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ABSTRACT

The goal of visual answering localization (VAL) in the video
is to obtain a relevant and concise time clip from a video as the
answer to the given natural language question. Early meth-
ods are based on the interaction modelling between video
and text to predict the visual answer by the visual predictor.
Later, using the textual predictor with subtitles for the VAL
proves to be more precise. However, these existing meth-
ods still have cross-modal knowledge deviations from visual
frames or textual subtitles. In this paper, we propose a cross-
modal mutual knowledge transfer span localization (Mutu-
alSL) method to reduce the knowledge deviation. MutualSL
has both visual predictor and textual predictor, where we ex-
pect the prediction results of these both to be consistent, so
as to promote semantic knowledge understanding between
cross-modalities. On this basis, we design a one-way dynamic
loss function to dynamically adjust the proportion of knowl-
edge transfer. We have conducted extensive experiments on
three public datasets for evaluation. The experimental results
show that our method outperforms other competitive state-of-
the-art (SOTA) methods, demonstrating its effectiveness1.

Index Terms— Cross-modal, Mutual Knowledge Trans-
fer, Visual Answer Localization

1. INTRODUCTION

The explosion of online videos has changed the way that
people obtain information, and knowledge [1, 2]. Various
video platforms make it more convenient for people to per-
form video queries [3, 4]. However, people who want to
get direct instructions or tutorials from the video often need
to browse the video content several times to locate relevant
parts, which usually takes time and effort [5]. Visual answer
localization (VAL) is an emerging technology to solve the
above problem [6], and has received wide attention because
of its practical value [7, 8]. As shown in Fig. 1(a), the task of
VAL is to find a time clip that can answer the given question.

1All the experimental datasets and codes are open-sourced on the website
https://github.com/WENGSYX/MutualSL.

*: These authors contributed equally to this work.
?: Corresponding author.

Question: How do you begin "automatic start"?

Target Answer: 2:181:32

… …

Automatic start allows you to
test at your own pace, and

Now I want to introduce some
knowledge about cars.

begins once you hit the
accelerator pedal.

Textual Predictor： 2:01
Visual  Predictor： 2:37

(a) Task Introduction

…

Textual Predictor

(c) The Paradigm of Textual Predictor

Subtitles Start Span End Span

00:00:12 
00:00:24 …

00:01:45 
00:01:53

00:03:01 
00:03:17

Subtitle4

Subtitle5

Subtitle6

Subtitle11

Subtitle1

Visual Predictor
End PointStart Point

End 2:37

(b) The Paradigm of Visual Predictor

Frames

Frame Span Timepoint
End 2:01

Subtitle TimeLine
Start 1:32Start 1:48

(d) Cross-Modal Mutual Knowledge Transfer

Textual
Predictor

Visual
Predictor

Target Answer

Our Method

PTextual(Subtitles)
Output Probability:

PVisual(Frames)
Output Probability:

00:01:55 
00:02:01

00:01:32 
00:01:39

One-way Dynamic 
Loss Function

1:32
1:48

Fig. 1. Task description of the visual answer localization,
where the below is the paradigms of the previous methods
and our method.

For example, when inputting “How do you begin ‘automatic
start’”, you may need to find a clip according to voice content
(or transcribed text subtitles) and visual frames. The VAL
technology can not only recognize the relevant video clips
to the text questions but also return the target visual answer
(1:32 ˜ 2:18).

The existing VAL method can be mainly divided into vi-
sual predictor and textual predictor according to the predic-
tion contents. The paradigm of visual predictor is shown in
Fig. 1(b). The video information is first extracted according
to the frame features, and then these frame features queried
by the question are used to predict the relevant time points [9,
10]. The paradigm of textual predictor is shown in Fig. 1(c).
The textual predictor adopts a span-based method to model
the cross-modal information, where the predicted span inter-
vals with subtitle timeline are used as the final results [8, 11].

The performance of the textual predictor is better than the
visual one [7], because it uses the additional subtitle informa-
tion, and embeds visual information into the text feature space
with the visual information as an auxiliary feature. However,
as shown in Fig. 1(a), results from both two predictors suf-
fer cross-modal knowledge deviations. For the textual pre-
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Fig. 2. Overview of the proposed cross-modal mutual knowledge transfer span localization (MutualSL).
dictor, if the video lacks subtitle information for a long clip,
this clip cannot be located; For the visual predictor, it is diffi-
cult to have continuous clip prediction because of the frequent
changing of video scenes and semantics to the question.

In this paper, we propose a novel cross-modal mutual
knowledge transfer span localization (MutualSL) method
to reduce the cross-modal knowledge deviation shown in
Fig. 1(d). Specifically, the MutualSL uses both visual pre-
dictor and textual predictor, where these two predictors have
different prediction targets so that they have different strength
perceptions of different-modal information. We expect that
these two predictors can enhance the information perception
of their own modal. Each predictor needs to predict the output
value of another predictor on the basis of the target answer in
the training stage. Then we design a one-way dynamic loss
function (ODL) to dynamically adjust the knowledge transfer,
which can alleviate the difference of cross-modal knowledge
transferring in the training process.

Our contributions are as follows: (1) we propose the Mu-
tualSL method, which for the first time uses two different pre-
dictors in VAL tasks meanwhile, and uses a Look-up Table to
achieve cross-modal knowledge transfer; (2) We design ODL
to dynamically adjust the knowledge transfer, which can alle-
viate the differences in knowledge transfer between different
predictors; (3) We have conducted extensive experiments to
prove the effectiveness of the MutualSL, where results show
that the proposed method outperforms all other competitive
SOTA methods in VAL tasks.

2. METHOD

2.1. Task Definition

Given an untrimmed video V with a duration of k seconds, the
corresponding subtitle S = {Ti}ri=1 and the text question is
Q, the VAL task requires us to predict the most relevant visual

clips within the video [V ∗s , V
∗
e ] ⊆ V that answer the question

Q, where Ti is the subtitle of each span, r is the subtitle span
length, and [Vs, Ve] is defined as the target time clip answer,
s, e ∈ [1, k]. Moreover, it provides a subtitle timeline table,
which is translated a span into corresponding timeline span
from each subtitle set S. We can use the subtitle timeline
table as the Look-up Table, such as providing accurate target
answers for textual predictor transferred from the frame span
timepoints, and vice versa.

[V ∗s , V
∗
e ] = Argmin

Vs,Ve

(P ([Vs, Ve]|V, S,Q)) (1)

2.2. Main Structure

As shown in Fig. 2, the MutualSL is divided into three parts,
which are Feature Extraction, Cross-modal Fusion, and Mu-
tual Knowledge Transfer. The Mutual Knowledge Transfer
includes visual predictor and textual predictor.
Feature Extraction. Following the previous method [9, 11],
we use the pre-trained visual model I3D [12] and the pre-
trained language model (PLM) [13] to extract feature vectors
from video V and concatenated texts T = [Q,T1, . . . , Tr]
respectively. These pre-trained models can provide us with
high-quality information representation.

V = I3D(V ),T = PLM(T ), (2)

where V ∈ Rk×d and T ∈ Rn×d, the d is the dimension and
n is the length of the concatenated text tokens of T.
Cross-modal Fusion. We use context query attention (CQA)
[9] to capture the cross-modal interaction between visual and
textual to enhance the semantics in the visual path. CQA
adopts two attention mechanism context to query (D) and
query to context (F) processes for cross-modal modeling,
where Gr ∈ Rk×n and Gc ∈ Rk×n represent the row- and
column-wise normalization of G by SoftMax.

D = Gr ·T ∈ Rk×d,F = Gc · GTr ·V ∈ Rk×d



We use one layer of feedforward neural network (FFNC) and
convolution layer (in channels = 2d, out channels = d) as
Context-Query Concatenation to capture deeper semantic in-
formation, where {V′, V′′}∈ Rk×d.

V′ = FFNC

(
[V;D;V �D;V �F ]

)
(3)

V′′ = Conv1d
(
Concat[Attention(V′,T);T]

)
(4)

We use a textual projection layer (FFNP) to extract text
features T′ ∈ Rn×d in the text path. Then we embed the aver-
age pooled visual feature V into each token Tj in T′ through
the broadcast mechanism, where V ∈ Rd and Tj ∈ R1×d,

T′ = FFNP(T),V = AvgPool(V′′)) (5)

T = {V + Tj}nj=1,T ∈ Rn×d (6)

Visual Predictor. We use two unidirectional LSTMs, includ-
ing LSTMStart and LSTMEnd, where the in channels = k×d,
out channels = k×d. Two feedforward layers FFNVisual

Start and
FFNVisual

End ( in channels = k×d, out channels = k) are adopted
to construct a visual span predictor. We input the features V′′

into LSTMs, then use the feedforward layer to calculate the
predicted time point logits, including the start time point and
end time point.

VLogits
s = FFNVisual

Start (LSTMStart(V
′′)) (7)

VLogits
e = FFNVisual

End (LSTMEnd(V′′)) (8)

Textual Predictor. We follow to the structure of QANet [14]
and calculate the probability of outputting the start and the
end subtitle point through two different feedforward layers
FFNTextual

Start and FFNTextual
End , where the in channels = n× d,

out channels = n.

TLogits
s = FFNTextual

Start (T),TLogits
e = FFNTextual

End (T)
(9)

Loss Function. We adopt Cross-Entropy (CE) function to
maximize the visual predictor logits of the target span-point
[Vs, Ve]. Also, we convert [Vs, Ve] to [Ts, Te] by subtitle time-
line Look-up Table for the loss calculation.

LossVisual = CE(VLogits
s , Vs) + CE(VLogits

e , Ve) (10)

LossTextual = CE(TLogits
s , Ts) + CE(TLogits

e , Te) (11)

2.3. Look-up Table

The outputs of different predictors are inconsistent shown in
Fig. 1. In order to solve the problem of semantic information
deviation between cross-modalities, we design a Look-up Ta-
ble Q to convert the output probabilities of one predictor as
the target answer of another (such as converting the predic-
tion subtitle timelines T(s/e) of the textual predictor to the
corresponding frame span timepoints V(s/e), which realized
information alignment of the cross-modal target answer.

T̆s = Argmin (Vs −Q(Ti)) , T̆e = Argmin (Ve −Q(Ti))
(12)

V̆s = Argmin (Ts −Q(Vi)) , V̆e = Argmin (Te −Q(Vi))
(13)

2.4. Mutual Knowledge Transfer

In order to perform cross-modal mutual knowledge transfer,
we introduce auxiliary objectives, and expect that the predic-
tor can effectively learn the cross-modal information by pre-
dicting the output produced by the another-modal predictor.
The whole procession is shown as follows, where the nota-
tion E means the Expectation. This represents that we want
to transfer the knowledge as the pseudo label from one pre-
dictor to another.

E([TLogits
s ,TLogits

e ]) = [T̆s, T̆e], E([VLogits
s ,VLogits

e ]) = [V̆s, V̆e]
(14)

2.5. One-way Dynamic Loss Function

In the training stage, the cross-modal knowledge reserves for
each predictor are different. We design a one-way dynamic
loss function (ODL) that can adjust knowledge transferring.
On the right of Fig. 2, ODL can dynamically adjust the pro-
portion of knowledge transferring by comparing the matching
between the prediction result and the target answer via the
IoU function shown in equation (15).

IOU(A,B) =
A ∩B
A ∪B

(15)

Meanwhile, the knowledge difference between the tex-
tual predictor and the visual predictor will lead to inconsistent
learning progress. Therefore, we use stop gradient (sg) for the
two predictors to learn independently (this means one-way).

LossMutual
Visual = α×(CE(VLogits

s , sg(V̆s))+CE(VLogits
e , sg(V̆e)))

(16)
LossMutual

Textual = β×(CE(TLogits
s , sg(T̆s))+CE(TLogits

e , sg(T̆e)))
(17)

where the α and β can be calculated dynamically, which are
presented as follows.

α = IOU([V̆s, V̆e], [Vs, Ve]), β = IOU([T̆s, T̆e], [Ts, Te]) (18)

Finally, our loss function is:

Loss = LossVisual+LossTextual+LossMutual
Visual +LossMutual

Textual (19)

3. EXPERIMENT

3.1. Experimental Setting

We evaluate MutualSL in three different public VAL datasets,
where these datasets are formed with the text questions and
corresponding visual answer clips as the target answers. The
MedVidQA [6] is a medical instructional dataset that con-
tains 3,010 question-and-answer (QA) pairs and 899 videos;
TutorialVQA [5] contains 76 tutorial videos about software
editing tutorials with 6,195 QA pairs; The VehicleVQA [17]
dataset has a series of How-To videos that introduce practi-
cal instructions on vehicles, including 9,482 QA pairs within
107 videos. Following previous works [6, 18, 19], we use



Table 1. Performance on three public datasets compared with several SOTA methods.

Method MedVidQA TutorialVQA VehicleVQA
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

VSLBase [9] 27.66 14.19 6.99 21.01 10.84 9.58 0.37 8.71 18.95 8.64 4.28 20.11
TMLGA [15] 23.87 14.84 6.21 20.49 - - - - - - - -
VSLNet [9] 30.32 16.61 8.39 22.41 9.96 9.21 0.00 8.58 16.53 8.47 4.03 20.07
ACRM [10] 24.83 16.55 10.96 22.89 12.61 5.17 1.26 11.18 20.77 12.10 8.27 22.28
RaNet [16] 32.90 20.64 15.48 27.48 - - - - - - - -
MoR [8] 47.10 22.74 10.97 30.67 - - - - - - - -

VPTSL [11] 77.42 61.94 44.52 57.81 50.07 40.01 25.79 40.20 74.15 67.15 54.59 64.51
MutualSL 80.65 61.94 39.99 58.32 60.14 43.59 28.28 43.48 78.74 69.81 53.14 65.74

Table 2. We report the effect of whether to conduct cross-modal mutual knowledge transfer for Visual Predictor (VP) and Tex-
tual Predictor (TP) respectively. Both predictors are output from MutualSL, but their VAL performance is different. Therefore,
we report the results on whether using Mutual Knowledge Transfer (MKT).

Method MedVidQA TutorialVQA VehicleVQA
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Ours (VP) W/O MKT 18.63 11.53 8.12 16.42 12.02 6.31 4.57 12.66 24.40 9.48 2.62 18.53
Ours (VP) 28.24 14.68 9.51 21.45 12.36 6.47 4.92 13.48 16.53 8.87 4.53 20.19

Ours (TP) W/O MKT 78.06 61.29 43.87 57.78 56.00 38.62 23.45 40.44 71.74 65.46 49.52 62.22
Ours (TP) 80.65 61.94 39.99 58.32 60.14 43.59 28.28 43.48 78.74 69.81 53.14 65.74

Fig. 3. The changing trend of α and β during training.

IoU-0.3/0.5/0.7 and mIoU as the evaluation metrics to com-
pare several state-of-the-art (SOTA) methods on VAL tasks.
We use the same visual extractor and text extractor in each
baseline to ensure fairness, and follow the original author’s
parameter settings. We compare with several SOTA meth-
ods, VSLBase/VSLNet [9], TMLGA [15], ACRM [10] and
RaNet [16] use visual predictor to predict frame span time-
point. MoR [8] and VPTSL [11] use a textual predictor to
predict textual subtitle span, which are the competitive SOTA
methods. In the parameter settings of MutualSL, we set d =
1024 and use the AdamW optimizer [20], where lr = 1e-5. We
use Pytorch in three A100 GPUs for experiments, where the
batch size = 4 and training epoch = 15. For all experiments,
we repeat three-time experiments to reduce the random errors.

3.2. Results

As shown in Table 1, we compare the performance of dif-
ferent methods in three datasets of the VAL task. The Mu-
tualSL achieves SOTA performance in most metrics, which
shows the effectiveness of our method, especially the mIoU
increases by 0.51, 3.28, and 1.23 respectively. The reason
may be that mutual knowledge transfer (MKT) can guide the
predictor to understand different information, thus alleviating
the deviations of knowledge in different modalities.

To further analyze the impact of MKT on the ODL under

different predictors, we perform the ablation study of hyper-
parameters α and β shown in Fig. 3. We can clearly see that
both α and β increase with the increase of the epoch. The β
is more than α, because the textual predictor has better an-
swering localization ability, which is also in line with the ex-
perimental results shown in Table 1. The Fig. 3 also shows
that the ODL can dynamically adapt the ability of knowledge
transfer from different predictors.

We’ve conducted extensive ablation experiments to an-
alyze the MKT in Table 2. In the visual predictor, using
MKT can improve the mIoU indicators of the three datasets
by 0.69 on average; The average increase in the textual pre-
dictor is 2.33 mIoU. These prove that the use of MKT can
enhance the model’s perception of different modal informa-
tion, thus improving the performance of VAL. We find that
although the improvement of the visual predictor is low, the
MKT can greatly improve the performance of the textual pre-
dictor. Meanwhile, the performance of the textual predictor
outperforms the visual predictor. Therefore, we use the re-
sult of the textual predictor as the output of MusicalSL in the
prediction phase.

4. CONCLUSION

In this paper, we proposed a cross-modal mutual knowledge
transfer method (MutualSL) for VAL tasks. This method alle-
viates the problem of knowledge deviation, which uses visual
predictor and textual predictor for cross-modal mutual knowl-
edge transfer. We compare and ablate the proposed methods
in three public datasets of the VAL task, where the proposed
method outperforms all competitive SOTA methods. This
proves the effectiveness of the MutualSL. In the future, we
hope to explore more methods such as knowledge distillation
for understanding cross-modal knowledge to promote the de-
velopment of related fields.
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