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ABSTRACT

The clustering algorithm plays a crucial role in speaker diarization
systems. However, traditional clustering algorithms suffer from the
complex distribution of speaker embeddings and lack of digging
potential relationships between speakers in a session. We propose
a novel graph-based clustering approach called Community Detec-
tion Graph Convolutional Network (CDGCN) to improve the perfor-
mance of the speaker diarization system. The CDGCN-based clus-
tering method consists of graph generation, sub-graph detection, and
Graph-based Overlapped Speech Detection (Graph-OSD). Firstly,
the graph generation refines the local linkages among speech seg-
ments. Secondly the sub-graph detection finds the optimal global
partition of the speaker graph. Finally, we view speaker cluster-
ing for overlap-aware speaker diarization as an overlapped commu-
nity detection task and design a Graph-OSD component to output
overlap-aware labels. By capturing local and global information, the
speaker diarization system with CDGCN clustering outperforms the
traditional Clustering-based Speaker Diarization (CSD) systems on
the DIHARD III corpus.

Index Terms— speaker diarization, graph convolutional net-
work, speaker clustering, community detection

1. INTRODUCTION

Speaker diarization is a problem of grouping speech segments in
an audio recording according to the speakers’ identities. We have
witnessed the rising popularity of speaker diarization over recent
years for its significant applications of minutes of meetings, multi-
speaker transcription, pre-processing for automatic speech recogni-
tion (ASR) [1][2], and so on. As the deployments for scenarios have
grown in complexity, speaker diarization systems confront many dif-
ficulties, such as the unknown number of speakers and handling the
overlapped speech.

Clustering-based approaches are widely used in speaker diariza-
tion because it allows for flexible and scalable speaker modeling
using various techniques [3][4][5]. There are three modules in
clustering-based Speaker Diarization (CSD) systems: speaker em-
bedding extractor, clustering module, and post-processing module.
Typically, the clustering modules in CSD systems utilize conven-
tional clustering algorithms, such as Agglomerative Hierarchical
Clustering (AHC) [6][7], Spectral Clustering (SC) [8][9][10] and
K-means[11], to perform speaker embeddings clustering. However,
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Fig. 1: An illustration of the speaker diarization system pipeline
with the CDGCN clustering method. The Rich Transcription Time
Marked (RTTM) is the output of the speaker diarization systems.

traditional conventional clustering algorithms suffer from compli-
cated distribution of speaker embeddings [12] and is sensitive to
hyper-parameter. For example, SC assumes the sizes of clusters are
relatively balanced, while K-means assumes the clusters are spheri-
cal. Moreover, the performance of AHC is affected by the threshold
sensitively. These assumptions limit the speaker clustering perfor-
mance and degrade the diarization quality.

The distribution of speakers is hard to be modeled with Eu-
clidean structures, because of the complex interrelation among
speakers. Graph Convolutional Network (GCN) [13] is proposed to
handle the data of non-Euclidean structure. Many GCN-based clus-
tering methods are recently proposed for large-scale embeddings
clustering instead of relying on hand-crafted criteria. Tong et al.
[14] adopted Detection Segmentation Graph Convolutional Network
(DSGCN) for semi-supervised speaker recognition. Wang et al. [15]
used a GCN to refine speaker embeddings for affinity matrix on
speaker diarization system.

Inspired by these works, we proposed a new GCN-based clus-
tering approach with community detection for speaker diariza-
tion named Community Detection Graph Convolutional Network
(CDGCN). We regard the clustering of speaker embeddings as a
speaker graph generation and sub-graph detection task. The key
idea is to build a refined speaker graph for segment embeddings
and globally partition speaker graph to assign speaker labels for
segments. The CDGCN-based clustering method also can assign
multi-labels for each node to handle overlapped speech.

The remainder of this paper is organized as follows. In Section
2, we revisit graph convolutional networks. The proposed approach
is addressed in Section 3. In Section 4.1, we describe the dataset of
our experiments. In Section 5, we evaluate the proposed systems on
the DIHARD III [16]. Finally Section 6 concludes this work.
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2. GRAPH CONVOLUTIONAL NETWORK

In our work, a modified GCN [17] model was adopted to build
speaker graphs. The input of the GCN model is an embedding ma-
trix H ∈ RK×D together with an adjacency matrix A ∈ RK×K ,
where K is the number of nodes in a graph and D is the dimension
of the embeddings. The feedforward of the GCN model can be
summarized in two steps:

(1) Aggregation: The aggregation processing allows each node
to learn the information from neighbors on the graph. After graph
aggregation, the GCN layer transforms H(l) into a hidden feature
matrix H(l+1). The aggregation is formulated as follows:

H(l+1) = σ([H(l) ∥ ÂH(l)]W (l)) (1)

where H(l) ∈ RK×D(l)

, H(l+1) ∈ RK×D(l+1)

denotes the output
data with D(l+1) dimensions in (l+1)-th layer, σ is the Relu activa-
tion function, W (l) ∈ R2D(l)×D(l+1)

is a learnable weight matrix
in the l-th layer, Â is the normalized and regularized affinity matrix
with K × K size and each row is summed up to 1. “∥” denotes
matrix concatenation operation along the feature dimension. The
normalized affinity matrix Â is formulated as:

Â = D̃
− 1

2 ÃD̃
− 1

2 (2)

where, Ã = A+I is the adjacency matrix with self connection,
I is the unit matrix and D̃ denotes the degree matrix of Ã with
D̃ii =

∑
j Ãij .

(2) Prediction: Finally, the prediction labels of nodes Y =
{y1, y2, ..., yK} ∈ RK are generated by two stacked linear layers
with a softmax function. The labeling principle is that yk=1 if there
is a linkage between the pivot node and the k-th node; otherwise
reverse. The GCN is trained by Binary Cross Entropy (BCE) loss.

3. PROPOSED APPROACH

3.1. System pipeline

The CDGCN-based speaker diarization system pipeline is shown in
Figure 1. Firstly, input samples are split into segments with slide
windows. Then, the embedding extractor converts speech segments
into fixed dimension vectors called x-vectors X ∈ RN×D where
N is the number of segments and D is the feature dimension of an
embedding. We adopt a ResNet-34-SE model to build the extractor.
After that, we construct the raw speaker graph by calculating cosine
similarity scores between embeddings. The CDGCN-based cluster-
ing module takes the raw speaker graph and outputs overlap-aware
speaker labels. The diarization results follow from the labels.

3.2. CDGCN-based clustering

The overall block diagram of CDGCN is shown in Figure 2. The ba-
sic concept of the CDGCN is to estimate the topological connection
of speech segments and use a community detection algorithm to find
the optimal partitions. CDGCN-based clustering method contains
graph generation, sub-graphs detection, and graph-based overlapped
speech detection (Graph-OSD). Each component of CDGCN will be
described as follows.

3.2.1. Graph Generation

The input of clustering module is a raw graph G = (V,E), where
nodes V = {v1, v2, ..., vN} ∈ RN represent speech segments,
edges E = {e1, e2, ..., eN} ∈ RN×N are cosine similarity scores

between pairs of embeddings and N is the number of segments. The
raw graph is a complex full-connected graph which is vulnerable to
noise. In order to tackle this problem, we design a graph generation
to refine interrelations between speech segments according to local
context information. Firstly, we adopt the K-Nearest Neighbors
(KNN) algorithm to create sub-graphs for each node. The sub-graph
Gn = (Vn, En) is built for n-th pivot node, where Vn ∈ RK is the
top-K nearest neighbor of pivot node and En ∈ RK denotes the
similarity among n-th pivot node and its neighbors. For example, as
shown in Figure 2 (a), let K and the nodes number N be 6 and 12 re-
spectively. The raw speaker sub-graphs Gn are fed into GCN model
mentioned in Section 2 and the refined sub-graphs Ĝn = (Vn, Ên)

are predicted, where Ên = {ê1n, ê2n, ..., êKn } ∈ RK are predicted
edges and êKn indicates the probability that pivot node and k-th node
belong to the same cluster. Then, the refined speaker sub-graphs are
merged to acquire the total refined speaker graph Ĝ = (V, Ê) which
is a weighted undirected graph. In the graph merging stage, multiple
edges between two nodes keep the bigger one.

3.2.2. Sub-graphs Detection

One of the main obstacles is to partition the refined graph robustly.
The sub-graphs detection predicts the most-likely community label
of nodes on the speaker graph. Zheng et al. [18] use Leiden commu-
nity detection[19] with Uniform Manifold Approximation and Pro-
jection (UMAP) for speaker clustering on the simulated meetings.
In this part, we adopt Leiden community detection for sub-graphs
detection. Community is interpreted as clusters of densely intercon-
nected nodes that are only sparsely connected with the rest on the
graph [20]. In our work, each community label corresponds to a
speaker label. Community detection aims to group nodes with an
optimization quality function. The higher the Q is, the better the
clustering result we may obtain. The quality function Q [19] is rep-
resented as:

Q =
∑
c

(
mc − γ

K2
c

4m

)
(3)

where mc is total internal edge weight of community c, m is the total
number of edges, Kc is the total weighted degree of nodes in com-
munity c, and γ is a resolution parameter that controls the number of
communities. Kc is given by

Kc =
∑

i|σi=c

ki (4)

here, σi denotes the community label of node i, and ki is the
weighted degree of node i.

The Leiden community detection consists of the following
phases:

(1) Initial partition: The Leiden algorithm assigns each node to
a singleton community.

(2) Nodes Local moving: The individual node is moved from
one community to another to find a better partition P with higher Q.

(3) Partition refinement: In the refinement phase, the refined
partition Prefined is initially set to a singleton partition. And then,
the nodes in each community are merged locally to refine partition
Prefined. After performing refinement, communities in P may be
split into subcommunities.

(4) Graph aggregation: An aggregation graph is constructed
based on Prefined. In this phase, the node belonging to the same
community are merged into a new node.

(5) Iteration: Phases 2-4 are repeated until no further improve-
ments of quality function can be made.
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Fig. 2: The architecture of Community Detection Graph Convolutional Network based clustering algorithm. “Spk1st” denotes the most-likely
speaker labels of nodes, and “Spk2nd” indicates the second most-likely speaker labels of nodes.

3.2.3. Graph-OSD

Overlapped speech handling is the critical processing of speaker
diarization. In this work, we propose a Graph-based Overlapped
Speech Detection (Graph-OSD) module in CDGCN algorithm. As
shown in Figure 2 (c), we view the speaker clustering of diarization
as overlapped community detection task. The Graph-OSD is a two-
stage model to handle overlapped speech and assume there are at
most two speakers at once.

In the first stage, we predict the second community label for
each node. According to the refined graph, and the partition created
by sub-graphs detection, we calculate the belonging coefficient b(c,i)
for each node i, where b(c,i) presents the strength of membership that
i-th node belongs to community c. This process is defined as:

b(c,i) =
∑

j|σj=c

eij (5)

here, σj denotes the community label of node j, and eij is the
weighted edge between node i and node j from refined graph. Based
on the most-likely community label and belonging coefficient, the
second most-likely community c̃i of node i is given by

c̃i = argmax
c∈C,c ̸=ĉi

b(c,i) (6)

where C is the estimated communities number and ĉi is the most-
likely community label.

The next stage predicts the overlapped speech regions and ig-
nores the second speaker labels at non-overlapped regions. We
perform an LSTM-based OSD model described in [21] to predict
the frame-level overlapped/non-overlapped regions of speech. The
model is an end-to-end overlapped speech detection whose output
is a frame-level binary sequence, and is trained with the binary
cross entropy loss function. Finally, we output the two most likely
speakers for each frame in overlapped speech region.

4. DATASETS AND EXPERIMENTAL SETUP

4.1. Data preparation

We evaluate our speaker diarization systems on the DIHARD III cor-
pus. The DIHARD III contains the development (DEV) and evalua-
tion (EVAL) set from 11 domains exhibiting wide variation in equip-
ment. The overlap ratio of DIHARDIII Core and Full dataset is

8.75% and 9.35%, respectively. The detailed training sets of dif-
ferent modules on our speaker diarization systems are described as
follows.

• Speaker embedding extractor: We train the embedding extractor
with the VoxCeleb2 dataset. The VoxCeleb2 contains over 1 mil-
lion utterances from 5,994 speakers.

• GCN: We extracted 256-dimensional embeddings for VoxCeleb2.
We constructed the sub-graph for each utterance. Each sub-graph
is a training instance of the GCN model.

• LSTM-based OSD: We adopted the DIHARD III DEV to train the
OSD module.

4.2. Experimental setup

During training, we extracted the 81-dimensional log-mel filter-bank
(FBank) with a window size of 25ms and a 10ms shift. In our di-
arization systems, we split the audio into 1.5s length segments with
0.75s windows shift, and extracted the embeddings of segments with
the ResNet-34-SE model from ASV-Subtools[22]. In the GCN mod-
ule, we stacked four GCN layers and set the K of KNN to 300. The
resolution γ of Leiden community detection module is set to 0.6 and
the threshold of AHC is set to 0.17.

5. EXPERIMENTAL RESULTS

5.1. Speaker clustering methods

The first experiment explores the performance of different cluster-
ing algorithms on speaker diarization systems. The official baseline
system provided by DIHARD III [16] consists of Time Delay Neu-
ral Network (TDNN) based x-vector extractor, Agglomerative Hi-
erarchical Clustering (AHC) module, and Variational Bayes hidden
Markov (VB) re-segmentation module. Our system pipeline is men-
tioned in Section 3.1, and the difference among S1∼S5 is the cluster-
ing method. For Systems S1∼S3, we respectively performed AHC,
K-means, and NME-SC (Normalized Maximum Eigengap Spectral
Clustering)[26] as clustering methods. In particular, we adopted
Normalized Maximum Eigengap (NME)[26] method to estimate the
number of speakers for K-means. We performed the Leiden com-
munity detection algorithm on the CDGCN clustering method for
system S4 and system S5. In order to investigate the effectiveness of
the Graph-OSD module, we removed the module on system S4. In



Table 1: The comparison among different CSD systems on DIHARD III with 0ms collar condition. We evaluated the diarization systems are
evaluated on core and full datasets with oracle Voice Activity Detection (VAD). The core is a subset of the full evaluation set and strives for
balance cross-domains. DOVER-Lap [23] is a subsystems fusion algorithm.

DER(%)
ID Methods DEV EVAL

Core Full Core Full

Official Baseline[16] TDNN+AHC 21.05 20.71 21.66 20.75
TDNN+AHC+VB 20.25 19.41 20.65 19.25

Recent Works

ResNet+SC[24] 16.63 16.51 16.56 15.79
ResNet+VBx[24] 16.66 16.26 16.67 15.74
TDNN+VBx w/ OSD[25] 14.88 13.87 18.20 15.65
Res2Net+VBx w/ OSD (DOVER-Lap)[25] 15.18 14.04 18.47 15.81

S1 ResNet+AHC 19.31 19.94 19.27 18.90
S2 ResNet+K-means 25.34 23.05 23.71 21.24
S3 ResNet+NME-SC 18.56 17.89 17.98 16.81
S4 ResNet+CDGCN w/o Graph-OSD(ours) 17.10 16.43 16.50 15.38
S5 ResNet+CDGCN(ours) 15.40 13.67 15.97 13.72

Table 2: Ablation study on CDGCN-based speaker diarization sys-
tem. + here denotes stacking our components of CDGCN. Oracle
OSD indicates that the Graph-OSD replaces the overlapped speech
label predicted by the LSTM model with ground truth labels.

DER(%)
ID Method DEV EVAL

Core Full Core Full
S6 Raw-Leiden 24.92 22.03 25.18 21.59
S7 +KNN Graph 18.57 17.70 18.58 17.04
S4 ++GCN refinement 17.10 16.43 16.50 15.38
S5 +++Graph-OSD 15.40 13.67 15.97 13.72
S8 ++++Oracle OSD 11.09 8.94 11.48 8.94

those systems, we tuned the hyper-parameters, including the thresh-
old of AHC and resolution of CDGCN on DIHARD III DEV.

The experimental results are shown in Table 1. We evaluated
our systems under the same conditions as recent works [16][24][25].
By comparing the systems S1∼S4, the experimental results showed
that CDGCN assigned most-likely speaker labels for segments more
accurately than other clustering algorithms. The results from sys-
tem S5 demonstrated that the Graph-OSD module achieved better
handling of overlapped speech.

5.2. Ablation experiment

We designed the second experiment to investigate the contribution
of each module to CDGCN. As shown in Table 2, we analyzed the
gain from the CDGCN-based clustering method. First, we designed
an initial speaker diarization system S6 with the Leiden clustering
module only. The inputs of the system S6 are raw graphs, where
every node pair has a weighted edge. Many node pairs are linked in-
correctly, which causes the high Diarization Error Rate (DER) of the
initial system. Secondly, we applied the KNN algorithm to ensure
that only the edges between the pivot node and its top-K neighbors
are well-connected. This operation ignored many wrong linkages
and made the DER decrease rapidly. The GCN refines the linkages
between nodes according to their neighbors by adding GCN refine-
ment within a sub-graph context. After refinement, the DER is de-
creased from 17.04% to 15.38% on the Full EVAL dataset. We per-
formed the Graph-OSD module to further improve the system’s per-
formance, and achieved a DER of 13.72% on the Full EVAL dataset.
In order to evaluate the accuracy of second speaker labels produced
by CDGCN, we used oracle OSD labels for the graph-OSD module.

Table 3: MSE of speaker number prediction with different clustering
methods on EVAL dataset.

ID Method MSE
S1 AHC 3.80
S2 K-means 2.05
S3 NME-SC 2.05
S6 Raw-Leiden(ours) 4.45
S7 KNN-Leiden(ours) 2.38
S5 CDGCN(ours) 1.67

The results showed that the DER of the full EVAL dataset was im-
proved from 13.72% to 8.94% significantly. This demonstrated that
overlapped speech is a critical factor that limits system performance.

5.3. Speaker number prediction

In order to further evaluate the performance of clustering methods,
we calculated the Mean Square Error (MSE) of speaker number pre-
diction for the above clustering methods. As shown in Table 3,
the CDGCN outperformed the traditional clustering methods on the
speaker number prediction task. The inputs of the KNN-Leiden sys-
tem are speaker graphs constructed by KNN algorithm. When com-
pared the performance of KNN-Leiden and CDGCN algorithms, we
can see that GCN model boosts the MSE from 2.38 to 1.67 on EVAL
dataset. By optimizing the global quality function, CDGCN can find
a more appropriate graph partition to predict the number of speakers.

6. CONCLUSIONS

This paper proposes a novel speaker clustering method based on
the speaker topological graph for speaker diarization. We aim to
give consideration to both local and global information when clus-
tering. The proposed CDGCN-based clustering approach include
graph generation, sub-graphs detection, and Graph-OSD. The lo-
cal linkage between speech segments is inferred by a GCN model,
while the Leiden community detection algorithm is applied to find
the global partition of the speaker graph. To further improve the
performance of our speaker diarization system, we also proposed
a Graph-OSD component to handle overlapped speech for speaker
diarization. Experimental results demonstrated that CDGCN based
speaker diarization system outperformed conventional CSD systems
in the DIHARD III corpus.
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Barras, “LSTM Based Similarity Measurement with Spectral
Clustering for Speaker Diarization,” in Proc. Interspeech 2019,
2019, pp. 366–370.

[11] Quan Wang, Carlton Downey, Li Wan, Philip Andrew Mans-
field, and Ignacio Lopz Moreno, “Speaker diarization with
lstm,” in 2018 IEEE International conference on acous-
tics, speech and signal processing (ICASSP). IEEE, 2018, pp.
5239–5243.

[12] Jianbo Shi and Jitendra Malik, “Normalized cuts and image
segmentation,” IEEE Transactions on pattern analysis and ma-
chine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[13] Max Welling and Thomas N Kipf, “Semi-supervised classifi-
cation with graph convolutional networks,” in J. International
Conference on Learning Representations (ICLR 2017), 2016.

[14] Fuchuan Tong, Siqi Zheng, Min Zhang, Yafeng Chen, Hongbin
Suo, Qingyang Hong, and Lin Li, “Graph convolutional net-
work based semi-supervised learning on multi-speaker meeting
data,” in ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 6622–6626.

[15] Jixuan Wang, Xiong Xiao, Jian Wu, Ranjani Ramamurthy,
Frank Rudzicz, and Michael Brudno, “Speaker diarization with
session-level speaker embedding refinement using graph neu-
ral networks,” in ICASSP 2020-2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 7109–7113.

[16] Neville Ryant, Prachi Singh, Venkat Krishnamohan, Rajat
Varma, Kenneth Church, Christopher Cieri, Jun Du, Sriram
Ganapathy, and Mark Liberman, “The third dihard diarization
challenge,” arXiv preprint arXiv:2012.01477, 2020.

[17] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang,
“Linkage based face clustering via graph convolution net-
work,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 1117–1125.

[18] Siqi Zheng and Hongbin Suo, “Reformulating speaker di-
arization as community detection with emphasis on topological
structure,” in ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 8097–8101.

[19] V, A, Traag, L, Waltman, N, J, van, and Eck, “From louvain to
leiden: guaranteeing well-connected communities.,” Scientific
Reports, 2019.

[20] Jörg Reichardt and Stefan Bornholdt, “Statistical mechanics of
community detection,” Phys. Rev. E, vol. 74, pp. 016110, Jul
2006.
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