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ABSTRACT

Deep neural network based speech enhancement technique
focuses on learning a noisy-to-clean transformation super-
vised by paired training data. However, the task-specific
evaluation metric (e.g., PESQ) is usually non-differentiable
and can not be directly constructed in the training criteria.
This mismatch between the training objective and evaluation
metric likely results in sub-optimal performance. To alleviate
it, we propose a metric-oriented speech enhancement method
(MOSE), which leverages the recent advances in the diffusion
probabilistic model and integrates a metric-oriented training
strategy into its reverse process. Specifically, we design an
actor-critic based framework that considers the evaluation
metric as a posterior reward, thus guiding the reverse process
to the metric-increasing direction. The experimental results
demonstrate that MOSE obviously benefits from metric-
oriented training and surpasses the generative baselines in
terms of all evaluation metrics.

Index Terms— Diffusion probabilistic model, speech en-
hancement, reinforcement learning

1. INTRODUCTION

Recent advances in deep learning has brought remarkable
success to the speech enhancement technique, where a
noisy-to-clean transformation is learned to remove additive
noises by a supervised learning manner [1–4]. However, this
paradigm suffers from a mismatch between training and eval-
uation: the training criterion (e.g., Mean Square Error) must
be differentiable for gradient calculation [5], while the evalu-
ation metric (e.g. PESQ) are usually non-differentiable, thus
can not be directly modeled in loss function as minimized ob-
jective. Consequently, the optimized model after training can
not achieve best performance in terms of evaluation metric.

This mismatch is also reported in other supervised learn-
ing tasks, such as machine translation [6, 7] and automatic
speech recognition [8–10]. Prior works have utilized rein-
forcement learning (RL) based algorithms to harmonize the
mismatch using metric-based training approach [11], as these
tasks contain a sequential decoding process that can be natu-
rally viewed as Markov Decision Process (MDP) [12]. Never-

theless, as a regression task, mainstream SE approaches train
a one-shot discriminative model without the time-step con-
cept for MDP, which is infeasible for RL-based optimization.

Diffusion probabilistic model [13], showing outstand-
ing results in generative tasks [14, 15], brings possibility for
metric-based optimization of SE task, as it inherently consists
of MDP-based diffusion and reverse processes [16]. More
specifically, an isotropic Gaussian distribution is added to the
clean speech during step-by-step diffusion process, and in the
reverse process, gradually estimates and subtracts additive
noise to restore the clean input [17].

In this work, we present a metric-oriented speech en-
hancement method called MOSE, which effectively con-
structs the non-differentiable metric into the training objec-
tive. Inspired by actor-critic based algorithm [18], we design
a value-based neural network that is updated by Bellman Er-
ror [19] to evaluate current policy in terms of metric-related
reward function, then it guides the prediction of subtracted
noise in a reverse process by the differentiable manner. In this
way, the original policy is optimized to the metric-increasing
direction, while the value-based network is trained to pro-
vide reasonable feedback. Experimental results demonstrate
that MOSE obviously benefit from metric-oriented training
and beat other generative methods in terms of all metrics.
Furthermore, it shows better generalization in face of unseen
noises with large domain mismatch.

2. PRELIMINARIES

We first define noisy speech as y and define its corresponding
ground-truth clean speech as x0. The speech enhancement
task aims to learn a transformation f that converts the noisy
input to clean signal: x0 = f(y), x0, y ∈ RL.

2.1. Diffusion Probabilistic Model

In this part, we briefly introduce the diffusion process and the
reverse process of the typical diffusion probabilistic model.
Diffusion process is formulated as a T -step Markov chain
that gradually adds Gaussian noise to the clean signal x0 in
each step t. The Gaussian model is denoted as q(xt|xt−1) =
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Fig. 1: The conditional diffusion probabilistic model (A) and metric-oriented training (B). The red and blue arrows respectively
denotes the diffusion and reverse process. wt is the weight of linear interpolation, and mt is the task-specific metric.

N (xt;
√

1− βtxt−1, βtI), where βt is a small positive con-
stant that serve as a pre-defined schedule. With enough dif-
fusion step T , the latent variable xT can be finally converted
to an isotropic Gaussian distribution platent(xT ) = N (0, I).
Therefore, based on x0, the sampling distribution of each step
in the Markov chain can be derived as the following:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

where αt = 1− βt and ᾱt =
∏t
s=1 αs.

Reverse process aims to restore the x0 from the latent
variable xT along another Markov chain, which is de-
noted as pθ(xt−1|xt), where θ is learnable parameters.
As marginal likelihood pθ(x0) =

∫
pθ(x0, · · · , xT−1|xT ) ·

platent(xT )dx1:T is intractable for calculation, the ELBO [13]
is utilized to approximate a learning objective for neural
model training. Therefore, the equation of the reverse process
can be denoted as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI),

where µθ(xt, t) =
1
√
αt

(xt −
βt√

1− ᾱt
εθ(xt, t))

(2)

Here µθ(xt, t) denotes the mean of xt−1, which is obtained
by subtracting the estimated Gaussian noise εθ(xt, t) in the
xt. Furthermore, the variance is derived to a constant β̃t =
1−ᾱt−1

1−ᾱt
βt.

2.2. Reinforcement Learning

Reinforcement learning (RL) is typically formulated as a
Markov Decision Process (MDP) that includes a tuple of tra-
jectories 〈S,A,R, T 〉. For each time step t, the agent consid-
ers state st ∈ S to generate an action at ∈ A which interacts
with environment. The transition dynamics T (st+1|st, at)
is defined as transition probability from current state st to
next state st+1, and gain an instant reward rt(st, at). The
objective of RL is to learn optimal policy to maximize the
cumulative rewardR along all time steps.

Since the diffusion probabilistic model formulates speech
enhancement task as MDP in section 2.1, the RL algorithm
can be integrated in the reverse process to explore optimal

policy. More specifically, given the current state xt, the pol-
icy network is supposed to predict a Gaussian noise εt as the
current action. After subtracting the εt in xt, the xt−1 is ob-
tained as next state, as step number t is decreasing during
reverse process. Furthermore, the instant reward rt is calcu-
lated by comparison of xt and xt−1, which guides the update
of parameters θ during model training.

3. METHODOLOGY

In this section, we introduce our proposed MOSE, which in-
tegrates the metric-oriented training into the reverse process
of a conditional diffusion probabilistic model. The overview
of MOSE is shown in Fig. 1.

3.1. Conditional Diffusion Probabilistic Model

As real-world noises usually does not obey the Gaussian dis-
tribution, we incorporate noisy speech y into the procedures
as a conditioner in this part. Specifically, a dynamic weight
wt ∈ [0, 1] is employed for linear interpolation from x0 to xT .
Therefore, as shown in Fig. 1, each latent variable xt consists
of three parts: clean component (1−wt)× x0, noisy compo-
nentwt×y, and Gaussian Noise ε. Furthermore, the diffusion
process in Eq. (1) can be rewritten as:

q(xt|x0, y) = N (xt; (1− wt)
√
ᾱtx0 + wt

√
ᾱty, δtI), (3)

where δt = (1− ᾱt)− w2
t ᾱt (4)

The conditional reverse process starts from xT with
wT = 1, which is denoted as N (xT ,

√
ᾱT y, δT I). Refer-

ring to Eq. (2), we denoted the conditional reverse process
as:

p(xt−1|xt, y) = N (xt−1;µθ(xt, y, t), δ̃tI), (5)

where µθ(xt, y, t) is the predicted mean of variance xt−1. It
means that the neural model θ considers both variance xt and
noisy conditioner y during its prediction. Therefore, similar
to Eq. (2), we define the mean of µθ as a linear combination
of xt, y, and εθ:

µθ(xt, y, t) = cxtxt + cyty − cεtεθ(xt, y, t), (6)
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Fig. 2: The main structure of MOSE. Dashed line stands for
back propagation for neural network.

where the coefficients cxt, cyt, and cεt can be derived from
the ELBO optimization criterion in [20]. Finally, we combine
Gaussian noise ε and non-Gaussian noise y − x0 as ground-
truth Cnoiset :

Cnoiset (x0, y, ε) =
mt
√
ᾱt√

1− ᾱt
(y − x0) +

√
δt√

1− ᾱt
ε (7)

∇θL1 =‖ Cnoiset (x0, y, ε)−∇θεθ(xt, y, t) ‖1 (8)

where Cnoiset provides supervision information, and L1 is
calculated for back propagation of neural network.

3.2. Metric-oriented Training

Given the task-specific evaluation metric m, each t-step vari-
able can calculate the mt by xt and x0 as they are in same
shape. In order to directly optimize mt, an actor-critic RL
algorithm is integrated into conditional reverse process, as
shown in the Fig. 1 (B).

Since we hope that the latent variable is iterated toward
the metric-increasing direction in the reverse process, the re-
ward function is customized as: rt = mt−1 − mt, where t
starts from T to 0. However, posterior rt is obviously non-
differentiable for θ, thus failing to propagate gradient. To this
end, we further employ a Value network V with parameter θv
as the blue box in Fig. 3, and the original network is denoted
as Diffusion network D with parameter θd for distinction.
In general, The Diffusion network consumes xt to predict the
subtracted noise εt as action, while the Value network gener-
ates an score vt to evaluate this εt based on xt. The training
strategy of MOSE is explained in Algorithm 1.

MOSE starts training with conventional ELBO optimiza-
tion, as explained from line 3∼9 in Algorithm 1, only Diffu-
sion network D is trained for Nth iterations. Then we present
joint training of Diffusion network D and Value network V
from lines 10∼18. Minimizing L2 = −V (xt, εt, x0|θv) in-
dicates that D tents to gain higher score from V , and L2

is simultaneously incorporated with a weight α to stabilize
training. In order to encourage Value network V to provide
reasonable evaluation, we employ widely used Bellman Er-
ror [19] (line 17) to update V , where γ is a decay factor for

Algorithm 1 MOSE Training

1: Randomly initialize the Diffusion network D(x|θd) and
Value network V (x, ε|θv).

2: Initialize Ntotal, Nth, γ, and α
3: for i = 1, 2, · · · , Ntotal do
4: Sample (x0, y) from Dataset
5: Sample ε∼N (0, I) and t∼Uniform({1, · · · , T})
6: Set xt = ((1−mt)

√
ᾱtx0 +mt

√
ᾱty) +

√
δtε

7: Calculate Cnoiset according to Eq. (7)
8: if i < Nth then
9: Update network D by minimizing L1 in Eq. (8)

10: else
11: Calculate εt = D(xt, y, t|θd) as action
12: Calculate∇θdL2 = −V (xt,∇θdεt, x0|θv)
13: Update D by minimizing L = L1 + α · L2

14: Calculate xt−1 according to Eq. 6 as next state
15: Calculate rt = mt−1(xt−1, x0)−mt(xt−1, x0)
16: Set Vt = rt+γV (xt−1, D(xt−1, y, t−1), x0|θv)
17: Calculate∇θvL3 = (Vt −∇θvV (xt, εt, x0|θv))2

18: Update network V by minimizing L3

19: end if
20: end for

future reward. Consequently, the output score vt both con-
siders current and future rewards based on the task-specific
metric. For inference, we adopt a fast sampling scheme as
same as in [15].

4. EXPERIMENT

4.1. Experimental Setup

Database. We choose the publicly available VoiceBank DE-
MAND dataset [21] for SE training and evaluation. Specif-
ically, the training set contains 11,572 noisy utterances from
28 speakers and is mixed by 10 different types with four SNR
levels (0, 5, 10, and 15 dB) at a sampling rate of 16 kHz, as
well as their corresponding clean utterances. The test set con-
tains 5 types of unseen noise in SNR levels (2.5, 7.5, 12.5,
and 17.5 dB). To evaluate the performance of a model in un-
seen noises, we further mix the test set of TIMIT [22] and
“helicopter” and “babycry” noises with different SNR levels
(-6, -3, 0, 3, 6 dB), where a large domain mismatch exists
between training and testing.
Configuration. The internal structure of MOSE is shown in
Fig. 3. We employ 30 residual blocks with 64 channels in
Diffusion Net. MLP block contains 4 linear layers with ReLU
activation function. For training, MOSE takes 50 diffusion
steps with training noise schedule βt ∈ [1×10−4, 0.035], and
the interpolation weight mt =

√
(1− ᾱt)/

√
ᾱt. The Ntotal,

Nth, and γ in Algorithm 1 are respectively set as 40k, 30k,
and 0.95. The initial learning rate of Diffusion network is set
as 2× 10−4 for first Nth iterations, and decrease to 1× 10−4
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Fig. 3: The relationship between ∆PESQ and training loss
−L1, as well as gained rewardR.

Table 1: Result of metric-oriented training.

ID System α PESQ CSIG CBAK COVL

1 Unprocessed - 1.97 3.35 2.44 2.63

2 MOSE 0 2.44 3.65 2.87 3.01

3
MOSE

0.1 2.48 3.66 2.90 3.06
4 1 2.54 3.73 2.93 3.12
5 5 2.51 3.69 2.91 3.08

for Nth ∼ Ntotal iterations. The learning rate of the Value
network is set as 1 × 10−5. Both networks are optimized
by Adam with a batch size of 32. The fast sampling method
keeps the same schedule with [20].
Metric. We select the perceptual evaluation of speech quality
(PESQ) as the task-specific metric of optimization objective
due to its universality. Furthermore, prediction of the signal
distortion (CSIG), prediction of the background intrusiveness
(CBAK), and prediction of the overall speech quality (COVL)
are also reported as references.

4.2. Result and Analysis

4.2.1. Experimental validation of mismatch

We first design an experiment to verify the mismatch prob-
lem between the training objective and evaluation metric, and
illustrate how we mitigate it. To this end, we train a typical
diffusion probabilistic model, where L1 in Eq (8) is set as the
only training objective. Then we sample 10 utterances and
add up their L1 (50 steps), as well as calculate the improve-
ment of PESQ (∆PESQ). The comparison is visualized in the
left part of Fig. 3, and we observe that there is no correla-
tion between L1 and ∆PESQ, which indicates that SE model
trained only by L1 will lead to sub-optimal performance in
terms of PESQ. Meanwhile, we calculate the cumulatively
gained reward R of these utterances after metric-oriented
training and visualize in the right of Fig. 3, where an obvious
positive correlation can be observed between ∆PESQ andR.

4.2.2. Effect of metric-oriented training

We then examine the effect of proposed metric-oriented train-
ing, and the results are reported in Table 1. “Unprocessed”
denotes direct evaluation based on noisy data, and α is the
weight of L2 in Algorithm 1. When α = 0, SE model are

Table 2: MOSE vs. other methods. “Gen.” and “Dis.” respec-
tively denote generative and discriminative models.

System Type PESQ CSIG CBAK COVL

Unprocessed - 1.97 3.35 2.44 2.63

DSEGAN [23] Gen. 2.39 3.46 3.11 2.90
SE-Flow [24] Gen. 2.28 3.70 3.03 2.97
CDiffuSE [20] Gen. 2.52 3.72 2.91 3.10

WaveCRN [25] Dis. 2.64 3.94 3.37 3.29
Conv-TasNet [26] Dis. 2.67 3.94 3.31 3.30

MOSE (ours) Gen. 2.54 3.72 2.93 3.06

Table 3: PESQ results on TIMIT dataset with different SNRs.
“Avg” denotes the average of all SNR levels.

System Noise level, SNR =
-6 -3 0 3 6 Avg.

Noise type: Helicopter
Unprocessed 1.05 1.07 1.10 1.16 1.26 1.13 +0%

Conv-TasNet [26] 1.06 1.08 1.14 1.21 1.47 1.19 +5.3%
MOSE 1.08 1.13 1.16 1.26 1.44 1.21 +7.1%

Noise type: Baby-cry
Unprocessed 1.06 1.09 1.13 1.18 1.27 1.15 +0%

Conv-TasNet [26] 1.06 1.10 1.15 1.21 1.37 1.18 +2.6%
MOSE 1.08 1.13 1.16 1.24 1.45 1.21 +5.2%

only trained by L1 loss. We observe that system 3∼5 all sur-
pass system 2 with help of metric-oriented training. When
α = 1, the SE model achieves the best performance.

In addition, Table 2 summarizes the comparison between
MOSE and other competitive SE methods, which contains 3
generative models and 2 discriminative methods. We observe
that MOSE surpasses generative baselines in terms of all met-
rics, however, the best performance is still achieved by dis-
criminative method.

4.2.3. Generalization on unseen noise

We evaluate our trained model in unseen noisy condition with
a wide range of SNR levels, where Conv-TasNet method is
reproduced for comparison. The PESQ results are shown
in Table 3. Despite gaining outstanding performance on the
matched test set, we observed that the PESQ of Conv-TasNet
dramatically degrades due to noise domain mismatch. How-
ever, the MOSE performs better than Conv-TasNet in terms
of PESQ, especially in low-SNR conditions.

5. CONCLUSION

In this paper, we propose a speech enhancement method,
called MOSE, which addresses the mismatch problem be-
tween training objective and evaluation metric. The proba-
bilistic diffusion model is leveraged as MDP based frame-
work, where metric-oriented training is presented in the re-
verse process. The experimental results demonstrate that
MOSE beats other generative baselines in terms of all met-
rics, and show better generalization on unseen noises.
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