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ABSTRACT

In this work, we investigate an approach that relies on con-
trastive learning and music metadata as a weak source of su-
pervision to train music representation models. Recent stud-
ies show that contrastive learning can be used with editorial
metadata (e.g., artist or album name) to learn audio repre-
sentations that are useful for different classification tasks. In
this paper, we extend this idea to using playlist data as a
source of music similarity information and investigate three
approaches to generate anchor and positive track pairs. We
evaluate these approaches by fine-tuning the pre-trained mod-
els for music multi-label classification tasks (genre, mood,
and instrument tagging) and music similarity. We find that
creating anchor and positive track pairs by relying on co-
occurrences in playlists provides better music similarity and
competitive classification results compared to choosing tracks
from the same artist as in previous works. Additionally, our
best pre-training approach based on playlists provides supe-
rior classification performance for most datasets.

Index Terms— music representation learning, contrastive
learning, music classification, music similarity, pre-training
neural networks

1. INTRODUCTION

Learning better representations is crucial to improve the
quality of music classification and similarity models. Many
popular approaches apply end-to-end models to learn repre-
sentations while optimizing classification objectives [1, 2].
Other directions include pre-training models on editorial
metadata [3, 4, 5, 6, 7], multi-modal correspondence [8], co-
listening statistics [7], contrastive supervised [9, 10, 11] and
self-supervised [12, 13, 14, 15, 16] objectives, music gener-
ative models [17], playlist co-occurrences [11], text [18], or
combinations of them [7, 6, 17, 11]. Recently, contrastive
learning has shown promising results in audio and music
representation learning, especially in self-supervised fash-
ions [14, 15], and some studies suggest that it allows learning
more robust features than classification objectives [16].

Scientific evidence suggests that, in contrastive setups, it
is beneficial to choose positive pairs that share information

relevant for the downstream task while being diverse with re-
spect to irrelevant characteristics [19]. However, most audio
and music self-supervised contrastive methods rely on sample
mixing [16], audio effects [12], or temporal crops [20] to gen-
erate the augmented versions, which intuitively have a small
potential to obtain samples that are distinct enough.

Accounting for this observation, a recent study inspired
by COLA [20] shows that selecting the positive pairs ac-
cording to editorial metadata co-occurrences (e.g., songs
from the same artist) improves the learned representations
significantly [21]. In this work, we extend this method to
operate with new sources of music metadata. Specifically,
we focus on music consumption metadata in the form of
playlists. We propose strategies to obtain positive pairs by (i)
randomly sampling tracks co-occurring in playlists, (ii) con-
straining the positive pairs to the top co-occurrences across
playlists, and (iii) using alternative track representations ob-
tained using a Word2Vec [22] model trained on the playlist
sequences as associated pair. We pre-train models based
on the ResNet50 [23] and VGGish [24] architectures with
playlists from the Million Playlist Dataset [25] (MPD) and
then transfer the learned representations to solve music clas-
sification and similarity tasks.

The main contributions of this work are the following:

• We compare the performance of three models based on
playlist data and four baselines using two different archi-
tectures in one similarity and five classification tasks.

• We propose pre-training strategies using playlist informa-
tion that lead to superior performance compared to previ-
ous approaches based on editorial metadata in several mu-
sic classification tasks.

• We show that some models trained with playlists achieve
better similarity metrics than those based on self-supervision
or editorial metadata.

The rest of this manuscript is organized as follows: Sec-
tion 2 provides further motivation for the exploration of con-
sumption metadata as a source of supervision, Section 3 de-
scribes the proposed pre-training methods, Section 4 provides
details about the experimental setup, and in Section 5 we
present and discuss the results. Finally, Section 6 outlines
the principal conclusions of this work.
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2. MOTIVATION
Self-supervised approaches enable training models with a
large amount of unannotated data, which has been success-
ful in fields such as natural language processing [26]. In
practice, these approaches have a limited scope for domains
where collecting unlabeled data on a large scale is difficult
due to copyright limitations or simple shortage. In these
cases, certain forms of weak supervision may compensate for
the lack of data. For example, researchers have shown that
contextual metadata can be used for representation learning
of biomedical images [27] or document editorial metadata for
document classification [28]. Music is also rich in metadata,
which motivates using this information to train models.

Such information can be divided into editorial metadata
used to catalog music (e.g., artist and album names, or country
and year of release), and consumption metadata describing in-
teractions of humans (or machines) with music (e.g., playlists,
DJ setlists, radio programs, or listening histories). In this pa-
per, we focus on the latter type. Using consumption metadata
as a source of similarity ground truth has already been ex-
plored in the recommender-systems literature, enabling tasks
such as music playlist continuation [25]. Also, while edito-
rial relations are normally one- or few-to-many (e.g., album-
songs), consumption is many-to-many (e.g., playlists-songs),
resulting in a more dense co-occurrence space that may favor
associating more heterogeneous music.1 Furthermore, the us-
age of consumption metadata for music representation learn-
ing has not been as extensively investigated yet [7, 11] as the
case of editorial metadata [3, 4, 5, 6, 7, 29].

3. METHOD
We investigate methods to obtain targets from music playlist
datasets to pre-train models using contrastive learning.

3.1. Contrastive learning setup
Our architecture consists of a convolutional backbone B(·)
and a projector H(·) that map a mel-spectrogram input x ∈
RT×F with T timestamps and F frequencies into latent rep-
resentations z ∈ RD, and z′ ∈ RD′

respectively. The model
is trained to bring z′x close to z′y while pulling it apart from
samples in the same batch following SimCLR [30]. After
pre-training, H(·) is discarded, and B(·) is used in the down-
stream tasks. Our setup is depicted in Figure 1.

3.2. Pair generation algorithms
Instead of using augmentations to obtain x and y as done in
SimCLR, we propose to use pairs originating from different
tracks by exploiting playlist information. The number of pos-
sible pairs of elements that co-occur in a playlist of size n
corresponds to the number of combinations without repetition(
n
2

)
. This produces many pairs when considering millions of

1For example, our dataset has an average number of tracks per artist and
playlist of 7.2 and 66.3, respectively. On average, a track appears on 29.3
playlists and belongs to 1.28 artists.

Pair generator Losssimilar

Fig. 1. Illustration of our pre-training pipeline. The features
x and y from the associated pairs are input to the model B(·)
and projectorH(·). B(·) andH(·) are optimized using a con-
trastive loss. B(·)=Bx(·)=By(·) and H(·)=Hx(·)=Hy(·)
in all the cases except for Word2Vec representation.

playlists, making the exhaustive usage of the pairs difficult to
scale with this contrastive learning approach. Because of this,
we propose algorithms that rely on heuristics to create audio
pairs that utilize a wide range of tracks while preventing track
repetitions, as well as an embedding learning-based technique
to create the target pairs.

Considering a dataset of playlists P = {p0, ..., pN}, and
tracks S = {s0, ..., sM}, we propose the following strategies:
• Co-Occurrence. This approach randomly generates pairs

by producing combinations using the available tracks in
each playlist pi and with each track appearing in only one
pair. We iterate randomly through P generating b |pi|

2 c pairs
per playlist and discarding the associated tracks from the
set of available tracks. This algorithm is executed at the
beginning of each training epoch.

• Top Co-Occurrence. This algorithm counts the number of
co-occurrences of the tracks in all the playlists. For each
track we randomly select its associated pair among its top-
10 most co-occurring tracks while ensuring that every track
appears only in one pair. To do so, at each epoch, we ini-
tialize a set of available tracks A = S. We randomly iterate
through A and for a given track sj we select one of the top
co-occurring tracks sk and discard sj and sk from A.

• Word2Vec representation. This is a multi-modal approach
in which, for a given track, we align the projection of its
audio representation z′x to the projection of its Word2Vec
embedding z′y [22]. We train a Word2Vec model by con-
sidering playlists as sentences and track ids as words. We
rely on the Continuous Bag of Words approach with a con-
text window that includes the entire playlist 2 and a learning
rate of 0.02 for 20 epochs.3 In this case By(·) is the frozen
pre-trained Word2Vec model, zy is a Word2Vec embedding,
and Hy(·) is a different projector from Hx(·) featuring the
same hyper-parameters and dimensions.

4. EXPERIMENTS
Our experiments are divided into two steps. First, we pre-train
the proposed models in a contrastive setup. These models

2We also tested a W2V sensitive to the track positions in the playlists by
using smaller window sizes. However, this degraded the performance.

3We use the Gensim implementation https://radimrehurek.
com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html


Model Pairs per epoch Pair generation algorithm

SimCLR 1,779,072 -
Artist CO 1,014,528∗ Co-Occurrence
Playlist CO 826,368∗ Co-Occurrence
Playlist TCO 731,520∗ Top Co-Occurrence
Playlist W2V 1,779,072 Word2Vec representation

Table 1. Number of pairs per epoch and pair generation algo-
rithms. ∗indicates that these are different pairs on each epoch.

are then fine-tuned and evaluated in the downstream music
classification or directly evaluated in a music similarity task.

4.1. Pre-training
We pre-train a number of models following the different pair
generation strategies. SimCLR is a baseline where x and y are
alternative views of the same audio patch mixed with random
patches from the batch scaled with a gain factor sampled from
a β(5, 2) distribution similar to previous work [16]. Artist CO
is another baseline that applies the Co-Occurrence strategy to
the artist names (i.e., considering the set of tracks by each
artist as a playlist) without preventing track repetitions.

Playlist CO, Playlist TCO, and Playlist W2V use the
Co-Occurrence, Top Co-Occurrence, and Word2Vec repre-
sentation strategies respectively to generate the x/y pairs
using the playlist information. Table 1 shows the number of
pairs per epoch and model. In SimCLR and Playlist W2V, the
number of pairs corresponds to the number of tracks in the
dataset since these methods do not associate different tracks.
In Playlist CO and Playlist TCO, we constrain to a single
track occurrence per epoch, which results in fewer pairs per
epoch. We train the models for a fixed number of 50 epochs.
This makes the pair generation algorithms execute the same
number of times, which leads to a different number of batch
optimization steps for each model.

We pre-train all our models using the Million Playlist
Dataset (MPD) [25] matched to our in-house music collec-
tion, which resulted in 1,779,072 tracks and 999,219 playlists.
H(·) has a single hidden layer with 128 units and a ReLu ac-
tivation and D′ = 128. We use the NT-Xent loss [30] with
a fixed τ value of 0.1 using a batch size of 384 pairs, and
the Adam optimizer with β1 = 0.9 and β2 = 0.999. The
learning rate is increased linearly from 0 to 1e-4 for the first
5,000 steps and then decreased following a cosine decay until
the models complete 50 epochs similar to [16]. We train
the models on 96-band, 256-timestamp (∼3 seconds) mel-
spectrogram patches randomly selected at each iteration from
the 30-seconds excerpts available for each track.

4.2. Music classification
Our first evaluation consists of solving multi-label music clas-
sification tasks by fine-tuning the pre-trained models. We
keep the pre-trained B(·) and replace H(·) by an MLP with
the same hidden layer configuration and output dimensions
matching the number of classes followed by a Sigmoid ac-
tivation. We optimize B(·) and the new H(·) using Adam

(β1 = 0.9 and β2 = 0.999) and cross-entropy loss with an
L2 regularization term of 1e-5 for a maximum of 50 epochs.
We use a cyclical triangular scheduler that varies the learning
rate from 1e-5 to 1e-4 [31]. The weights are selected from
the epoch with the highest Average Precision on the valida-
tion set. We apply early stopping after ten epochs without
any improvement on this metric. In training, we use the same
random patch selection approach as in pre-training. During
inference, we average the activations from non-overlapping
patches. We use 30 seconds of audio from the center of the
track in validation, and the full duration available in testing.

We use the Genre, Instrument, and Mood subsets of the
MTG-Jamendo Dataset [32], containing 55,215, 25,135, and
18,4856 full tracks, and 87, 40, and 56 classes, respectively.
We consider the MagnaTagATune (MTAT) dataset [33], with
25,860 30-seconds excerpts, and its top-50 tags using the
12:1:3 partition [34]. Additionally, we consider an in-house
genre dataset containing 87,542 2-minutes excerpts and 72
classes, referred to as Genre Internal. Our goal is to assess if
our pre-training approaches are still beneficial when a bigger
and arguably more curated collection is available.

4.3. Music similarity
For the music similarity evaluation, we use the dim-sim
dataset consisting of a collection of music similarity triplets
produced by human raters [35]. Each triplet was annotated
by 5 to 12 people, and the official clean version of the dataset
contains 879 triplets with a high inter-annotator agreement.
We extract representations z for the clean subset of dim-sim
using the pre-trained models without fine-tuning. Following
the common evaluation approach [35], we measure the cosine
distance between anchor/positive, and anchor/negative, and
consider the triplet prediction correct if the latter is larger.
We report the prediction accuracy and the average difference
between anchor/negative and anchor/positive distances.

4.4. Architectures
We consider two standard backbone architectures:
• VGGish [24]. This is a variant of the VGG [36] architec-

ture popular in the audio domain. It has 128 output dimen-
sions. We consider the original model weights obtained
from a classification task in a proprietary dataset as a base-
line.4 When pre-training the architecture with our data, we
use our 3-second 96-bands mel-spectrogram patches and
modify the kernel of the first pooling layer from 2 × 2 to
4 × 4 to keep the number of dimensions after the convolu-
tional layers close to the one in the original model.

• ResNet50 [23]. We use the standard ResNet50 model con-
sidering its good performance in audio and music applica-
tions [16]. We reduce the output of the last dense layer
with global max- and mean-pooling and concatenate the re-
sulting vectors, leading to an output embedding of 4,096
dimensions.
4https://github.com/tensorflow/models/tree/

master/research/audioset/vggish

https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish


Dataset Genre Instrument Mood MTAT Genre Internal
AP ROC AP ROC AP ROC AP ROC AP ROC

VGGish
VGGish FT 15.8±0.3 84.9±0.5 18.1±0.6 74.2±1.2 12.1±0.9 72.7±0.8 44.4±0.6 90.6±0.1 - -
From Scratch 13.4±0.2 82.6±0.3 15.5±0.4 72.1±0.5 9.3±0.2 70.6±0.4 40.2±0.7 88.9±0.2 54.3±0.3 96.7±0.0
SimCLR 15.2±0.3 83.6±0.4 16.4±0.3 72.1±0.5 10.7±0.2 70.1±0.2 41.1±0.6 88.9±0.2 61.7±0.1 97.6±0.0
Artist CO 17.3±0.1 85.6±0.1 20.4±0.4 76.7±0.1 13.9±0.2 74.5±0.5 46.2±0.1 91.1±0.1 68.8±0.2 98.3±0.1

Playlist CO 17.0±0.1 85.4±0.2 20.2±0.4 76.1±0.3 13.3±0.8 73.8±0.8 45.9±0.2 90.9±0.0 67.7±0.7 98.2±0.1
Playlist TCO 17.5±0.1 84.9±0.4 20.5±0.3 76.3±0.9 13.8±0.3 73.7±0.7 45.8±0.3 91.0±0.1 70.0±0.4 98.4±0.0
Playlist W2V 17.3±0.2 85.5±0.3 19.8±0.7 75.3±0.2 13.5±0.1 72.8±0.7 45.3±0.6 90.9±0.2 69.8±0.1 98.4±0.0

Resnet50
From Scratch 14.4±0.2 82.9±0.1 15.6±0.5 71.2±0.6 8.9±0.0 69.2±0.4 40.7±0.3 88.8±0.1 63.3±0.1 97.7±0.1
SimCLR 16.3±0.2 84.7±0.3 17.4±0.1 73.3±0.7 12.1±0.3 73.0±0.3 43.4±0.5 90.1±0.2 67.4±0.3 98.2±0.0
Artist CO 19.0±0.1 85.0±0.1 21.1±0.4 76.5±0.9 14.9±0.3 74.8±0.7 47.0±0.3 91.5±0.2 73.4±0.2 98.6±0.1

Playlist CO 18.7±0.7 85.7±0.4 21.2±0.7 76.7±0.9 14.8±0.5 74.2±0.4 46.8±0.2 91.4±0.0 73.4±0.1 98.6±0.0
Playlist TCO 18.9±0.2 85.1±0.3 20.4±0.7 75.4±1.5 14.3±0.4 73.7±0.7 47.0±0.2 91.3±0.2 72.8±0.2 98.6±0.0
Playlist W2V 19.0±0.1 85.4±0.3 20.7±0.4 77.1±0.4 15.0±0.1 75.1±0.4 46.7±0.4 91.2±0.2 74.1±0.2 98.7±0.1

Table 2. Metrics in the music classification datasets expressed in macro ROC-AUC and Average Precision. For each architec-
ture, we present the baselines on top and the proposed models below. Metrics statistically equivalent or higher than Artist CO
according to a one-sided t-test (p-value = 0.005) are marked in light grey. The highest metric per dataset is marked in bold.

Model VGGish Resnet50 VGGish Resnet50
Accuracy Average difference

SimCLR 0.699 0.672 0.007 0.009
Artist CO 0.819 0.838 0.043 0.039
Playlist CO 0.852 0.845 0.077 0.064
Playlist TCO 0.793 0.813 0.052 0.046
Playlist W2V 0.831 0.818 0.067 0.041

Table 3. Music similarity accuracy and the average difference
between anchor/negative and anchor/positive.

5. RESULTS AND DISCUSSION
Table 2 shows the macro ROC-AUC and Average Precision5

metrics for all the datasets and models as the average ± the
standard deviation of three runs. Our baselines consist of fine-
tuning the original VGGish [24] (VGGish FT), randomly ini-
tialized models (From Scratch), SimCLR, and Artist CO.

Firstly, we note that the contrastive approaches based on
artist and playlist metadata always achieve better performance
than the VGGish FT, From Scratch, and SimCLR baselines,
which aligns with previous works indicating the benefits of
metadata-based supervision [3, 4, 5, 21]. The models based
on playlist information achieve equivalent or superior per-
formance to those based on Artist CO on most datasets and
metrics, and Playlist W2V with the ResNet50 architecture
achieves the best performance in at least one metric for the
Genre, Instrument, Mood, and Genre Internal datasets.

Table 3 contains the results of the music similarity eval-
uation. We observe that models based on metadata show a
stronger correlation with human similarity perception than
the baseline SimCLR approach. While Playlist CO achieves
the best metrics with both architectures, Playlist TCO and

5Average Precision is also referred to as the area under the precision-recall
curve (PR-AUC) in the literature.

Playlist W2V did not improve the performance as in the clas-
sification tasks. We hypothesize that Top Co-Occurrence and
Word2Vec representation reduce the diversity of the positive
pairs, which may augment the discriminative capabilities of
the latent space at the cost of becoming weaker for similarity.

Finally, these results may depend on the nature and spar-
sity of the available playlists. In our study, we relied on MPD,
which contains a curated subset of Spotify playlists filtered
by quality and enriched with additional tracks. The playlists
were created by US users only between 2010 and 2017 and
are not expected to be representative of the overall distribu-
tion of Spotify playlists. However, MPD represents a small
fraction of more than 4 billion playlists on Spotify, which mo-
tivates further research on playlist-based pre-training.

6. CONCLUSIONS
In this work, we show that employing contrastive learning
for pre-training neural networks with playlist information is
valuable for music classification. While previous works fo-
cused on editorial metadata, such as the artist name, we found
that superior performance can be achieved with consump-
tion metadata consisting of playlist information by relying
on track representations obtained from a Word2Vec model
trained on the playlist sequences. Also, the representations
learned using simple playlist co-occurrences perform signif-
icantly better than an unsupervised approach (SimCLR) or
than using artist co-occurrences for music similarity. Future
work includes validating our approaches with more sources
of consumption metadata (e.g., radio programs or listening
histories) considering learning them in multi-task scenarios.
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