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ABSTRACT
Recent development of neural vocoders based on the generative
adversarial neural network (GAN) has shown obvious advantages
of generating raw waveform conditioned on mel-spectrogram with
fast inference speed and lightweight networks. Whereas, it is still
challenging to train a universal neural vocoder that can synthesize
high-fidelity speech from various scenarios with unseen speakers,
languages, and speaking styles. In this paper, we propose DSP-
GAN, a GAN-based universal vocoder for high-fidelity speech
synthesis by applying the time-frequency domain supervision from
digital signal processing (DSP). To eliminate the mismatch prob-
lem caused by the ground-truth spectrograms in the training phase
and the predicted spectrograms in the inference phase, we leverage
the mel-spectrogram extracted from the waveform generated by a
DSP module, rather than the predicted mel-spectrogram from the
Text-to-Speech (TTS) acoustic model, as the time-frequency do-
main supervision to the GAN-based vocoder. We also utilize sine
excitation as the time-domain supervision to improve the harmonic
modeling and eliminate various artifacts of the GAN-based vocoder.
Experiments show that DSPGAN significantly outperforms the com-
pared approaches and it can generate high-fidelity speech for various
TTS models trained using diverse data. 1

Index Terms— universal vocoder, generative adversarial net-
work, digital signal processing, source-filter model

1. INTRODUCTION
Although end-to-end systems have gradually come to the stage [1,
2], the current mainstream Text-to-Speech (TTS) systems based on
neural networks are still a two-stage architecture composed of an
acoustic model and a neural vocoder due to its flexibility in de-
ployment. The acoustic model produces intermediate representa-
tions such as mel-spectrogram from text, and the neural vocoder
uses the predicted intermediate representations as input to generate
speech waveform. To ensure good quality, both the acoustic model
and vocoder are trained by a great number of high-quality data of
target speakers. In diverse scenarios of real applications, it’s criti-
cal to build a universal vocoder for flexibly generating high-quality
speech without any fine-tuning from arbitrary acoustic models of
various speakers, speaking styles, and even languages. But build-
ing a universal neural vocoder is not a trivial task, due to several
challenges. Specifically, the inference of unseen data may lead to
an inferior performance compared with the seen data during train-
ing, which makes the robustness of the unseen data critical to the

1Audio samples are available at https://kunsung.github.io/
DSPGAN/
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universal vocoder. Besides, the distribution mismatch between the
imperfectly predicted and the ground truth intermediate representa-
tions also leads to audio quality degradation with artifacts.

This paper aims to design a robust universal neural vocoder
without any fine-tuning process for producing high-quality speech
with mel-spectrogram predicted from various acoustic models, un-
seen speakers, speaking styles, and languages. To achieve our goal,
we focus on the GAN-based vocoder [3, 4, 5] due to its good perfor-
mance with fast inference speed and lightweight networks. GAN-
based vocoders have become a mainstream non-autoregressive (non-
AR) neural vocoder because they can synthesize high-fidelity wave-
form with faster training and inference speed than flow-based [6, 7]
and diffusion-based [8] vocoders. However, to build a universal
vocoder, GAN-based vocoders still have the following problems.
First, the GAN-based vocoder may induce prediction errors of pe-
riodic components of speech due to its unstable parallel-generating
nature. These errors result in artifacts such as pitch jitters and dis-
continuous harmonics, especially in prolonged soundings. Second,
the acoustic model may generate an over-smoothed spectrogram [9]
that has unseen during the training phase of the vocoder, leading
to metallic or noisy sounding with voiced/unvoiced errors, which
usually exists in highly expressive speech. Furthermore, the poor
generalization of GAN-based vocoder may degrade the speech qual-
ity for unseen speakers and languages.

A GAN-based vocoder can be regarded as a generative model
that uses the intermediate representation such as mel-spectrogram
as supervision. Some works try to strengthen supervision to allevi-
ate the above problems. A straightforward trick is to use the gen-
erated mel-spectrogram from acoustic model to fine-tune the neu-
tral vocoder biasing to the specific targets. But this fine-tuning pro-
cess is time-consuming and apparently against the goal of a universal
vocoder. Some studies use pitch as additional time-domain supervi-
sion in the upsampling network to solve the problems of pitch jitter
and discontinuous harmonics in singing voice synthesis (SVS) [10,
11]. But unfortunately, with the supervision from pitch, it is likely
to generate excessive periodic components at the high frequency of
speech, leading to mechanical sounding, due to the aforementioned
mismatch between the ground truth and predicted spectrogram by
the acoustic model. Moreover, apparently, supervision from pitch
can only guide the generation of periodic components of speech but
not the aperiodic components. As a result, with an over-smoothed
spectrogram predicted from an acoustic model, metallic or noisy
sounding will occur.

Different from the data-driven rationale of neural vocoders,
traditional digital signal processing (DSP) vocoders [12, 13] are
designed mathematically based on the source-filter model of hu-
man vocal system. Since the periodic and aperiodic components of
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speech are modeled according to human vocal characteristics, DSP
vocoders have strong robustness to unseen spectrograms and reason-
able speech parametric controllability. Thus it is rare to induce peri-
odic errors which result in pitch jitter and discontinuous harmonics
or aperiodic errors which lead to metallic or noisy sounding. But as
an over-simplified model of the human vocal system, DSP vocoders
are clearly inferior to data-driven-based neural vocoders in speech
quality. The synthetic speech sounds generally mechanical, caused
by the strict supervision from the sine excitation. There has been a
recent trend to leverage the advances from both kinds of vocoders.
For example, LPCNet [14] uses linear predictive coding to simplify
AR neural vocoder’s architecture; NSF [15] and DDSP [16] intro-
duce neural network filters to the source-filter model, and on this
basis, NHV [17] specifically adopts GAN to optimize the waveform
generation.

Following this trend, in this paper, we propose DSPGAN as a
universal vocoder that adopts a DSP module to guide the learning
of a GAN-based vocoder. Specifically, besides using sine excita-
tion in the time domain as supervision, we also adopt extracted mel-
spectrogram from the waveform synthesized by a DSP module to su-
pervise the learning of a GAN-based vocoder in the time-frequency
domain given the robustness of a DSP vocoder on the generation of
periodic and aperiodic components. With better supervision, the fine
details of speech are modeled from the data-driven neural vocoder
without artifacts, such as metallic and noisy sounding. Experiments
show the robustness of DSPGAN on speech generation from a vari-
ety of mel-spectrogram, including various acoustic models, unseen
speakers, multiple speaking styles as well as multiple languages.

2. PROPOSED APPROACH
In this section, we propose to apply time-frequency domain super-
vision from a DSP vocoder to a typical GAN-based neural vocoder
for the purpose of a universal vocoder. To obtain more stable and
higher quality supervision from DSP, instead of using a conven-
tional source-filter model, we introduce a source neural network
filter (source-NNFilter) model which adopts the learnable neural
network filter; on this basis, we further make improvements to the
source-NNFilter model.

2.1. A typical GAN-based vocoder
As shown in Figure 1(a), a typical GAN-based vocoder generates
waveform by a few upsampling network layers which contain trans-
posed convolution and a stack of residual blocks with dilated con-
volutions. Meanwhile, a GAN-based vocoder usually uses multiple
discriminators for adversarial training to learn different frequency-
domain features of speech. In addition, some auxiliary losses are
usually adopted to stabilize training, such as feature matching loss

and reconstruction loss. Therefore, the training objectives of its gen-
erator and discriminator are

LG = Ex̂

[
(D(x̂)− 1)2

]
+ Lrecon(G) + Lfm(G) (1)

and LD = Ex

[
(D(x)− 1)2

]
+ Ex̂

[
D(x̂)2

]
(2)

respectively, where x and x̂ represent ground-truth and generated
samples, and Lrecon and Lfm denote reconstruction loss and feature
matching loss respectively.

2.2. Improved source-NNFilter model
A typical source-filter model uses sine excitation and noise as source
signals respectively for the generation of the periodic and aperi-
odic components of speech, and linear time-varying (LTV) filters
are employed to filter the source signals. Specifically in this pa-
per, we adopt NHV [17] as our DSP vocoder, using neural networks
to control LTV filters, which results in a source-NNFilter model
with low computational complexity. As is shown in Figure 1(b), the
source-NNFilter model uses NN filter estimators to predict complex
cepstrum from the input mel-spectrogram as the impulse response.
By using complex cepstrum to filter the source signals, the source-
NNFilter model can dynamically control the amplitudes of different
harmonic components, so it can generate speech with higher quality
than the conventional source-filter model. And for sine excitation
in the source-NNFilter model, it can convert from pitch via additive
synthesis. We can firstly get the sample-level f0 f0[n] by linearly
interpolating the frame-level f0. The corresponding sine excitation
pK [n] generation process from f0[n] is

pK [n] =

{ ∑min(K,fs/2f0[n])
k=1 sin (ϕk[n]) f0[n] > 0

0 f0[n] = 0
(3)

where K is the number of sine functions set in the additive synthesis.
In this paper we set K to 200, which means the number of harmonics
is 200. Here ϕk[n] is the phase of the k-th harmonic at timestep n,
calculated by

ϕk[n] = ϕk[n− 1] + 2πk
f0[n]

fs
. (4)

Since the pitch is required for sine excitation, to fit all acoustic
models, we use a pitch predictor model independently. The pitch
predictor, optimized by L2 loss, predicts the pitch from the raw mel-
spectrogram over several Conv1D layers.

As periodic and aperiodic components are generated separately,
the current source-NNFilter model may induce aberrant points in
the synthesized aperiodic components, especially in the stochastic
part of voiced sound related to the periodic components. Therefore,
it is necessary to establish dependence between the aperiodic and
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periodic components to enhance the controllability of the aperiodic
components and stabilize the model. As shown in Figure 2, we intro-
duce a weight predictor to achieve this goal. The model predicts the
hidden feature h and weight w from mel-spectrogram through the
prenet and the weight predictor, respectively, while taking w and 1-
w as the weights of the periodic and aperiodic filter estimator’s input
sp and ap. In this way, the sum of periodic and aperiodic compo-
nents matches the input mel-spectrogram in the frequency domain.
The calculation process of sp and ap is{

spc,t = wc,t ∗ hc,t

apc,t = (1− wc,t) ∗ hc,t
(5)

where t and c denote the frame and channel for each feature respec-
tively.

2.3. Supervision to GAN-based Vocoder
Based on the improved source-NNFilter model, we specifically use
its robust output as supervision to guild the learning of the GAN-
based vocoder.

2.3.1. Supervision in time-frequency domain

For a universal vocoder, we expect it to have strong robustness
to mel-spectrogram generated from the acoustic model of unseen
speakers, speaking styles, and languages. But an obvious mismatch
occurs between inference and training of a neural vocoder, resulting
in various types of artifacts and degraded speech quality. There-
fore, it is necessary to eliminate such mel-spectrogram mismatch.
As shown in Figure 1(c), we simply adopt the mel-spectrogram of
synthesized speech from a pre-trained source-NNFilter model to
replace the original mel-spectrogram during training and inference.
Due to the source-NNFilter model’s high robustness to the generated
mel-spectrogram from the acoustic model, there is no mismatch in
training and inference, which can avoid various artifacts in wave-
form generation.

2.3.2. Supervision in time domain

Sine excitation applied to a GAN-based vocoder to avoid periodic
errors has already been proven effective in SVS [10, 11]. But me-
chanical sounding similar to that which results from a source-filter
model may occur due to the mel-spectrogram mismatch. Since we
have solved the mismatch with time-frequency domain supervision
introduced above, we can directly use sine excitation for time do-
main supervision. Specifically, we use a UNet-like strategy as shown
in Figure 1(c). Sine excitation is downsampled at different scales by
downsampling networks and concatenated to the hidden features of
each upsampling network layer. In this way, the learning of the up-
sampling networks (for modeling harmonics) is supervised by sine
excitation. Here we only use the pitch as sine excitation in the up-
sampling networks, equivalent to p1[n] in Eq. (3), since pitch is suf-
ficient for improving the accuracy of harmonic modeling in a GAN-
based vocoder.

3. EXPERIMENTS

3.1. Data Configuration
All audio samples are resampled to 24KHz and 80-band log-
mel-spectrogram is extracted with a 1024-point FFT, 256 sample
frameshift, and 1024 sample frame length.

3.1.1. Training set

We use Mandarin and English speech as the training set. The Man-
darin recordings are from an internal studio-quality dataset with 251
hours from 308 speakers. For English, we use VCTK [18], which
contains 44 hours of speech from 110 speakers. The above data are
used to train a universal vocoder. The vocoder is trained to synthe-
size speech from mel-spectrograms generated by different acoustic
models, without requiring fine-tuning.

3.1.2. Testing set
We conduct both copy synthesis and Text-to-Speech (TTS) experi-
ments on various types of data.

Copy synthesis. We randomly select 10 speakers from the
training set as seen speakers. Another 10 unseen speakers are ran-
domly selected from AISHELL-3 [19] and LibriTTS [20]. For each
speaker, 50 utterances are adopted to conduct evaluations. Note that
ambient noise and slight reverberation are inevitable in AISHELL-3
and LibriTTS due to the recording conditions.

TTS. For TTS evaluation, we first train a multi-speaker multi-
lingual DelightfulTTS [21] using the same data as the vocoder train-
ing, conditioned on speaker ID and the language ID. We evaluate
audio quality generated from different TTS tasks to verify the robust-
ness of the universal vocoder. For the seen speakers, we randomly
select 10 speakers from the training set. The unseen speakers are the
same as the testing set in the copy synthesis test.

We test our approach on the following TTS tasks:

• (a) Low-quality speech few-shot: The few-shot TTS task is
evaluated using a low-quality speech dataset, recorded from
the mobile phone in a typical office room, with a 2-minute
speech per speaker. Two female and three male speakers are
involved.

• (b) Conversational TTS: The expressive conversational
speech synthesis task is evaluated by a conversation dataset,
10 hours in total, containing 2 speakers.

• (c) Unseen styles: The stylistic speech synthesis task is eval-
uated by a single-speaker multi-style dataset, 30 minutes in
total, with 5 styles, i.e., poetry, fairy tale, joke, story, and
thriller.

• (d) Emotional TTS: The emotional speech synthesis task is
evaluated by a single-speaker multi-emotion dataset, 12 hours
in total, with 6 emotions, i.e., sad, angry, happy, disgusted,
fearful, and surprise.

• (e) Cross-lingual TTS: The Cross-lingual TTS task is evalu-
ated by 2 speakers in the training set containing both Chinese
and English speech.

• (f) Unseen languages: The performance for languages, un-
seen to the vocoder training, is evaluated by a Thai dataset
containing 2 speakers with 4-hour Thai speech.

For (a), (b), (c), and (d), we fine-tune the base acoustic model for
diverse specific scenarios. For (f), we train another DelightfulTTS
model with the base acoustic model’s configuration. As the speak-
ers are already included in the base acoustic model, we can directly
use English/Chinese text, speaker ID from Chinese/English, and lan-
guage ID “English/Chinese” in the acoustic model for (e).



Table 2. Experimental results in terms of MOS for TTS.
Seen Spkr Unseen Spkr Few-shot Conversation Unseen Style Emotional Cross-lingual Unseen Lang

Multi-band MelGAN 3.65±0.09 2.95±0.08 2.70±0.07 2.81±0.10 2.58±0.10 2.50±0.10 2.55±0.12 2.78±0.11
DSPGAN-mm 3.98±0.11 3.95±0.10 3.40±0.08 3.89±0.07 3.54±0.08 3.51±0.09 3.71±0.10 3.63±0.08
HiFi-GAN 3.97±0.10 3.25±0.09 2.78±0.09 3.06±0.08 2.79±0.10 2.81±0.11 3.23±0.10 2.94±0.09
DSPGAN-hf 4.08±0.07 3.98±0.07 3.58±0.09 4.04±0.08 3.64±0.08 3.54±0.10 3.72±0.07 3.66±0.08
NHV 2.93±0.08 2.83±0.08 2.75±0.07 2.95±0.09 2.64±0.10 2.55±0.10 2.81±0.11 2.90±0.11

3.2. Model Details
We compare our proposed DSPGAN with various popular neu-
ral vocoders, including multi-band MelGAN [22], HiFi-GAN [5],
where the former targets a small footprint and low complexity and
the latter stands for top-level quality with larger model size. Ac-
cordingly, our DSPGAN has two versions – DSPGAN-mm and
DSPGAN-hf, which are based on multi-band MelGAN and HiFi-
GAN respectively. We also compare with NHV [17], which is a
vocoder based on the source-NNFilter model.

We use the original model configuration of HiFi-GAN V1,
multi-band MelGAN, and NHV in their papers. For our proposed
DSPGAN, downsample factors in the downsampling networks are in
reverse to the upsample factors in the upsampling networks, and the
number of corresponding channels is 32. We use the pitch extracted
from Harvest [23] with Stonemask, and the pitch/weight predictor
has 4 layers of Conv1D with 256 channels. For the discriminator and
training loss of all the above models, we follow the configuration in
HiFi-GAN [5]. Compared with HiFi-GAN/multi-band MelGAN, an
additional 1.16/0.82 Gflops computational complexity is assumed in
DSPGAN-hf/DSPGAN-mm.

3.3. Experimental Results
We conduct both objective and subjective evaluations for copy syn-
thesis. For TTS experiments, we synthesize speech from new text
and perform subjective evaluation accordingly. We use mel cep-
strum distance (MCD) as an objective metric and mean opinion score
(MOS) for subjective listening where 20 listeners are recruited to
evaluate the speech quality.

3.3.1. Copy synthesis
As shown in Table 1, multi-band MelGAN and HiFi-GAN face clear
quality degradation on re-synthesized speech for unseen speakers.
In contrast, degradation from seen to unseen speakers is not obvious
for NHV, showing its robustness to unseen speakers. Importantly,
DSPGAN-mm/DSPGAN-hf performs much better on unseen speak-
ers compared with their counterparts, thanks to the robustness that
benefited from the source-NNFilter model’s supervision.

Table 1. Results on copy synthesis in terms of MOS & MCD.
Seen speakers Unseen speakers

Model MOS MCD MOS MCD

Multi-band MelGAN 3.89±0.07 3.97 3.45±0.06 4.38
DSPGAN-mm 4.01±0.07 3.03 3.96±0.05 3.11
HiFi-GAN 4.23±0.05 2.33 3.84±0.06 2.59
DSPGAN-hf 4.24±0.06 2.31 4.10±0.06 2.36
NHV 3.88±0.07 2.59 3.81±0.06 2.52

Recording 4.51±0.06 - 4.48±0.06 -

3.3.2. TTS
For the TTS experiments shown in Table 2, DSPGAN-mm and
DSPGAN-hf show their superiority compared to other systems in
different testing scenarios. An interesting finding is the overall poor
performance achieved by the model of NHV directly used in wave-
form generation, which indicates the effectiveness of the supervision

by NHV for the proposed approaches, rather than the good perfor-
mance for the audio reconstruction of NHV. To intuitively present
the advantages of the proposed DSPGAN for avoiding artifacts,
spectrograms from DSPGAN-mm, multi-band MelGAN and NHV
are displayed in Figure 3. As shown in (a), (b), and (e), DSPGAN
can avoid discontinuous harmonics, pitch jitter, and harmonic errors,
due to the introduction of sine excitation. And in (c) and (d), since
extracted mel-spectrogram from the source-NNFilter model is used
as time-frequency domain supervision in DSPGAN, metallic and
noisy soundings are clearly avoided. In addition, as can be seen
in (f), compared with NHV, DSPGAN has more aperiodic compo-
nents at high frequency instead of only harmonics, which benefits
from the good modeling ability of the GAN-based vocoder and the
time-frequency domain supervision.

Multi-band MelGAN DSPGAN-mm Multi-band MelGAN DSPGAN-mm Multi-band MelGAN DSPGAN-mm
(a) Continuity error of harmonics (b) Pitch jitter (c) Metallic sounding

(d) Noisy sounding (e) Harmonic error (f) Mechanical sounding
Multi-band MelGAN DSPGAN-mm Multi-band MelGAN DSPGAN-mm NHV DSPGAN-mm

Fig. 3. The spectrograms of synthesized samples from DSPGAN-
mm, multi-band MelGAN and NHV.
3.4. Ablation Study
We conduct an ablation study to investigate the effectiveness of
designs in DSPGAN, including time domain supervision, time-
frequency domain supervision, and weight predictor. As shown in
Table 3, the MOS scores demonstrate that individually removing the
three components would lead to audio quality degradation. These
results indicate the advantages of the proposed approach in universal
audio reconstruction.
Table 3. The MOS test of ablation study. T-/TF-S denotes time/time-
frequency domain supervision.

Model MOS

DSPGAN-mm 3.93±0.05
w/o T-S 3.62±0.06
w/o TF-S 3.08±0.05
w/o weight predictor 3.77±0.05

4. CONCLUSIONS
In this paper, we propose DSPGAN, aiming to build a universal
vocoder by introducing the time-frequency domain supervision from
DSP for the GAN-based vocoder. With the supervision of mel-
spectrogram extracted from the signal of the DSP module and sine
excitation, DSPGAN effectively eliminates the mechanical sounding
of the DSP vocoder and artifacts of the GAN-based vocoder. Exper-
imental results show that the proposed universal DSPGAN achieves
good performance on various acoustic models, speakers, languages,
and speaking styles to synthesize high-fidelity waveforms.
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