 is the same and referred to as wgeo,

while each code in {wi}8≤i≤21 is the same and referred to aswtex.

To optimize our encoder and discriminator in an adversarial man-

ner, we use the non-saturating GAN loss function [20] to train these

networks as follows:

LD,E

adv = −
E

w∼W
[logDw(w)]−

E

x∼pX

[log(1−Dw(Ew(x)))], (1)

LE
rec = Lsim + λ1Lstyle + λ2Lview , (2)

where Lsim, Lstyle and Lview are as follows:

Lsim = ‖x−G(Ew(x), Ed(x))‖2 + vgg(x,G(Ew(x), Ed(x))),
(3)

Lstyle = ‖wgeo −wGT
geo‖1 + ‖wtex −wGT

tex‖1, (4)

Lview = ‖d− dGT ‖1, (5)

The target image x is the style-mixing image with the ground-

truth geometry style code wGT
geo, texture style code wGT

tex and view

direction code dGT . The G is the fixed pre-trained generator. The

vgg denotes perceptual loss [21]. We set λ1 and λ2 as 0.5 and 5.

2.2. Dual-Branch StyleFlow for Face Editing

We adopt StyleFlow [10] as the attribute editing method. However,

the original StyleFlow only has a single branch of Continuous Nor-

malizing Flow (CNF) blocks, failing to fully utilize the advantages

of our 3Da encoder. Therefore, as shown in the Fig. 3, we train two

branches of Continuous Normalizing Flows {φs}s=geo,tex. Note

that φgeo and φtex are used to obtain geometry style codewgeo and

texture style code wtex respectively, for controllable editing. We

denote v as the variable of the given StyleNeRF space, while t is the

time variable. We suppose that wgeo and wtex are mapped from a

latent variable z in a normal distribution. We use {φs}s=geo,tex to

conduct the inversion inference as follows:

v(t0) = v(t1) +

∫ t0

t1

φs(v(t), t,a)dt, (6)
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Fig. 7. The inversion of video frame sequences. The StyleNeRF

with 3Da (fifth row) achieves better ID preservation results than oth-

ers. The StyleGAN with e4e (second row) generates some inversion

frames with low ID similarity (marked yellow). The e4e fails to keep

the consistency of StyleNeRF, as shown in the third row.

where v(t0) is the z. For s = geo, the v(t1) iswgeo, while v(t1) is

wtex if s = tex. Note that a is the original attribute vector. Then,

we modify a according to the given editing instruction, to obtain the

edited attribute vector a′. After that, we perform a forward inference

to produce the edited style code w′

geo = v(t1) or w′

tex = v(t1),
conditioned on a′ as follows:

v(t1) = v(t0) +

∫ t1

t0

φs(v(t), t,a
′)dt, (7)

The above is the inference process, and the training details of

CNF blocks can be found in this work [10].

3. EXPERIMENTS

3.1. Implementation Details

Network Architectures. ResNet [19] is used as the backbone for

encoding networks Egeo and Etex, to extract the feature vectors,

corresponding to the input dimensions of StyleNeRF [13]. Mgeo

and Mtex are fully-connected networks with 5 layers, while Mcam

has 3 layers. The LeakyReLU is selected as the activation func-

tion. We conduct all the experiments on one NVIDIA RTX 3090.

We conducted some preliminary prototyping using the MindSpore

framework during our implementation. Our encoder requires 4 days,

while the editing module requires 2 days.

Training Data and Annotation. We randomly sample and save

10,000 groups of style-mixing style codes w, view direction codes

d and their corresponding StyleNeRF-generated images as training

data. Moreover, the attribute vectors of these generated images are

annotated using Microsoft Face API [22], which every dimension

of the vector represents an attribute. These attribute vectors and

their corresponding style codes are used for training our dual-branch

StyleFlow-based attribute editing module.

Baseline and Compared Methods. The baseline of our experiments

is the StyleGAN [6] with e4e [16] encoder that is wildly used in this

field. Our differences are as follows: (1) Inputs: StyleNeRF has

input of style codes and view direction codes, while StyleGAN has
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StyleGAN + e4e

Frame #5 Frame #103Frame #55Frame #48

Fig. 8. Comparison of the temporal consistency of video editing.

The ’StyleGAN + e4e’ method generates same changing degree of

Glasses leads to Black rimmed glasses in the previous frames,

while Sun glasses in the later frames. Our 3Da with StyleNeRF is

able to maintain the temporal consistency of the edited attributes.

Method PSNR ↑ SSIM ↑ VIF ↑ FVD ↓

StyleGAN + e4e 40.3 0.996 0.75 64.2
StyleNeRF + e4e 32.1 0.995 0.71 168.1
StyleGAN + 3Da 38.4 0.995 0.78 121.7
StyleNeRF + 3Da 41.2 0.997 0.79 51.3

Table 2. The quantitative evaluation of generation quality.

only style codes. (2) Style codes: The 3Da encoder has only two dif-

ferent style codes, i.e., geometry and texture codes, while e4e output

N different style codes (N = 21 or N = 18 for StyleNeRF or

StyleGAN). (3) Basic architecture: StyleNeRF adopts NeRF [17] as

basic generation networks, while StyleGAN lacks 3D prior. All the

experiments are done under the same setting. We also compare with

some other SOTA methods in the experiments, i.e., StyleRig [7], In-

terfaceGAN [8], GANSpace [9], StyleFlow [10].

Metrics. Quality: PSNR, SSIM and VIF are used to measure the

generation quality. Frechet Video Distance (FVD) [23] extends the

FID [24] to video quality settings. Identity Consistency: We eval-

uate the identity of the edited faces using ArcFace [25] cosine sim-

ilarity score. Attribute Consistency: Following StyleFlow [10], we

use ResNet-18 [19] trained on CelebA [26] as the facial attribute

prediction model to output the attribute vectors of face images.

3.2. Face Image Inversion and Editing

Attribute Editing. As shown in Fig. 4, we select Age, Glasses,

Beards and Hair as the examples. As shown in Tab. 1, we eval-

uate the identity consistency scores of edited face images compared

with their original images in the FFHQ [27] dataset. The generation

quality is quantitatively evaluated in Tab. 2.

Multi-Attribute Editing and Multi-View Generation. As shown

in Fig. 1, our method has good 3D consistency among different

views of edited images. Furthermore, as shown in Fig. 5, our method

can handle the multi-view generation and simultaneously edit multi-

ple attributes.

Texture Transfer. As shown in Fig. 6, we can realize texture transfer

among different real images by combing the geometry style code of

one image with the texture style code of another and then inputting

the style-mixing codes to the StyleNeRF. This illustrates the good

geometry-texture disentanglement ability of our method.

a ours c w/o dis d with real datab only DECAInput image

Fig. 9. Ablation study of inversion results. (a) shows 3Da encoder

with discriminator and without real training data. (b) is mapping

DECA coefficients to style codes. (c) is 3Da encoder without the

discriminator. (d) is 3Da encoder with real data and the discrimina-

tor. Note that they are trained with the same epochs.

Method Age ↓ Glasses ↓ Beards ↓ Hair ↓

StyleGAN + e4e 0.498 0.533 0.502 0.497
StyleNeRF + 3Da 0.454 0.223 0.385 0.441

Table 3. Temporal attribute inconsistency scores of video editing.

3.3. Portrait Video Manipulation

As shown in Fig. 3, our video manipulation pipeline is composed

of three main stages, inspired by the STIT [5] method. First, we

use DECA [18] to extract the frame-irrelevant information (shape β

and albedo α), encode the cropped face images and smooth the style

code sequence over a window of two frames by weighted sum rules.

Then, the cropped images and style code sequence are used to fine-

tune the StyleNeRF generator. Note that the style code sequence is

fixed in this fine-tuning process. And lastly, the style code sequence

is input to our dual-branch StyleFlow to obtain an edited style code

sequence conditioned on the required attribute vector, and the fine-

tuned generator is used to obtain the edited frame sequence.

Video Inversion. As shown in Fig. 7, we evaluate different methods

under the same setting as STIT [5]. The StyleNeRF with our 3Da

encoder can achieve better results, in aspects of reconstruction and

temporal consistency of identity similarity.

Video Editing. As shown in Fig. 8, our method has more consis-

tent video editing effects. As shown in Tab. 3, we quantitatively

measure the Mean Absolute Error of the attribute vectors between

the first frame and the following frames on 50 testing videos. Each

of them has 100 frames with different attribute edited. Our 3Da en-

coder embeds the frame sequence more stably, as shown by the lower

temporal attribute inconsistency.

3.4. Ablation Study

Fig. 9 (b) shows that only using DECA coefficients is insufficient.

As shown in Fig. 9 (c) and Fig. 9 (d), 3Da without the discriminator

leads to the mode collapse, and using real data in training degrades

the image quality. Using the real images without ground-truth style

codes for training only has the Lsim loss, which is less effective than

the embedding supervision from Lstyle and Lview .

4. CONCLUSION

In this paper, we propose a 3D-aware (3Da) StyleNeRF encoder to

encode geometry, texture and view direction of the real face images.

Extensive experiments qualitatively and quantitatively demonstrate

that, we are able to realize high-quality multi-view generation and

facial attribute editing. Moreover, we extend our method to the por-

trait video manipulation, achieving better temporal consistency over

the 2D-GAN-based editing methods.
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