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ABSTRACT

Heterogeneous graphs provide a compact, efficient, and scalable
way to model data involving multiple disparate modalities. This
makes modeling audiovisual data using heterogeneous graphs an
attractive option. However, graph structure does not appear nat-
urally in audiovisual data. Graphs for audiovisual data are con-
structed manually which is both difficult and sub-optimal. In
this work, we address this problem by (i) proposing a paramet-
ric graph construction strategy for the intra-modal edges, and (ii)
learning the crossmodal edges. To this end, we develop a new
model, heterogeneous graph crossmodal network (HGCN) that
learns the crossmodal edges. Our proposed model can adapt to
various spatial and temporal scales owing to its parametric construc-
tion, while the learnable crossmodal edges effectively connect the
relevant nodes across modalities. Experiments on a large bench-
mark dataset (AudioSet) show that our model is state-of-the-art
(0.53 mean average precision), outperforming transformer-based
models and other graph-based models. Our code is available at
github.com/AmirSh15/Cross modality graph

Index Terms— Acoustic event classification, graph neural net-
work, heterogeneous graph, multimodal data.

1. INTRODUCTION

Visual information is known to augment and complement human
perception and cognition of audio events [1, 2]. Therefore, learn-
ing audiovisual representations is critical to improve performance of
various audio classification tasks. For example, consider the task of
identifying an acoustic event, where a motorbike is moving away
from the microphone. The revving sound of the bike fades as it
moves away. While an audio-only model may not be able to identify
the fading sound as ‘motorbike’, adding a visual clip of the motor-
bike moving does help.

A majority of existing works on learning audiovisual representa-
tions relies on models that are originally developed to address com-
puter vision tasks [3, 4]. They usually augment two ‘views’ of a
given audiovisual sample, which are then fed to a shared ‘backbone’
model trained using a suitable optimization function, such as con-
trastive loss [5, 6], distillation loss [7] or information maximization
[8, 9]. The above models, however, do not fully capture the tempo-
ral relationship between the two modalities. Moreover, the vision-
inspired data augmentation techniques are often unsuitable for mul-
timodal data [10].

Heterogeneous graphs provide a compact, efficient, and scalable
way to model data involving multiple disparate modalities (e.g., im-
age and text) and their relationships [11, 12]. Hetergeneous multi-
modal graphs have been successfully used to address tasks such as
visual question answering [13], multimodal sentiment analysis [14],
and cross-modal retrieval [12]. These recent works have established

that a multimodal graph approach promotes closer coupling between
various events across the modalities resulting in a significant perfor-
mance gain [13, 14].

In our past work [15], we noted that hetereogenous audiovisual
graphs can effectively capture the relationship within and across au-
dio and visual modalities, which can outperform other multimodal
learning approaches. However, the success of this approach, to a
large extent, relies on constructing the ‘right’ graph. Since the graph
structure is not naturally known here, it is difficult (and still sub-
optimal) to construct the ‘right’ graph. The current paper addresses
this important issue of multimodal graph construction by learning
the graph structure across the modalities in the context of acoustic
event classification. The idea of crossmodal learning on graphs has
been successfully used to capture semantics within a modality and
semantic interactions between them in applications involving vision
and language [16, 17]. Motivated by this success we propose a novel
graph-based approach to learning crossmodal interactions between
audio and video for acoustic event classification.

In this paper, we propose an end-to-end graph approach to
acoustic event classification that learns audio representation utiliz-
ing heterogeneous graphs. The key contribution is to parameterize
the process of graph construction and learning the crossmodal edges
along with the task. First we construct modality-specific subgraphs
(controlled by two parameters), which are fed to our heterogeneous
graph crossmodal network (HGCN). The key feature of HGCN is
a crossmodal graph learning layer that learns graph edges across
modalities jointly with the classification task. HGCN also has a
modality-specific graph layer that can perform modality-specific
graph processing. Our model, HGCN, thus allows for both inde-
pendent processing of each modality and fusing information in the
crossmodal layer. The idea presented in this paper is significantly
different from previous graph-based approaches used for represen-
tation learning [15, 18] as it avoids manually connecting nodes and
makes end-to-end learning possible. In summary, our contributions
are as follows:

• We develop an end-to-end deep graph approach to audio rep-
resentation learning from heterogeneous audiovisual graphs.

• We propose a parametric graph construction strategy and the
HGCN model with a novel crossmodal graph learning layer.
Our model can capture modality-specific information as well
as complementary information between the two modalities.

• We demonstrate state-of-the-art performance of our model for
the task of acoustic event classification on a large benchmark
dataset called the AudioSet.

2. PROPOSED APPROACH

In this section, we describe our end-to-end graph approach in detail.
It has two components: (i) subgraph construction and (ii) the HGCN
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Fig. 1. Our end-to-end graph-based approach: [Left] We split the audio/video input into non-overlapping segments, and construct a
subgraph for each modality. (Centre) These subgraphs are combined into a single graph that has only intra-modal edges, and processed
through a modality-specific graph layer. For both audio and video modalities independently, modality-specific graph convolution layers are
utilised to extract the embedding for each node. Next, the crossmodal edges are learned through the proposed heterogeneous crossmodal layer.
Learnable pooling modules are used to capture the overall graph representation. Our crossmodal graph learning layer has two independent
audio and video branches, a shared graph neural network, and a matching graph construction module following an attention layer connecting
video nodes to audio nodes considering the inter-modality edges constructed by the matching graph.

model. In the subgraph construction stage, we construct individual
graphs for each modality. This process is controlled by two parame-
ters. These subgraphs are combined into a single graph that has only
intra-modal edges. This graph is fed to our proposed model, HGCN,
which has a modality-specific graph processing layer and a cross-
modal graph learning layer. HGCN learns of the crossmodal graph
edges jointly with the classification task.

Definition: We define a heterogeneous graph G to be composed of
an audio subgraph and a video subgraph. This can be represented
as G = (V,E), where V = {Va,Vv} is the set of audio nodes Va

and video nodes Vv; E = {Eaa,Evv,Eav} is three sets of edges:
audio-audio, video-video and audio-video.

2.1. Audio and video subgraph construction

The first step is to construct the audio and video subgraphs. Given
an audiovisual input, we divide the audio and the video into Q and P
segments (see Fig.2). Each segment corresponds to a node. There-
fore, the audio subgraph has Q nodes and the video subgraph has
P nodes. These segments are used for feature extraction, so as to
have a single feature vector per node. Therefore, G has audio node
set Va = {ai}Qi=1 and video node set Vv = {vi}Pi=1, with edge sets
E = {Eaa,Evv}. At this stage we work with intra-modal edges only,
and hence Eav is empty. Each node vi ∈ Vv corresponds to a video
segment and its associated with a feature vector nv

i extracted by a
video encoder. Similarly, every audio node ai ∈ Va is associated
with a feature vector na

i obtained from an audio encoder.
We propose to add intra-modality edges using two parameters

for each intramodal edge type, Evv,Eaa. These parameters are (i)
span across time and (ii) dilation. For a given node, span across
time; span for brevity, denotes the number of nodes it connects with
in the temporal direction, whereas dilation denotes the skip between
connections. For example, in Fig.2, dilation for audio is 0 as con-
secutive nodes are connected; while for video it is 1, since we skip
one node between connections. We have 4 hyperparameters in total,
2 for each node type. This provides more control on the graph con-
struction process as each modality can be modeled with their own
parameters.
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Fig. 2. Audio and video subgraph construction process: For simplic-
ity, the edges are only shown for one node per modality, vi for audio
and vj for video. Crossmodal edge are learned in the crossmodal
graph learning layer within the proposed HGCN model.

2.2. Learning crossmodal edges

The next step is to learn the edges between audio and video nodes
i.e. the edges in Eav . To this end, we propose a new model, HGCN,
which has two types of graph processing layers: (i) modality-specific
graph layer and (ii) crossmodal graph learning layer (see Fig.1).

Modality-specific graph layer: The key idea in the majority of
graph neural network (GNNs) is to aggregate features from a node’s
neighbours and update that node’s feature, H accordingly:

Hl+1 = σ
(
AHlWl

)
(1)

where Wl is the weight matrix for the lth layer, A is the adjacency
matrix, σ is a non-linear activation function, such as ReLU, and
l ∈ {0, · · ·L}. Since we have a heterogeneous graph with differ-



ent nodes and edge types, this approach is not directly applicable.

Previous studies have utilised meta-paths for processing hetero-
geneous graphs [19, 20], which was shown to be inadequate in cap-
turing the information provided by disparate nodes and edge types
[21]. To address this, we use separate GNNs for processing differ-
ent edge types. This is done in the modality-specific graph layer
of our HGCN. As the name suggests, the modality-specific layer
processes each modality independently, considering only the intra-
modality edges. Therefore the node attributes are updated as follows:

na
l+1 = GNNθ1

(
na
l ,Aa

)
nv
l+1 = GNNθ2

(
nv
l ,Av

) (2)

where na
l and nv

l are audio and video node features in layer l, and
GNN can be any graph-based neural network such as GCN [22],
GraphSage [23], or GAT [24]. Aa and Av are the adjacency matri-
ces pertaining to the audio and video subgraphs.

Crossmodal graph learning layer: This layer learns the cross-
modal edges jointly with the classification objective. The layer first
establishes a shared space between the audio and visual modalities
through a shared GNN using the embedding from the previous mul-
timodal graph layers. Then, the layer constructs a matching graph
between the nodes of two modalities. Finally, a fusion flow carries
audio-related information from the video nodes to the audio nodes
for the inter-modality edges (Eav) and the corresponding adjacency
matrix Aav is constructed.

na
l+1 = GNNϕ1

(
na
l ,Aa

)
+ GNNϕ2

(
nv
l ,Aav

)
nv
l+1 = GNNϕ1

(
nv
l ,Av

) (3)

Note that we used a shared GNN in (3). The video nodes are only
updated using video nodes from the previous layer, but the audio
nodes, audio being the primary source of information for our task,
use information from both audio and video nodes.

The key feature of this layer is a matching graph construction
module that connects neighbouring nodes from different modalities.
These neighboring nodes are computed using k-nearest neighbour:

Eav = Top k
d
(
n
ai
l

,n
vj
l

){(i, j)|i ∈ {1, · · · , Q}, j ∈ {1, · · · , P}
}

(4)

where d is the cosine or L2 distance. The advantages of this layer
are: (i) it reduces redundant connections, and (ii) detects relevant
nodes between modalities instead of densely attending to all nodes.

Finally, we seek a graph-level representation hG ∈ Rd as the
output of HGCN. This is obtained by pooling the node-level repre-
sentations na

L, nv
L at the L-th layer before passing them to the clas-

sification layer. Common pooling functions (mean, max and sum
pooling) treat adjacent nodes with equal importance, which may not
be optimal. Thus we learn a pooling function Ψ following a recent
work [25] that combines the node embeddings from the K-th layer
to produce an embedding for the entire graph. The pooling layer is
defined as follows:

hG =
[
Ψa(n

a
L) |Ψv(n

v
L)

]
= pana

L + pvnv
L (5)

where pa and pv are learnable weights. The overall heterogeneous
graph network is trained with the cross-entropy loss.

3. EXPERIMENTS

3.1. Dataset
We use a large scale weakly labelled dataset called the AudioSet
[26], which contains audio segments from YouTube videos. We
work with 33 classes from the balanced set that have high rater con-
fidence score ({0.7, 1.0}). This yields a training set of 82,410 auvio-
visual clips. For a fair comparison with baseline methods, we used
the original evaluation set, which has 85,487 test clips.

3.2. Feature encoder
Audio encoder: To extract audio node features, each audio clip is
divided into 320 ms non-overlapping segments. Wav2vec2 [27] (pre-
trained on LibriSpeech) feature extractor is used as an audio encoder.
For each segment, temporal convolution layers have been used to ex-
tract features for the receptive field of 25 ms and stride of 20 ms. We
use the 512-dimensional features extracted by the wave2vec2 net-
work for each segment.
Video encoder: Each video is sampled at 20 fps and resized to
112×112, and then segmented into non-overlapping 1s chunks to ex-
tract the video node features. As a video encoder, we used R(2+1)D
[28] pretrained on Kinetics-400. A 512-dimensional feature is then
obtained by feeding each segment into the network. Note that our
method is not tied to these networks and can work with any generic
encoder for both audio and video.

3.3. Implementation details
Each video clip is transformed to a heterogeneous graph with P =
10 audio nodes and Q = 30 video nodes. Each audio node corre-
sponds to a 320ms-long audio segment and each video node corre-
sponds to a 1s-long video segment. We use 3 nearest neighbors while
learning the crossmodal matching graph. To understand robustness
of this step, we repeat our experiments 10 times with different seeds
and report both mAP (mean average precision) and ROC-AUC (area
under the ROC curve) values.

The network weights are initialized following the Xavier initial-
ization. We used SGD optimizer with a learning rate of 0.005 for
the graph model, 5× 10−4 for audio and video encoders, and 1000
warm-up iterations for all experiments. The graph construction hy-
perparameters are explored heuristically and set to span audio = 3,
dilation audio = 1, span video = 1, and dilation video = 1 for all ex-
periments. For the GNN, we select GraphSage [23] for the shared
GNN in the crossmodal layer, and modality-specific layers, and a
Graph Attention Network (GAT) [24] for fusing information in the
crossmodal graph learning layer. We have three modality-specific
graph layers and one crossmodal graph learning layer (see Fig. 1),
each with a hidden size of 512. We use Pytorch on an NVIDIA
RTX-2080Ti GPU.

3.4. Results and analysis

Baselines: Table 1 compares our model with two competitive and
relevant self-supervised models: wav2vec2 [27] and R(2+1)D [28]
to investigate the superiority of our end-to-end approach.

State-of-the-art: We also compare our method with a number of
strong supervised and self-supervised state-of-the-art models. The
DaiNet [29] is a 1D convolution-based network which operates on
raw audio waveform. The Spectrogram-VGG model is the same as
the configuration A in [34] with only one change: the final layer
is a softmax with 33 units. The feature for each audio input to



Table 1. Acoustic event classification results on AudioSet.

Model mAP ROC-AUC Params

Ours (audio only) 0.46± 0.06 0.89± 0.03 40.2M
Ours (video only) 0.38± 0.03 0.84± 0.02 39.8M
Ours (fixed encoders) 0.50± 0.02 0.90± 0.02 42.4M
Ours (end-to-end) 0.53± 0.01 0.94± 0.01 42.4M

Baselines

Wav2vec2 audio only 0.42± 0.02 0.88± 0.00 94.4M
R(2+1)D video only 0.36± 0.00 0.81± 0.00 33.4M

State-of-the-art

DaiNet [29] 0.25± 0.07 - 1.8M
Spectrogram-VGG 0.26± 0.01 - 6M
VATT [30] 0.39± 0.02 - 87M
SSL graph [31] 0.42± 0.02 - 218K
Wave-Logmel [32] 0.43± 0.04 - 81M
AST [33] 0.44± 0.00 - 88M
VAED [15] 0.50± 0.01 0.93± 0.00 2.1M

the VGG model is a log-mel spectrogram of dimensions 96×64
computed by averaging across non-overlapping segments of length
960ms. The VATT [30] is a self-supervised multimodal transformer
with a modality-agnostic, single-backbone Transformer and sharing
weights between audio and video modality. We also compared our
method with recent graph-based works [31, 15]. The wave-Logmel
[32] is a supervised CNN model which takes waveform and log
mel spectrogram at the same time as input. The AST [33] is a self-
supervised transformer model which is trained by masking the input
spectrogram. All methods’ hyper-parameters are set to the values
published in the original papers. Note that we do not utilise any data
augmentation, despite the fact that other methods used powerful data
augmentations. Additionally, all of the baselines have been retrained
using the same classes as our model.

Results: Table 1 compares the performance of our model with the
baselines and various state-of-the-art models in terms of mAP and
ROC-AUC with their standard deviation. Our model, HGCN, out-
performs all baselines and state-of-the-art models. HGCN outper-
forms the VAED model [15], state-of-the-art on AudioSet, by more
than 3% in mAP. Overall, HGCN, achieves a superior mAP score
demonstrating the effectiveness of our graph construction and cross-
modal fusion strategies. Furthermore, our model achieves the high-
est ROC-AUC score (0.94) indicating more trustworthy predictions
at various thresholds. Also note that HGCN has significantly fewer
learnable parameters compared with the recent transformer-based ar-
chitectures, i.e., VATT [30] and AST [33].

Ablation experiments: We conduct in-depth ablation experiments
to examine the contribution of each components in our model. Ta-
ble 2 presents the ablation results in terms of mAP. We observe that
each component brings improvement. The addition of the video
nodes boosts performance by roughly 5%, and when combined with
our novel crossmodal graph learningn layer the performance rises by
another 4%. The learnable pooling layer improves the mAP score by
1 more percent. The ablation results show that each of the proposed
components in our architecture is important, and contributes posi-
tively towards the overall model performance.

Graph construction parameters: Fig. 3(b) investigates the effect
of the graph construction hyperparameters (span and dilation). For
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Fig. 3. Effect of using different graph construction hyperparameters
(span and dilation) on model performance.

Table 2. Ablation experiments showing the contribution of each
component in our model.

Audio Video Crossmodal Learnable pool mAP

✓ - - - 0.43

- ✓ - - 0.36

✓ ✓ - - 0.48

✓ ✓ ✓ - 0.52

✓ ✓ ✓ ✓ 0.53

audio dilation, audio span, and video dilation performance drops as
we increase their values. For audio span, performance improves up
to 3 and then start falling. This explains our choice of these hyper-
parameters.

4. CONCLUSION

We introduced an end-to-end graph-based approach to audio repre-
sentation learning with application to acoustic event classification.
This involves a parametric modality-specific subgraph construction
process, and the HGCN model that allows learning crossmodal edges
through its crossmodal graph learning layer. Thus we can effectively
capture spatial and temporal relationships between audio and visual
modalities explicitly. Our model can easily adapt to different tempo-
ral scales of events through the span and dilation hyperparameters.
Our model is state-of-the-art for acoustic event classification pro-
ducing highest mAP and ROC-AUC on the AudioSet dataset. Our
model relies on separate audio and video encoders, which gives the
flexibility of choosing a suitable encoder depending on the applica-
tion. Currently, we only used one crossmodal layer at the end of
the modality-specific GNN layers. More crossmodal learning lay-
ers may be useful, and each layer may capture different information
shared across modalities. Future work could also be directed towards
make the subgraph construction hyperparameters learnable.
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