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ABSTRACT

Multi-modality medical imaging is crucial in clinical treat-
ment as it can provide complementary information for med-
ical image segmentation. However, collecting multi-modal
data in clinical is difficult due to the limitation of the scan
time and other clinical situations. As such, it is clinically
meaningful to develop an image segmentation paradigm
to handle this missing modality problem. In this paper,
we propose a prototype knowledge distillation (ProtoKD)
method to tackle the challenging problem, especially for
the toughest scenario when only single modal data can
be accessed. Specifically, our ProtoKD can not only dis-
tillate the pixel-wise knowledge of multi-modality data
to single-modality data but also transfer intra-class and
inter-class feature variations, such that the student model
could learn more robust feature representation from the
teacher model and inference with only one single modal-
ity data. Our method achieves state-of-the-art performance
on BraTS benchmark. The code is available at https:
//github.com/SakurajimaMaiii/ProtoKD.

Index Terms— Missing Modality, Knowledge Distilla-
tion, Medical Image Segmentation

1. INTRODUCTION

Multi-modality imaging is significant in the medical image
analysis field, as it provides complementary information for
medical diagnosis [1, 2, 3]. Although multi-modality imaging
usually produces accurate diagnosis, it is often difficult to col-
lect a complete set of multi-modality images due to data cor-
ruption or various scanning protocols in the clinical scenario.
Consequently, a robust medical image segmentation method
is highly desired to tackle the missing modality problem.

Three main streams of approaches have been proposed
to tackle this challenging problem where there are missing
modalities at inference time. The first stream is to synthesize
missing modalities to complete the test set [4, 5], which re-
quires training a generative model to generate missing modal-
ities. These methods usually require extra training and are
hard to complete various modalities when only one modal-
ity is available at inference time. The second stream aims to

learn a shared latent space which includes modality invari-
ant information among accessible domains [6, 7, 8, 9, 10].
These strategies achieve good performance but they achieve
bad results when only a single modality is available. Recently,
some knowledge distillation [11, 12], based methods have
been proposed to tackle the challenging problem that there is
only one modality available at inference time [13, 14]. They
aim to transfer knowledge from the teacher model trained us-
ing multi-modality images to the student model that is only
trained with one modality.

Common knowledge distillation-based approach to tackle
the missing modality problem is to directly align the output
features of the student and teacher models [11, 13, 14, 15].
However, medical images are structural and analogous to each
other, and image segmentation task requires detailed structure
semantic information for pixel classification [16]. Thus for
medical image segmentation, the relations among intermedi-
ate features in the teacher model should be considered and
inherited by the student model.

Motivated by this, we propose a prototype knowledge dis-
tillation (ProtoKD) by matching Intra-class and Inter-class
Feature Variation (I2FV ) between the student model and the
teacher model for medical image semantic segmentation. Our
method takes the regional information in medical images into
account to benefit the segmentation result.

As illustrated in Figure 1, We first compute prototypes for
every class, then generate the proposed I2FV map by calcu-
lating the inter- and intra-relations between pixel features and
prototypes. After that, we transfer the knowledge in the dense
similarity maps from the teacher model to the student model.
Intuitively, the teacher model is trained with multi-modality
images and usually produces better and more integral feature
presentations than the student model. We evaluate our method
on BraTS [1] benchmark. The experiment results show that
our method not only consistently improves unimodal segmen-
tation baseline but also achieves a new state-of-the-art perfor-
mance.

2. METHOD

The overview of our method is illustrated in Figure 1. Our
framework aims to transfer the knowledge from the well-
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Fig. 1. The overview of the proposed method. Both the teacher and student models share the same architecture except for
different inputs.

Algorithm 1 Prototype Knowledge Distillation
Input: teacher model with parameter θt including backbone
ft and classification head ht;
student model with parameter θs including backbone fs
and classification head hs;
single/multi-modality input x/x∗, ground truth y;
iteration numbers N , learning rate η.

Output: θs
Initialize θs and θt randomly
for i = 1 : N do . Pre-train teacher model

pt = ht(ft(x
∗))

Lseg = `ce(p
t, y) + `dice(p

t, y) . Eq 5
θt ← θt − η∇θtLseg . Update teacher model

end for
for i = 1 : N do . Train student model

zs = fs(x), p
s = hs(z

s)
zt = ft(x

∗), pt = ht(z
t)

Lseg = `ce(p
s, y) + `dice(p

s, y) . Eq 5
Lkd = KL (σ (ps/T ) ||σ (pt/T )) . Eq 1
Calculate Lproto according to Eq 4
L = Lseg + αLkd + βLproto . Objective function
θs ← θs − η∇θsL . Update student model

end for
return θs

trained teacher model to the student model, where the teacher
model takes the multi-modality input, while the student model
only takes the single-modality input. Such that the student
can make robust predictions as well as the teacher model,
by only referring to the single-modality inputs. Except for
different inputs, both the teacher and student model share the
same architecture. In general, we first obtain a well-trained
teacher model by training it using multi-modality data. Then,
we transfer the knowledge from the teacher to the student
model in a knowledge-distillation manner. The details of our

method are presented in the following sections.

2.1. Pixel-wise Knowledge Distillation

We follow the common knowledge distillation approach pro-
posed in [11] because the segmentation problem could be
formulated as the pixel-level classification problem. We
encourage the student model to learn knowledge from the
teacher model by minimizing the Kullback-Leibler diver-
gence between the prediction from the student model and the
teacher model. The pixel-wise knowledge distillation loss is
formulated as follows

Lkd(ps, pt) = KL
(
σ (ps/T ) ||σ

(
pt/T

))
, (1)

where σ denotes softmax operation. KL denotes Kullback-
Leibler divergence and T is the temperature hyper-parameter.
We empirically set T = 10. ps and pt denote the prediction
of the student model and teacher model, respectively.

2.2. Prototype Knowledge Distillation

Although pixel-wise distillation encourages similar feature
distributions per pixel between the prediction from the student
and teacher model, the inner semantic correlations among the
whole distribution are not fully exploited.

Motivated by this, we proposed to consider the correla-
tion of intra- and inter-class feature variation, such that inner
semantic correlations are explicitly exploited. We accomplish
this goal by transferring the knowledge from the well-trained
teacher model to the student model. The intuition behind this
is that the teacher model can capture more robust intra- and
inter-class feature representation as it is trained with multi-
modality data. In our method, the correlation of intra- and
inter-class feature representation can be captured by the sim-
ilarity between features of all pixels and prototypes of all
classes.



Prototype learning is widely used in the few-shot learning
field [17], which represents the embedding center of every
class. In our method, for class k, prototype ck is formulated
as follows

ck =

∑
i zi1[yi = k]∑
i 1[yi = k]

, (2)

where zi is the feature embedding of pixel i and yi denotes the
ground truth of pixel i. 1 is an indicator function, outputting
value 1 if the argument is true or 0 otherwise.

After that, we define inter- and intra-class feature varia-
tion (I2FV ) similarity of pixel i as

Mk(i) =
zTi ck
‖zi‖‖ck‖

, (3)

whereMk(i) denotes similarity between feature of pixel i and
prototype ck and ‖a‖ represents `2 norm of vector a. If pixel
i belongs to class k, Mk(i) represent intra-class feature varia-
tion. If pixel i does not belong to class k, Mk(i) could repre-
sent inter-class feature variation. As shown in Figure 1, both
the teacher and student models generate their I2FV maps,
respectively.

As we aim to transfer I2FV map from the teacher model
to the student model, we useL2 distance as the objective func-
tion to minimize the distance of two I2FV maps. Then, the
prototype knowledge distillation loss is formulated as follows

Lproto =
1

|N |K
∑
i∈N

K∑
k=1

‖Ms
k(i)−M t

k(i)‖2, (4)

where Ms
k and M t

k denote I2FV similarity map of student
model and teacher model, respectively.

For the medical image segmentation task, hybrid segmen-
tation loss combining cross entropy loss and Dice loss [18] is
widely used, which is formulated as follows

Lseg(p, y) = `ce(p, y) + `dice(p, y), (5)

where y denotes ground truth. `ce denotes standard cross en-
tropy loss and `dice denotes Dice loss [18].

Finally, the final objective function consists of segmenta-
tion loss (Eq 5), pixel-wise knowledge distillation loss (Eq 1)
and prototype knowledge distillation loss (Eq 4):

L = Lseg + αLkd + βLproto, (6)

where α and β are hyper-parameters to balance the loss com-
ponents 1. We summarize our method in Algorithm 1.

3. EXPERIMENTS

3.1. Setup

Dataset. We evaluate our method on the BraTS 2018 Chal-
lenge dataset [1], which contains 285 cases with manually

1We set α = 10 and β = 0.1 for all experiments.

annotated labels. Each subject has four MRI modalities,
including T1, T2, T1ce and Flair. Annotation is manu-
ally performed by radiologists, which includes enhancing
tumor (ET), edema (ED) and non-enhancing tumor core
(NET). For pre-processing, each volume is normalized to
zero mean and unit variance. We randomly crop each
volume to 96 × 128 × 128 to feed the network due to
limited GPU memory. We randomly split 285 cases into
train(70%)/validation(10%)/test(20%), respectively.

Baselines. We first implement a Unimodal baseline,
which is trained in a supervised manner using only one
modality. Furthermore, we compare our method with (1)
U-HVED [7], a representation learning method that embeds
different modalities to a shared latent space, (2) KD-Net [13]
and (3) PMKL [14], two approaches using knowledge distil-
lation. PMKL [14] is implemented with the same network as
our method (i.e., VNet) using public released code 2.

Evaluation Metric. Our task is to segment each subject
into three regions including whole tumor (WT), tumor core
(CO) and enhancing core (EC). We evaluate the performance
using Dice Score (DSC), which is commonly used in medical
image analysis and is defined as

Dice(P,G) =
2× |P ∩G|
|P |+ |G|

, (7)

where P denotes outputs of the model and G denotes ground
truth. DSC measures overlap between prediction and ground
truth, and higher DSC indicates better performance.

Implementation Details. We use VNet [18] as our seg-
mentation backbone3. We first train the Teacher model with
1000 epochs using four modality data according to Lseg (Eq
5). Specifically, we set the batch size to 4 and use Adam op-
timizer with learning rate η = 1e−3 and weight decay equals
1e−5. Besides, the learning rate η is reduced by multiply-
ing with (1 − epoch/max epoch)0.9 during the training. Af-
ter that, we fix the Teacher model and then train the student
model using the proposed Prototype Knowledge Distillation
for 1000 epochs. We perform model selection on the valida-
tion set with reference to the highest DSC.

3.2. Results

Quantitative Results. We report the segmentation results for
quantitative comparison in Table 1. First, our method Pro-
toKD generally improves unimodal baseline. For different
modalities, our method increases DSC by 4.3%, 0.9%, 3.7%
and 2.1%, respectively. Furthermore, our method performs
better than compared methods, such as PMKL [14] and KD-
Net [13]. This endorses the benefits of transferring inter-class
and intra-class feature variation, which provides better feature

2https://github.com/cchen-cc/PMKL
3Note that our method is model-agnostic, which could be adopted by dif-

ferent segmentation backbones

https://github.com/cchen-cc/PMKL


Table 1. Results on BraTS. Metric: Dice Score (DSC). The best result in each modality is bold-faced. The results in the first
row (Teacher) are trained with full modality images. And * denotes statistical significance in paired t-test (* indicates p ≤ 0.05).

T1 T2 T1ce Flair

WT CO EC Avg WT CO EC Avg WT CO EC Avg WT CO EC Avg

Teacher 86.26 79.10 77.44 80.93 - - - - - - - - - - - -

Unimodal 72.96 65.59 37.77 58.77 82.65 66.76 45.32 64.91 71.41 73.30 76.36 73.69 81.91 63.57 40.74 62.07
U-HVED [7] 52.40 37.20 13.70 34.43 80.90 54.10 30.80 55.27 62.40 66.70 65.50 64.87 82.10 50.40 24.80 52.43
KD-Net [13] 79.62 59.83 33.69 57.72 85.74 66.79 33.63 62.05 78.87 80.83 70.52 76.74* 88.28 64.37 33.39 62.01
PMKL [14] 71.31 64.26 41.37 58.98 81.00 67.92 47.09 65.34* 70.50 76.92 75.54 74.32 84.11 62.21 41.35 62.56
ProtoKD (Ours) 74.46 67.34 47.41 63.07* 81.83 68.29 47.35 65.82* 74.67 81.48 76.01 77.39* 84.64 65.56 42.30 64.17*

Unimodal PMKL Ground TruthProtoKD

Fig. 2. Visualization of predictions from different methods
on BraTS samples. The enhancing tumor, edema and non-
enhancing tumor core are marked in red, green and blue color,
respectively.

Table 2. Ablation study of different components on T1
modality. Metric: DSC(%↑).

Lseg Lkd Lproto DSC(%↑)

! 58.77
! ! 60.43(+1.66↑)
! ! 61.70(+2.93↑)
! ! ! 63.07(+4.30↑)

representation for the student model. Furthermore, we con-
duct the paired t-test between different methods and unimodal
baseline to analyze whether the performance gain of different
methods is statistically significant. As shown in Table 1, the
improvement of our method is statistically significant for all
modalities.

Qualitative Results. We present the qualitative results
in Figure 2. As shown in Figure 2, we can observe that our
method produces more compact shapes and is more similar to
ground truth compared with other methods.

3.3. Ablation Study

To get a better understanding of the effectiveness of key com-
ponents in our proposed method, we conduct two ablation
studies.

First, we study the effectiveness of different components
in the object function, i.e., pixel-wise knowledge distillation
Lkd and prototype knowledge distillation Lproto. The re-

Table 3. Ablation study on transferring knowledge of intra-
class and inter-class feature variation. Metric: DSC(%↑).

Feature variation Modality

Intra-class Inter-class T1 T2 T1ce Flair

! 62.50 65.40 76.80 63.10
! ! 63.07 65.82 77.39 64.17

sults are reported in Table 2. Based on the vanilla segmen-
tation loss Lseg , both pixel-wise knowledge distillation Lkd
and prototype knowledge distillation Lproto can improve the
performance with respect to 1.66% and 2.93%, separately.
And our proposed prototype knowledge distillation outper-
forms pixel-wise knowledge distillation. Besides, the best re-
sults are produced by the combination of vanilla segmentation
loss, pixel-wise knowledge distillation and prototype knowl-
edge distillation, which further illustrates the compatibility of
our proposed prototype knowledge distillation.

Furthermore, we study the importance and effectiveness
of learning inter-class feature variation. The results are re-
ported in Table 3. As shown in Table 3, we can observe that
with additional transfer knowledge of inter-class feature vari-
ation, the performance generally improves compared to only
intra-class feature variation.

4. CONCLUSION

In this paper, we propose a novel knowledge distillation-based
method to tackle the missing modality problem in medical
image segmentation. We introduce intra- and inter-class fea-
ture variation distillation to alleviate the difference in feature
distribution between the student model and teacher model.
This method facilitates the student model to capture more
robust features by transferring knowledge from the teacher
model that the teacher usually has better feature represen-
tation. We conduct extensive experiments on BraTS 2018
benchmark and experimental results demonstrate the effec-
tiveness of our method.
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