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ABSTRACT

Low-resource speech recognition has been long-suffering
from insufficient training data. In this paper, we propose an
approach that leverages neighboring languages to improve
low-resource scenario performance, founded on the hypothe-
sis that similar linguistic units in neighboring languages ex-
hibit comparable term frequency distributions, which enables
us to construct a Huffman tree for performing multilingual
hierarchical Softmax decoding. This hierarchical structure
enables cross-lingual knowledge sharing among similar to-
kens, thereby enhancing low-resource training outcomes.
Empirical analyses demonstrate that our method is effective
in improving the accuracy and efficiency of low-resource
speech recognition.

Index Terms: Speech recognition, Acoustic model, End-to-
End Multilingual Model

1. INTRODUCTION

Automatic speech recognition (ASR) systems have gained
remarkable progress in the past few years. Nevertheless, the
present ASR systems cater to only approximately 100 out
of the 7000 spoken languages worldwide. To address this
limitation, multilingual models have garnered much atten-
tion. These models can learn universal features, transferable
from resource-rich to resource-limited languages, and sup-
port multiple languages with a single ASR model. Early
studies utilized context-dependent deep neural network hid-
den Markov models [1], which relied on hand-crafted pro-
nunciation lexicons. However, when adapted to low-resource
languages, such systems exhibit limitations due to the ab-
sence of sufficient modeling techniques. Attention-based
end-to-end (E2E) models simplify training and eliminate
the dependence on pronunciation lexicons [2, 3| 4]. Recent
studies employing E2E models have focused on learning uni-
versal representations at the encoding stage, using transfer

* denotes equal contribution.

learning techniques [, 16} [7, 18} 9} [10]], as well as on hierar-
chical embedding of phonemes, phones, and phonological
articulatory attributes [11]. Meanwhile, large pretrained
models [12 13| [14, [15] and multilingual speech corpora
(L6l 17, 118, {19} 20] have been investigated for learning pre-
trained representations.

In this paper, we aim to investigate the explicit transfer
of cross-language knowledge at the decoding stage, which
has been largely unexplored in prior studies that focus on
encoder representations. Based on linguistic studies on the
presence of similar modeling unit distributions in neigh-
boring languages [21], we propose an efficient method to
capture the similarity among these units, such as characters
and globalphones, at the decoding stage. Our approach uti-
lizes Huffman coding to automatically capture the similarity
among modeling units, relying only on monolingual data.
We introduce hierarchical Softmax (H-Softmax) [22], an ap-
proximation softmax inspired by binary trees, to model the
similarity during decoding. This structure enables similar
units to share decoder representations, thus improving model
performance, and also breaks down the expensive softmax
step into several binary classifications, thereby enhancing
model efficiency [23]. We design a vectorization algorithm
that can expedite the training and inference procedures, en-
abling our method to outperform the vanilla softmax on GPUs
in terms of efficiency.

With the combination of the two components, our method:

* Automatically captures cross-lingual modeling unit
similarity for multilingual ASR.

» Leverages H-Softmax to achieve higher efficiency and
reduce computational complexity.

While previous studies has utilized H-Softmax in the neu-
ral language model of ASR [24] 25]. However, to the best of
our knowledge, no existing work has investigated the direct
application of H-Softmax in the acoustic model. Furthermore,
our study is the first to explore the potential of H-Softmax for
low-resource multilingual ASR.
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Fig. 1. The flowchart of the proposed method. The blue lines
stands for determination relation, and the red line stands for
how the data goes through the model.

2. PROPOSED METHOD

In this section, we introduce the proposed method of this pa-
per, as shown in Fig [l We first use the training text data
to determine the Huffman code for each token as described
in subsection 2.1] Then we build the ASR model, where an
encoder takes in the source speech signals, and the decoder
predicts the Huffman code of target text with H-Softmax. At
the inference stage, the model predicts a sequence of post-
processed Huffman codes to text.

2.1. Huffman Code

Based on the assumption that neighbour languages share sim-
ilar token distribution, the concept of our proposed method
is to generate a representation code for each token via fre-
quency clustering. We first generate the Huffman code of
each token. Formally, given the multilingual token vocab-
ulary V' = {t1,ts,...t5}, where N is the vocabulary size,
we maintain the term frequency set S, = {p:, }¥;, where
the same token in different languages are considered as one
token. With S,,, we generate a Huffman tree of V' = {¢;}
via frequency clustering and further recursively generate the
Huffman code by assigning O to the left subtree and 1 to the
right subtree.

2.2. Model Architecture

For the ASR model, we use conformer [26] as the encoder and
transformer [27] as the decoder. For the decoder, we replace
the vanilla softmax with H-Softmax.

H-Softmax organizes the output vocabulary into a tree
where the leaves are the vocabulary tokens, and the interme-
diate nodes are latent variables [22]. We use the Huffman
tree generated in subsection[2.T]as the tree for H-Softmax that
there is a unique path from the root to each token, forming a
complete binary tree. We follow [22] and apply the binary

tree H-Softmax. The decoding procedure is transformed into
predicting one leaf node of the binary tree at each timestep.
Each leaf node, which represents a token, could be reached
by a path from the root through the inner nodes. Given the
transformer output hidden state h and trainable node repre-
sentation vectors {r; }, the final possibility of a leaf node w;
could be represented as:

path
P(label = w;) = H P(path;|ny)
o 1
pl—t[h o(rfh) if path;, = left, M
B 1—o(rfh) if path; = right.

where ny, stands for the kth node on the path from the root
to w; such as ng, ny and ng in Fig. |1} path, stands for the
branch leading towards w; which is left or right, and o(-)
stands for sigmoid function.

2.3. Efficient Implementation of H-Softmax

While decomposing the Softmax to a binary tree H-Softmax
reduces the decoding time complexity from O(V) to O(log(V)),
and the train time complexity remains O(Vlog(V)). Since pre-
vious H-Softmax implementation[23] is on CPU, considering
the order of magnitude difference between CPU’s and GPU’s
FLOPs, the challenge of improving the efficiency of model
training lies in designing an implementation of H-Softmax
for GPU training. We propose a vectorization algorithm to
accelerate training and decoding procedures on GPU.

Node ng
P(ng) =1
Node n; Leaf w3
P(ny) = P(ng)P(lefting) P(wgz) = P(ng)P(right|ng)
Leaf w, Leaf wo Leaf ws

P(wy) = P(ny)P(leftiny)  P(ws) = P(ny)P(rightlny)  P(ws) = P(no)P(right|ng) * 1

Fig. 2. A typical H-Softmax tree structure. Leaf w3 has a
virtual child with the same probability of aligning each leaf
node to the same depth, so it is conceptually possible for path
vectorization.

To explain the core idea of our vectorization algorithm,
we show a typical H-Softmax tree structure in Fig[2] Then,
we can vectorize log-probability calculations from Eq[I]to the
followings:

log P(w1) log[o(rTh)o(rIh)]
log P(wz) | = |loglo(r{h)(1 —a(rgh))]
log P(w3) log[l — o(rTh)]

Lxo(rTh)+0  1xo(rlh)+0

= Z log | 1xo(rfh)+0 —1xo(rih)+1
colummn —1 % J(Tirh) + 1 0 * O'(’I"gh) + 1
= Z log(Sign o o(p) + Bias)
column

where Sign is a 3 by 2 matrix of os’ signs, Bias is a 3 by
2 matrix of os’ biases and p is the result vector of the in-



ner product between node vectors and h. After building the
Huffman tree, the Sign and Bias matrices are fixed. So in
the training stage, leaf node log probabilities can be acquired
only by vector operations.

For decoding, we only need leaves with the highest prob-
abilities. To directly calculate this objective, different from
training, we also develop a path-encoding-based multi-layer
beam searching on GPU for H-softmax{ to retain the time ef-
ficiency advantage of time-space complexity O(log(V)) com-
pared to vanilla softmax’s O(V).

3. EXPERIMENT EVALUATIONS

In this section, we evaluate the proposed method in two
low-resource settings. To examine the effectiveness of our
method in more extensive settings, specifically in the same
language group and cross-language groups, we first simulate
a low resource setting by down-sampling from a speech-to-
text multilingual large-scale dataset. To further verify the
performance on natural low-resource languages and other
token modeling units, we test our method on an extremely
low-resourced zero-shot cross-lingual speech-to-phoneme
setting. For the high-resource setting, where every token
could be fully trained, modeling of neighbors could no longer
be useful, and thus our experiments focus on the low-resource
setting.

3.1. Data Description

We sample our speech-to-text datasets from Common Voice
Corpus 11.0. We selected three different linguistic groups:
Romance, Slavic, and Turkic. For each group, we selected
five languages from the corpus and constructed training and
testing sets with the validated data of each language. With
the data size of many existing datasets being around 20~30
hours [28, 29], we downsampled the training data to the
extent of 30 hours per language on average to simulate a
low-resource setting. As a result, the total size of training
data changed from 5492 hours to 450 hours, with the general
downsampling ratio A = 0.082. Different downsampling
ratios are used for different languages to counter the imbal-
ance of data size among languages. For a set of languages
{L1,..., L} with their proportion {p1,...,pmm} , the down-

sampling ratio for language L; is obtained by \; = E’;Z_ - lpq A,
where  is a smooth coefficient that we set to 0.5. The size
of testing sets is the lesser of 10% of the validated data and
10,000 utterances.

For speech-to-phoneme datasets, we use UCLA Phonetic
Corpus [[19]. The Edo-Ancient Tokyo (bin), Kele-Congo
(sbc), Malayalam-Malay (mal), Creole-Cape Verde (kea),
Klao-Liberia (klu), Arabic-Tunisian Spoken (aeb), Makasar-
South Sulawesi (mak), Finnish-Finland (fin), Abkhaz-North
Caucasian (abk) and Aceh-Sumatra (ace) are testing lan-
guages and other languages are used for training.

Table 1. Speech-to-text datasets statistics.

Group Language Training | Testing

(Hours) | (Hours)

Catalan (ca) 76.3 15.3

Spanish (es) 37.6 144

Romance | French (fr) 55.7 134

Italian (it) 334 15.0

Portugal (pt) 20.7 11.4

Belarusian (be) 63.0 13.9

Czech (cs) 42.5 5.8

Slavic Polish (pl) 37.8 12.3

Russian (ru) 27.3 14.5

Ukrainian (uk) 234 7.2

Bashkir (ba) 29.6 12.6

Kyrgyz (ky) 11.3 3.8

Turkic Turkish (tr) 16.9 8.4

Tatar (tt) 10.0 3.0

Uzbek (uz) 18.1 10.4

Table 2. Speech-to-phoneme datasets.

Language Dataset \ Hours
UCLA Phonetic Corpus | Training (87 lang.) 1.86
(97 languages) Testing (10 lang.) 0.14

3.2. Model Training

For acoustic features, the 80-dimensional log-Mel filterbanks
(FBANK) are computed with a 25ms window and a 10ms
shift. Besides, SpecAugment [30] is applied to 2 frequency
masks with maximum frequency mask (F = 10) and 2 time
masks with maximum time mask (T = 50) to alleviate over-
fitting.

Both H-Softmax and Softmax models are trained using
the same network structure. The networks are constructed us-
ing WeNet toolkit [31]{1_-] Two convolution sub-sampling lay-
ers with kernel size 3x3 and stride 2 are used in the front of
the encoder. For model parameters, we use 12 conformer lay-
ers for the encoder and 6 transformer layers for the decoder.

Adam optimizer is used with a learning rate schedule
with 25,000 warm-up steps. The initial learning rate is
0.00005. 100 max epochs for speech-to-text datasets and
80 max epochs for speech-to-phoneme datasets.

3.3. Speech-to-text Recognition Evaluation

We conducted two sets of experiments on speech-to-text
datasets: training with languages within one language group
and training with languages across language groups. We tok-
enized the transcriptions at the character level as we verified
that it outperforms tokenizing in the sub-word level (such as
BPE)E] As shown in Table |4, when training with languages

! Our implementation is https://github.com/Derek-Gong/hsoftmax
Preliminary experiments on Slavic language group with traditional
Softmax results in a CER of 8.5% for character-level tokenization, 8.9% for



Table 3. PER% on speech-to-phoneme datasets.

Model L bin | sbc | mal | kea | klu | aeb | mak fin | abk | ace | Overall
Softmax 704 | 87.4 | 98.0 | 834 | 86.2 | 84.1 | 84.5 | 94.2 | 75.0 | 75.5 85.2
H-Softmax || 38.0 | 68.9 | 80.8 | 59.6 | 62.9 | 60.9 | 73.7 | 75.2 | 70.9 | 48.6 64.7
Table 4. CER% on speech-to-text datasets. Models are =~ Table 5. CER% on speech-to-text datasets. Models are

trained with languages within the same language group.

trained with all the languages across language groups.

Model ca es fr it pt | Overall Model ca es fr it pt | Overall
Softmax 55| 941|121 | 88| 9.7 9.1 Softmax 73| 94 151 | 84| 218 12.4
H-Softmax 53| 88 | 11.3 | 84 | 10.0 8.8 H-Softmax 57 9.0 | 113 | 73| 154 9.7
Model be cs pl ru uk | Overall Model be cs pl ru uk | Overall
Softmax 50| 54| 92| 11.6 | 11.5 8.5 Softmax 58| 58| 85106 | 115 8.4
H-Softmax 48 | 54| 88| 104 | 11.6 8.2 H-Softmax 61| 59| 82| 85| 98 7.7
Model ba ky tr tt uz | Overall Model ba ky tr tt uz | Overall
Softmax 169 | 183 | 14.0 | 10.2 | 20.6 16.0 Softmax 11.8 | 13.7 | 123 | 7.6 | 13.5 11.8
H-Softmax || 144 | 17.2 | 12.8 | 9.1 | 16.3 14.0 H-Softmax || 11.0 | 13.6 | 10.3 | 7.1 | 13.7 11.1

within the same language group, our Huffman code achieves
better performance (character error rate, CER%) than tradi-
tional Softmax for all three groups, which demonstrates the
effectiveness of our method. Results in Table [3] show that
our method can also make improvements when training with
the combined data in 15 languages across different language
groups, showing that our method works in a more extensive
range of scenarios than we expected. In addition, our method
is more robust as there are no languages with a distinctively
high error rate, unlike traditional Softmax.

3.4. Zero-shot Cross-lingual Speech-to-phoneme Recog-
nition Evaluation

Our proposed model demonstrated superior performance
compared to the conventional model (phone error rate,
PER%) across all languages on the UCLA Phonetic corpus,
as presented in Table 3] Overall, our approach outperformed
the softmax baseline by a significant margin of 20.51% PER.
On the ‘bin’ language, the performance gap between soft-
max and H-softmax was 32.33%. These results showcase
the effectiveness of our method in automatically constructing
universal representations for multilingual ASR and achieving
zero-shot cross-lingual phoneme recognition.

3.5. Decoding Speed

We observed decoding acceleration with our proposed H-
Softmax model in Table[6] Decomposing the Softmax output
layer to a binary tree reduces the complexity of obtaining
probability distribution from O(V) to O(log(V)), which leads
to improvement in efficiency. The results also show that the

BPE (vacab size = 500) and 9.6% for BPE (vacab size = 5000).

Table 6. RTF (real-time factor) of the decoding process of
Table[5] 3 languages are selected to show the decoding speed
with different tokens per sentences (tok/sent).

Model tr pl ru

32.6 tok/sent

47 .4 tok/sent

63.1 tok/sent

Softmax

0.022

0.023

0.026

H-Softmax

0.018

0.018

0.020

sentence length (tokens per sentences) determines the decod-
ing time difference between Softmax and H-softmax. Longer
sentences take more time steps for inference, and the time
difference between the two models exponentially increases.

4. CONCLUSION

This paper proposes an automatic method to generate cross-
lingual representations, which facilitate the acquisition of
cross-lingual universal features in neighboring languages.
Our approach employs Huffman coding, which utilizes to-
ken frequencies (characters, globalphones, etc.) to bridge
different languages. Furthermore, we introduce H-Softmax,
which improves model performance by enabling similar units
that share Huffman binary representations and accelerates
decoding compared to traditional Softmax methods. As fu-
ture work, we aim to design binary codes that incorporate
not only shallow frequency terms but also more semantically
meaningful features, such as token embeddings.
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A. HUFFMAN CODING

Formally, given a set of m languages {L;};", and the correspond-
ing character sets S* = {ci,ch,...cl,; }, where V" is the character
vocabulary size. For each language L; individually, we maintain the
term frequency S; = {pcé } of each character j in monolingual data.

Term frequency is defined as follow:

L 2)
pci. = —vi .
’ Z;/:l fci

Where f_; is the raw count of a term c§~ in the monolingual data.
J

Algorithm 1 Generating the Huffman Tree of Characters
Require: S,
Assign leaf nodes { N, } for elements in .S),;
J

sort {NC;:_} based on {pc§} order to form a priority queue

Q;

while sizeof(Q) > 2 do
Remove 2 lowest probability nodes N, and N, from Q;
Create a new internal node N, with N, and [NV}, as chil-
dren, probability p. < sum of p, and py;
Add N.to @ ;

end while

N <« last node in ()

return N

Each element in S}, is assigned a leaf node N_; and then pushed
into a priority queue Q. The priority is determined by the probability
Peis that the lower probability Pei has higher priority in the queue
Q. Then the algorithm generates Huffman tree by removing the 2
highest priority nodes [N, and NN}, from () and then merge them into
a new node N, which takes the higher priority node of the two re-
moved nodes as the left children and the other as the right children.
The priority p. is determined by the sum of p, and p,. We repeat
this process until there is only one node N in @, then N is the root
node of the Huffman tree.

Algorithm 2 function code(N, ¢), Huffman Coding of Char-
acters
Require: N, c < None
N, N, < children of N
if N, is not leaf node then
{code,i } + code(N;,c+0)
else ’
codey, =c+0
end if
if V.. is not leaf node then
{code i } + code(N,,c+1)
else ’
codey, =c+1
end if
return {COdeC]i_}

Given the Huffman tree root node IV, as shown in Algorithm
recursively we generate the Huffman code code,.; for each leaf node
N_i. The root node N starts with an empty repreéentation ¢, for each
nocie the code of its left children IV; is ¢+ 0, and the code of its right
children N, is ¢ + 1. We can recursively traverse the tree and give
every leaf node a corresponding code codecj_ .

Algorithm 3 Arbitrary Binary Tree Based H-Softmax

Require: N, vocab_size, depth, inner_size, hidden _size
/*Preprocessing before training™*/
for i from O to inner_size — 1 do
non-leaf node;.index < 1
end for
Index, Sign, Bias
depth)
for each leaf; € N do
path; < the path from root N to lea f;
for each node; € path; do
if node ;11 is node;’s left child then
Index;; < node;.index
else if node; 1 is node;’s right child then
Indezx;; < node;.index
Signij +— —1
Biasij +—1
end if
end for
end for
/*Forward pass*/
h + sigmoid(hidden_vecs x embedding)
H <+ stack h vertically vocab_size times
H < H is index selected by Index in the last dimension
log_probs + > log(Sign * H + Bias)

< zero matrices of (vocab_size,

column
return log_probs

B. H-SOFTMAX

In order to vectorize calculations on a binary tree (Fig[2), we need
to vectorize paths from root to leaves first. For a path, every time it
turns left or right, we multiply the probability of this path by 1—o (h)
or o(h) in which h is inner product of current node’s hidden vector
and embedding vector fed into H-Softmax. When the path goes to its
leaf node, the accumulated probability of a token is obtained. Thus,
a complete path can be composed of three kinds of path elements:
1 — o(h), o(h), or 1 which are corresponding to left node, right
node, or padding node (dot line in Fig[2). We need the padding
node to pad each path to depth of the tree. Finally, the accumulated
probability is a product of all of the path elements.

Now, let’s focus on these path elements. Remember that o (h) is
a variable for each different sample, while path elements’ sign (-1,
1, 0) and bias (1, 0, 1) is fixed because the tree structure is fixed.
So, we can extract signs and bias of a path into two row vectors
path_sign_encoding; and path_bias_encoding;, then stack them
vertically to matrices of Sign and Bias. Meanwhile, we can stack



h from all non-leaf node to one column vector. Because of log op-
eration, padding nodes which is expressed by sign O and bias 1 is
automatically eliminated.

We present above algorithms in Algorithm 3] And we need
to emphasize that in practice the intermediate matrix H is index
selected so that its column number is reduced from inner_size to
depth. Since depth is roughly log(vocab_size), this step is cru-
cial to maintain the algorithm in time complexity of O(vocab_size x
hidden_size+vocab_sizexlog(vocab_size)) instead of O(vocab_sizex
hidden _size+vocab_size?) while it’s O(vocab_sizexhidden _size)
for vanilla softmax.
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