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ABSTRACT
For the task of speech separation, previous study usu-

ally treats multi-channel and single-channel scenarios as two
research tracks with specialized solutions developed respec-
tively. Instead, we propose a simple and unified architecture
- DasFormer (Deep alternating spectrogram transFormer) to
handle both of them in the challenging reverberant environ-
ments. Unlike frame-wise sequence modeling, each TF-bin
in the spectrogram is assigned with an embedding encoding
spectral and spatial information. With such input, DasFormer
is then formed by multiple repetition of simple blocks each
of which integrates 1) two multi-head self-attention (MHSA)
modules alternately processing within each frequency bin
& temporal frame of the spectrogram 2) MBConv before
each MHSA for modeling local features on the spectrogram.
Experiments show that DasFormer has a powerful ability
to model the time-frequency representation, whose perfor-
mance far exceeds the current SOTA models in multi-channel
speech separation, and also achieves single-channel SOTA in
the more challenging yet realistic reverberation scenario.

Index Terms— multi-channel speech separation, single-
channel speech separation, multi-head self-attention

1. INTRODUCTION

Deep neural networks (DNNs) based speech separation sys-
tems have received widespread attention since Deep Clus-
tering (DC) [1] and Permutation Invariant Training (PIT) [2]
were proposed. When multi-microphone data are available,
many approaches merging spatial cues with deep models suc-
cessively achieve SOTA results on multi-channel separation
tasks[3, 4, 5]. However, the majority of the methods are spe-
cially designed for each scenario where cross-generalization
usually becomes suboptimal. By contrast, in this paper
we explore a network backbone capable of handling both
single/multi-channel speech separation well.

Early studies on speech separation mainly rely on the
sparsity of speech in the time-frequency (TF) domain. This
∗This work was done at Microsoft Research Asia.
†Corresponding author (xiakon@microsoft.com).

process can be performed by assigning speaker label to each
TF-bin [1], either estimating a ratio mask and product with
the original input, or directly estimating the complex coeffi-
cients [6]. Later, TasNet [7] and its variants [8, 9, 10] have
grown to be dominant for speech separation under anechoic
conditions. This often attributes to a learnable analytic basis
instead of the fixed Fourier basis [7] and a more powerful
network structure like Transformer [10, 11, 12]. These sep-
aration methods have achieved satisfactory performance in
anechoic environments, while degradation is evident when
room reverberation is not neglected [13, 14]. Besides, the
dual-path sequence modeling way like [10] has also gained
attention in related fields such as speech enhancement [15].

When multi-microphone data are available, the task falls
into multi-channel speech separation. A remarkably success-
ful solution [16] is to combine an optimal beamformer with
a neural network (NN) like TasNet. Subsequently, this cas-
cade design was extended to the iterative refinement frame-
work with improved performance [5]. Another common ap-
proach is end-to-end network design, which attempts to incor-
porate multi-channel cues such as Inter-channel Phase Dif-
ference (IPD) into the input of the network [3]. Recently,
narrow-band conformer (NBC) [4] handles speech separation
with impressive gains in a narrow-band mode where all sub-
bands share the same parameters. Note that valuable spatial
information even exists for single-channel separation due to
the presence of room reflections and reverberations [17].

As far as the authors view, few efforts have been made
on a common backbone network handling both tasks well.
For instance, Sepformer[11], which performs better than
TasNet in single-channel, does not work as well as Beam-
TasNet when multiple microphones are available, and de-
grades severely in reverberant environments. Similarly,
multi-channel methods like NBC [4] surely handle rever-
beration cases, but they perform even worse than majority
of single-channel systems when less channels are available.
Besides, some multi-channel architectures are customized,
which becomes incompatible with single-channel case.

In this paper, we argue that with proper modeling and
deeper backbone networks, embedding with minimum units
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Fig. 1: The architecture of the proposed DasFormer.

in TF-bins can encode enough information to separate speak-
ers. Such embedding includes the dependencies of one TF
unit with its surroundings and even distant area, and the spa-
tial information introduced in the reverberant environment
or/and multi-channel sampling. Specifically, spectrogram-
like features are then alternately fed into a block including
two convolution modules, a spectral attention module and
a temporal attention module. In this way, we can facilitate
the aggregation of stable local features, spectral features and
spatial features including direct path and reverberation re-
spectively. Furthermore, by repeating such processing block,
a deeper network - DasFormer allows each TF embedding to
gather global clues from distant frames/sub-bands.

Experiments show that DasFormer achieves scale-invariant
signal-to-distortion ratio improvement (SI-SDRi) far exceed-
ing SOTA both on the spatialized WSJ0-2mix dataset (multi-
channel) and a challenging single-channel dataset WHAMR!
with room reverberation.

2. THE PROPOSED APPROACH

2.1. Formulation

Assuming that I speakers are recorded by M microphones in
a room, the received signal of m-th microphone in frequency
domain Ym(t, f) can be represented as

Ym(t, f) =

I−1∑
i=0

Xi,m(t, f) (1)

=

I−1∑
i=0

L−1∑
l=0

Si(t− l, f)Hi,m(l, f), (2)

where Xi,m(t, f) denotes the contribution of i-th speech com-
ponent Si(t, f) to the m-th microphone, and Hi,m(l, f) mod-

els the convolution process due to room reflections.

2.2. DasFormer

Within a single frame, the spectral regions occupied by one
speaker have inter-dependencies between these sub-bands,
such as harmonic trains, despite their overlap [18]. We
employ the multi-head self-attention (MHSA) to model the
sequence globally to seek such dependencies and aggregate
the components from the same speaker. This is similar to [12]
which also used sequence modeling on TF domain.

Within a sub-band, frames dominated by the same speaker
share a consistent convolution process (as in Eq.(2)), which
would be stronger when considering the phase difference in-
troduced by the direct path when multiple channels are avail-
able. So MHSA is also applied to temporal sequences. As
illustrated by Fig.1, we propose the Alternating Spectrogram
Block (AS Block) including two MBConvs, a frame-wise
temporal attention module and a band-wise spectral attention
module as the basic processing unit. Multiple AS Blocks
are then repetitively stacked together as the deep alternating
spectrogram transformer (DasFormer). Such deep repetition
and the alternating processing pipeline proves to be crucial
for obtaining better separation results. Specific design of each
component is as followed.

2.2.1. Frame-wise Spectral Attention (FSA)

Denoting the output of the encoder as TF embeddings,
e(t, f). The sequence e(t, ·) consisting of all sub-bands
in frame t is fed into a MHSA module, which expressed as

e(t, ·)← e(t, ·) +Dropout(MHSA(LN(e(t, ·)))) (3)

where LN denotes the Layer Normalization. The above is
repeated for all frames and the same MHSA module is shared.

2.2.2. Band-wise Temporal Attention (BTA)

Similar to the FSA, the sequence consisting of all frames at
the f-th sub-band passes through an MHSA, and is denoted as

e(·, f)← e(·, f) +Dropout(MHSA(LN(e(·, f)))) (4)

All sub-bands repeated and share the same MHSA module.

2.2.3. MBConv

Before each Attention module, we add a 3×3 MBConv block
with Squeeze-Excitation (SE) module [19]. This is similar
to the convolution augmented (FFN) in Conformer [20] and
NBC [4], except that 2D convolution is used here, as follows:

e(·, ·)← e(·, ·) + Pw2(SE(Dw(Pw1(BN(e(·, ·)))))) (5)

where Pw1 and Pw2 are both Point-wise Conv2D, which im-
plement the expansion and shrinkage projections with factor
set to 4, respectively. The BN denotes Batch Normalization
and DW denotes 3× 3 Depth-wise Conv2D [19].



3. EXPERIMENT

3.1. Setup

We evaluate DasFormer on both multi/single-channel tasks.
Multi-channel dataset. The commonly used dataset - spa-
tialized WSJ0-2MIX is selected [3]. All utterances are seg-
mented into 4-second lengths and convolved with randomly
generated room impulse responses (RIR). The 28,000 RIRs
are generated using same parameters with [3], including room
size, reverberation time (T60), speaker location, and array
geometry. These clips are then mixed in a fully overlapped
manner according to [1]. To align with [16, 5], the first mi-
crophone is used as reference and only the first 4 of the 8 mi-
crophones are used as inputs. The sampling rate is 8 kHz. To
compare with [4], we added another settings adopted in [4].
The main differences include, 8 microphone arrays with fixed
geometry, larger T60, 16 kHz sampling rate. In two above
settings, we focus on pure separation by using reverberated
speech as the training target.
Single-channel dataset. This is actually a special case when
M = 1, e.g. using only one microphone data. For compari-
son with reported results, we choose a widely used and more
challenging single-channel dataset - WHAMR! [13], whose
goal is to predict each speaker’s clean signal from reverberant
and noisy input and hence is closer to the real-world scenario.
Model implementations. The MHSA module in FSA and
BTA modules both applies a dimension D = 64 and number
of heads H = 4. The parameters of the two MBConv mod-
ules are: the kernel size of DW Conv is 3× 3, the number of
channels D = 64, the expansion factor is 4, and the shrink-
age factor in the SE module is 0.25. The AS Block repeats
L = 12 layers. The initial encoder is a 3 × 3 Conv2D with
2M input channels and D output channels. The final decoder
is also a 3 × 3 Conv2D with D input channels and 2I output
channels. The model architecture is consistent by default on
both tasks, except for the number of input channels. A frame
length of 32 ms with 16 ms frame shift is used in STFT.
Training configurations. An Adam optimizer is used with
an initial learning rate of 0.001. The signal metric SI-SDR
is used as the loss function. The learning rate halved when
no lower SI-SDR is found for 7 consecutive epochs. When
no lower metric is found for 15 consecutive epochs, training
stops. Gradient clipping with a maximum norm of 5 is used
to avoid gradient explosion.

3.2. Performance comparison

Multi-channel speech separation We use SDR improvement
(SDRi) and narrow-band PESQ to evaluate DasFormer and
each baseline system. Our proposed DasFormer achieves an
SDR improvement of 25.9 dB with the RIR setting in [3],
which is a 4.4 dB improvement compared to BeamGuided-
TasNet, an approach with an iterative refinement framework
combined with spatial filters and single-channel separation in

Model Params. PESQ SDRi
(M) (dB)

RIR settings as [16, 5]
Mixture − 1.80 0.0
FaSNet-TAC [21] 2.8 2.90 11.7
NBC [4] 2.0 2.95 13.3
Beam-TasNet [16] − − 16.8
BeamGuided-TasNet [5] 5.4 − 21.5
DasFormer (ours) 2.2 4.33 25.9

RIR settings as [4]
Mixture − 1.80 0.0
NBC [4] 2.0 3.53 15.3
DasFormer (ours) 2.2 4.11 20.5

Table 1: Experiment results on spatialized WSJ0-2Mix.

Model Params. SI-SDRi SDRi
(M) (dB) (dB)

TasNet-BLSTM[13] 23.6 9.2 −
Conv-TasNet [13] 8.8 8.3 −
DPRNN [9] 2.6 10.3 −
DPTNET [10] 2.7 12.1 11.1
Sepformer [11] 26 11.4 −
WaveSplit [22] 29 12.0 11.1
WaveSplit (DM) [22] 29 13.2 12.2
Sudo rm -rf (U=16) [14] 6.3 12.1 −
Sudo rm -rf (U=36) [14] 26.6 13.5 −
DasFormer 2.2 16.0 14.6
DasFormer Plus 6.4 17.3 15.7

Table 2: Experiment results on WHAMR!.

the time domain. The DasFormer also obtained an SDR im-
provement of 20.5 dB under the RIR setting in [4], a 5.2 dB
improvement over the NBC approach with narrow-band com-
plex mapping. We also notice that the NBC model working
in narrowband mode degrades significantly in the task with
random array geometry, while DasFormer achieves a higher
SDR improvement under this challenging scenario instead.
Considering the diversity and phase inconsistency of arrays
in practice, this random array geometry setting is a more ro-
bust and adaptive way to training models.
Single-channel separation with reverberation DasFormer
and its plus version (D=96, L=16) achieved SI-SDR improve-
ments of 16.0 dB and 17.3 dB, respectively, which is a 3.8 dB
performance improvement compared to the SOTA model on
WHAMR! dataset [14].

3.3. Model scalability on microphone number

We compare DasFormer and current mainstream models on
various microphone numbers. The WHAMR! in Fig. 2 can
be viewed as a more difficult single microphone setting with
noise added. For aligning, we extend Sepformer by increas-
ing the input channels of encoder. However, from the limited
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for the first column which is on WHAMR! with SDRi metric.

Layers Dims Conv Params. SDRi
(L) (D) (M) (dB)

12 64 - 2.2 25.9
8 80 - 2.2 24.1
4 128 - 2.2 23.4

12 64 w/o SE 1.4 24.3
12 64 1× 1, w/o SE 1.3 22.2

Table 3: Results on ablation study. ’-’ means that the MB-
Conv module is not changed. ’w/o SE’ means remove the SE
module. ’1×1’ means that the 3×3 Conv2D in the MBConv
module is replaced with a point-wise Conv2D.

performance gain after increasing channels, it is obvious that
the spatial cues are less effectively utilized by SepFormer.
And Beam-TasNet is far inferior to other SOTA algorithms
when degraded to single-channel (when MVDR is not avail-
able). The NBC method is severely degraded, which can be
explained by the fact that its narrow-band mode relies heavily
on spatial information, which is susceptible to channel reduc-
tion. The proposed DasFormer not only achieves the highest
performance on both tasks, but also increases the performance
significantly as the microphone number increases.

3.4. Ablation Study

To investigate the contribution of deeper layers and the MB-
Conv module, we conducted two sets of ablation experiments
(all trained and tested on the spatialized WSJ0-2Mix dataset
[3]). The first one gradually makes the DasFormer shallower
and keeps the model size constant by increasing the embed-
ding dimension. It shows that deeper networks are easier to
achieve higher performance for DasFomer. The second one is
to remove the SE module and the 3 × 3 Conv from MBConv

Fig. 3: Results of attention scores from different layers in AS
Block. They are two heads from the shallow (layer 1), middle
(layer 5) and deep (layer 11) layer respectively.

consecutively. The 3 × 3 Conv is replaced by a point-wise
Conv, becoming similar to the FFN module in Transformer. It
can be found that both of them bring significant degradation.
And the 3×3 Conv2D is more crucial for better performance.

3.5. Visualization

To further understand the behavior of the model, we visualize
the attention map. We observe that different layers present
different temporal patterns. The shallow layer pays more at-
tention on local scope formed by neighboring frames, as ev-
idenced by higher scores around the diagonal. The middle
layer reflects more block-like structure, which may attribute
to the similarity of frames within the same phonetic unit. And
the heads from deeper layers show distributions with clear
correspondence to speaker activity. So as the network be-
comes deeper, the DasFormer tends to encourage different
layers to aggregate different levels of information.

4. CONCLUSION

This work attempt to employ a common architecture for both
multi/single-channel speech separation. By alternately per-
forming band-wise and frame-wise MHSA on TF-bin embed-
ding and combining spatial information when multi-channel
data are available, the proposed DasFormer can maintain ro-
bust separation results against less microphone number and
even gets SOTA results on single-channel speech separation
in the challenging reverberant environments. The proposed
architecture is potential for more challenging scenarios, like
adapting a model trained on one microphone array to another
(different on both microphone number and array geometry).
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