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ABSTRACT

Although music is typically multi-label, many works have studied

hierarchical music tagging with simplified settings such as single-

label data. Moreover, there lacks a framework to describe various

joint training methods under the multi-label setting. In order to dis-

cuss the above topics, we introduce hierarchical multi-label music

instrument classification task. The task provides a realistic setting

where multi-instrument real music data is assumed. Various hier-

archical methods that jointly train a DNN are summarized and ex-

plored in the context of the fusion of deep learning and conventional

techniques. For the effective joint training in the multi-label setting,

we propose two methods to model the connection between fine- and

coarse-level tags, where one uses rule-based grouped max-pooling,

the other one uses the attention mechanism obtained in a data-driven

manner. Our evaluation reveals that the proposed methods have ad-

vantages over the method without joint training. In addition, the

decision procedure within the proposed methods can be interpreted

by visualizing attention maps or referring to fixed rules.

Index Terms— Music Tagging, Hierarchical Classification,

Multi-label Classification, Instrument, Attention

1. INTRODUCTION

Multi-label music tagging is a classification task in which the goal is

to predict multiple semantic tags for a given music piece. Tags can

indicate the genres, moods and instruments of the music. Therefore,

this task is meaningful for applications such as music recommenda-

tion or music retrieval. Music tags organized in a tree-like structure,

i.e., a hierarchy as shown in Fig. 1, present the domain knowledge

(what kind of tags are musically correlated), bringing benefits in-

cluding improved tagging performance [1, 2, 3, 4]. While music

tagging datasets typically have a flat hierarchy [5, 6, 7, 8], there has

been growing interests in hierarchical tagging in the field of music

information retrieval [9].

Several works have tackled hierarchical music tagging. Parmezan

et al. have investigated hierarchical genre classification using con-

ventional machine learning methods without deep learning [10]. A

few works have studied deep neural network (DNN)-based hierar-

chical methods under a simplified problem setting. For example,

Garcia et al. tackled few-shot instrument classification for single-

instrument data [11], while Nolasco et al. have studied instrument

representation learning with single-note data [12]. Toward hierarchi-

cal multi-label music tagging task, Krause et al. reported on several

DNN-based hierarchical methods on singing activity detection [13].

Many of their discussions are devoted to training separate DNNs,

rather than training these DNNs jointly.

Although real music is typically polyphonic and multi-instrument,

many works have addressed hierarchical music tagging with sim-

plified data. Therefore, DNN-based hierarchical music tagging

under a realistic problem setting is yet to be discussed extensively.

Moreover, there lacks a framework to describe various joint training

methods under the multi-label setting. While using multiple sepa-

rate models is effective, DNNs have been shown capable of learning

hierarchical information during the joint training [1, 2, 3, 4, 11, 12].

In this paper, we address hierarchical multi-label music tagging

with joint training methods of a single DNN. To study hierarchical

multi-label music tagging, we introduce the multi-label music in-

strument classification task, which involves instruments organized

in a 2-level hierarchy. The contributions of this paper are as follows.

First, the task provides a more realistic scenario, where we address

real music that is typically polyphonic, multi-instrument and diverse

in genre. Second, We categorize and explore various joint training

methods for DNN under a framework similar to the categorization

of conventional hierarchical methods, to facilitate further exploration

of the fusion of deep learning and conventional techniques. Finally,

for the effective joint training in the multi-label setting, we propose

ResAtt and grouped max pooling (GMP) for applying a residual

attention layer or max pooling operations to model the connection

between fine- and coarse-level tags.

2. RELATED WORK

In the field of audio, existing studies on hierarchical classification

have primarily focused on sound event detection tasks. In [1], the

connection between coarse- and fine-level tags is formulated as a

grouped summation pooling. The formulation requires fine-level

predictions that are normalized by a softmax activation, which fo-

cuses on single-label tasks. Zharmagambeto et al. combines a DNN

with a decision tree [4], which encourages the DNN to learn a repre-

sentation that contains hierarchical information. However, a separate

classifier is used in the inference phase, so the classifier is not opti-

mized by hierarchical information.

Nolasco et al. studied hierarchical metric learning of music

instruments [12] in the Nsynth dataset [14] (single note by sin-

gle instrument). A polyphonic version of the instrument task was

addressed in [11] under the few-shot learning setting, with single-

instrument data taken from the stem tracks of MedleyDB dataset

[15]. After filtering out tags that are not sufficiently fine, e.g.,

“Drum”, hierarchies are induced on the basis of instrument cate-

gorization used in the music world [16]. This idea inspired us to

introduce our own tone-base hierarchy (shown in Fig. 1) into the

dataset that is used in our experiments.

Hierarchical multi-label music tagging is discussed in [13] in

terms of singing activity detection. Loss items are introduced to

build the connection between coarse and fine predictions made by a

single DNN to improve the detection performance. A framework to

describe various DNN-based hierarchical methods is also introduced

in [13], however, many of the studies have been devoted to separate

multi-model approaches, rather than training these models jointly.
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Fig. 1. Induced tone-base 2-level instrument hierarchy in OpenMIC dataset
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Fig. 2. Joint training approaches for DNN

3. PROPOSED METHODS

Suppose the Ndim-dimension representation of a music piece is ex-

tracted by a base DNN as Z
Ndim . The representation is then pro-

jected into fine-level probabilities, Pfine ∈ R
Nfine×1, by a classifier

through sigmoid activations. Binary classification is performed by

converting Pfine into binaries using tag-wise thresholds. A 2-level

(fine/coarse) hierarchy is assumed.

3.1. Hierarchical Approaches for Joint Training

Our main focus in this paper is jointly training a DNN for hierar-

chical multi-label classification. We begin by summarizing various

related methods similarly to the categorization of conventional hier-

archical techniques described in [13, 17], and demonstrate how deep

learning is combined with conventional techniques.

Level-wise approach. Conventionally, one model is prepared for

each level in the hierarchy [17, 13]. The idea has been adapted to

the joint training framework in [13], which could be illustrated as

the structure shown in Fig. 2 (a). Although this approach helps the

base DNN to learn hierarchical information, classifiers remain inde-

pendent during training. In [13], two loss items are introduced to

optimize these classifiers with hierarchical information.

Top-down approach. In convention, a model is first trained to clas-

sify coarse tags, then separate models are prepared at each coarse tag

to classify its child (fine-level) tags [17, 10, 13]. We summarize it as

“coarse first, fine last”. In order to adapt this approach to jointly train

a DNN, we connect a simplified soft decision tree (SDT) [18] simi-

lar to [4] after the base DNN. In an SDT, the fine-level probability is

the multiplication of the leaf node and its parent node (coarse-level

probability) [18], which is called the grouped multiplication between

a coarse tag and its child fine-level tags in Fig. 2 (b). Since a multi-

label task is assumed, softmax activations in the SDT are replaced

by sigmoid. Unlike [4], we use the SDT for inference, as the SDT

is jointly optimized during training. However, in the top-down ap-

proach, an error made in the coarse level is difficult to correct, which

may affect its fine-level performance [13].

Bottom-up approach. In the conventional bottom-up approach,

only a non-hierarchical (flat) model is trained with fine-level tags.

During inference, coarse tags are predicted by aggregating fine-level

predictions with pre-defined rules [13, 17]. We summarize it as “fine

first, coarse last”. The core problem of the conventional bottom-up

approach is that, models are not jointly optimized with “bottom-up

rules”, resulting in non-optimal performance. Another major draw-

back is similar to the top-down approach, where fine-level errors

propagate to the coarse level [13, 17].

A common rule for the bottom-up aggregation is that, when a

fine-level tag is assigned to a music sample, the parent coarse-level

tag will be assigned to the music as well, e.g., a music sample will

be annotated with “Woodwind” if it is annotated with “Flute”. We

call this rule as the grouped max-pooling (GMP), because the rule

is equal to applying max-pooling to different groups of child fine-

level tags. Obviously, the fine- and coarse-level tags in a hierarchical

dataset also satisfy the same rule [11, 13, 19].

We emphasize the concept of the bottom-up approach with

joint training, where DNNs are optimized jointly with aggregation

rules. Based on the fact that the fine- and coarse-level labels in a

dataset satisfy rules similar to max-pooling, we propose to apply

GMP during training (Fig. 2 (c)) to inform the DNN of the hier-

archical structure in the dataset and improve tagging performance.

3.2. ResAtt: Attention-based Bottom-up Method

We also propose ResAtt, which models the connection between fine-

and coarse-level tags by the attention mechanism. ResAtt can use

the attention map with elements valued between 0 - 100% to tell

the system which fine-level tags are and are not important for a

specific coarse-level tag. This idea is inspired by the insight that

max-pooling is equal to an operation which produces a 0/1 binary

attention map to select out the most important element from an in-

put vector. Hence, both proposed methods can be understood as

attention-based approaches.

As shown in Fig. 2 (d), a residual attention layer is used to gen-

erate the attention map for each coarse-level tag, denoted as W ∈

R
Nfine×Ncoarse ; the attention map is applied to fine-level predictions,

to finally predict coarse-level tags through the following formula:

Pcoarse = W
T
·Pfine ∈ R

Ncoarse×1
, (1)



where T is the transpose of matrix. A softmax activation is applied to

the Nfine dimension of attention map W to ensure that the resulting

coarse-level probabilities remain meaningful (below 100%).

In ResAtt, to obtain the prediction of coarse-level tags, high

quality results from the fine-level classifier are required first. This

helps to optimize the classifiers and base DNN jointly during train-

ing. Unlike the top-down or the joint training method with GMP,

which is informed of the hierarchical structure of the dataset via the

tree structure or the max-pooling rule, ResAtt has no access to such

prior knowledge, but explores proper aggregation rules in a data-

driven manner. In Sec. 5, we will discuss how this feature helps to

prevent fine-level errors from propagating to the coarse level.

Following [1, 11], the overall BCE loss is formulated as the

weighted summation of level-wise losses, i.e.,

LBCE = λL
fine

BCE + (1− λ)Lcoarse

BCE , (2)

where λ is the weight for fine level tags.

4. EVALUATION

4.1. Tone-base Hierarchical Dataset

OpenMIC [20] is a music instrument classification dataset that of-

fers a task close to real applications; 10-second music clips of vari-

ous genres are taken from the FMA dataset [19] and annotated con-

cerning 20 instruments in a multi-label manner. While official an-

notations only include the fine level, we introduce a 2-level instru-

ment hierarchy (Fig. 1) based on the tonal properties of instruments.

This pre-processing is similar to the methodology described in [11].

However, our hierarchy is different from [11] in that, we include

annotations that are considered not “fine” enough in [11] into our

hierarchy, such as “Mallet Percussion” or “Drums”, so we can use

all music clips provided by OpenMIC.

Since there is no official validation set for hyperparameter tun-

ing, 15% of the training set data is taken out for validation, following

the practice in [21]. Stratified sampling by scikit-multilearn library

[22] is used.

Many instruments remain not annotated in the OpenMIC

dataset, so the dataset is released with a masking file, telling

users what specific instruments are examined in a track. We

follow the common practice of using this masking file to calcu-

late the loss during training and the metrics during evaluation

[21, 23]. The pseudocode for loss calculation can be written as

Loss = LBCE(predictions[mask], label[mask]).

4.2. Experiments

We use the CNN14 architecture pretrained on AudioSet [24] as the

base DNN, where Ndim = 2048, and the fine level classifier is a

single linear layer. Raw music data are converted to mono-channel

at 16kHz sampling rate, which are further transformed into 64-bin

mel-spectrograms (frequency range: [50Hz, 8kHz]), via short-time

Fourier transform with 32-ms Hann window and 10-ms hop size.

The input audio length is the same as the clip length in OpenMIC.

We evaluate various approaches to compare them with our pro-

posed methods, of which the model size has been kept in almost

the same level. We train the following methods with eight different

random seeds and compute their performance metrics. Flat base-

lines. We train a CNN14 model as the flat baseline for the fine

level. Coarse-level predictions of the model is produced by applying

GMP at the inference phase (conventional bottom-up approach used

in [4, 13]). Fine-level results reported in [23] are compared with our

baseline. Level-wise approach. We evaluate the DNN shown in

Fig. 2 (a) with two parallel linear layers. We introduce loss items

proposed in [13] into our architecture and train the DNN with the

BCE loss in Eq. 2. Top-down approach. We evaluate the DNN with

an SDT classifier shown in Fig. 2 (b), where each level in the tree is

a single linear layer. Bottom-up approach with joint training. We

evaluate ResAtt in Fig. 2 (d), whose attention layer is implemented

by reshaping the output of a linear layer, which is as light weighted

as the level-wise or the top-down approach. We evaluate the pro-

posed joint training method with GMP as well. To compare with

ResAtt, we replace the attention mechanism with a linear projection

(LP) layer. Similarly, we replace max-pooling with average pooling

to form the grouped average pooling (GAP) method to compare with

the joint training method with GMP. We jointly train GAP and LP as

in Fig. 2 (c).

During the training, the batch size is 16. The maximum learning

rate is 1e-4. The first 5 epochs are trained with linearly increasing

learning rates (linear warm-up) to make the training more stable.

The Adam optimizer [25] with weight decay of 1e-4 is used. We

utilize SpecAugment [26] for data augmentation. Grid searches are

carried out for the weight λ in the loss function (Eq. 2), where λ ∈

[0.70, 0.75, 0.80, 0.85, 0.90]. The setting with the lowest validation

loss for fine-level tags is used for evaluation.

4.3. Metrics

For objective evaluation, we use the macro average of ROC-AUC,

PR-AUC (also known as mean average precision), and F1 score. All

metrics are calculated using the scikit-learn library [27]. F1 scores

are calculated on the basis of 0/1 binary predictions, which are pro-

duced by thresholds optimized on the validation set.

5. RESULTS

The average of evaluation results across various random seeds are

presented in Tab. 1, where digits denote various design choices.

Our model for fine-level classification outperformed PaSST-S

in [23]. This implies that our choice of base DNN as well as our

training settings are feasible.

The level-wise approach combined with loss items in [13] im-

proved coarse-level performance by a large margin, and improved

the fine-level performance especially for the F1 Score. However,

it is difficult to interpret the decision procedures within this model.

Meanwhile, the top-down approach is interpretable because of its

tree structure in the classifier [18]. In the coarse level, the top-down

approach has a performance similar to the level-wise approach, but

in the fine level, the approach resulted in deteriorated PR-AUC value.

As described in Sec. 3.1, its fine-level performance may have been

limited by its coarse-level performance.

The only difference between the proposed joint training method

with GMP and our baseline is that, the proposed method optimizes

the DNN with the GMP rule by joint training. The joint train-

ing method with GMP is interpretable through the GMP rule, e.g.,

“Woodwind” is predicted because at least one of “Flute”, “Clarinet”

or “Saxophone” is predicted with high probability. As mentioned

in Sec. 3.1, fine- and coarse-level annotations in the tone-base hi-

erarchical dataset satisfy rules similar to GMP, which explains the

large performance improvements brought by GMP joint training.

Replacing the max-pooling with average pooling operations results

in the GAP method. Since in the dataset a coarse-level label is not

the average of its child fine-level labels, jointly training the DNN

with GAP resulted in lower performance.



Table 1. Results at the tone-base hierarchy (%)

Fine Level Coarse Level

Comments Method ROC-AUC PR-AUC F1 Score ROC-AUC PR-AUC F1 Score

PaSST-S [23] - 84.3 - n/a n/a n/a

baseline Flat fine-level classification & inference phase bottom-up 91.7 85.6 83.3 92.4 89.6 84.4

Fig. 2 (a) Level-wise approach with loss items in [13] (our tuning) 91.9 85.8 83.7 93.0 90.4 85.2

Fig. 2 (b) Top-down approach 91.9 85.4 83.6 93.0 90.4 85.3

Bottom-up approach with joint training

Fig. 2 (c) 1. Grouped average pooling (GAP) 91.7 85.6 83.2 91.7 87.6 84.6

Fig. 2 (c) 2. Linear projection (LP) 91.8 85.8 83.6 75.3 70.9 67.6

Fig. 2 (c) 3. Grouped max-pooling (GMP) (proposed) 91.9 85.9 83.6 93.1 90.7 85.4

Fig. 2 (d) 4. ResAtt (proposed) 92.0 86.0 83.7 93.1 90.7 85.5

Fig. 3. The boxplot of fine-level metrics for the baseline and pro-

posed models. Orange lines denote the medians

Contrary to the joint training method with GMP, ResAtt is un-

aware of the hierarchical structure in the dataset during training, but

attempts to extract the aggregation rule from labels alone. ResAtt

achieves scores that are equal to or slightly higher than the joint train-

ing method with GMP. The LP method utilizes a learnable projection

layer, instead of the attention layer, but failed to predict coarse-level

tags. This is because that a linear layer cannot flexibly adjust its pro-

jection rule for various input, which reveals how important it is to use

attention mechanism in the bottom-up approach with joint training.

Since the improvements from the baseline in fine-level metrics

are small in terms of absolute value, we compare the proposed meth-

ods with the baseline in box plots (Fig. 3). Higher medians and

boxes demonstrate their advantages over the baseline. Although Re-

sAtt has slightly higher medians, the difference between the joint

training method with GMP and ResAtt is not significant.

Attention map samples with tag-wise probabilities made by Re-

sAtt are shown in Fig. 4. All maps are similar to the GMP opera-

tion, but vary depending on input music, which implies that ResAtt

has extracted the aggregation rule without prior knowledge. On the

lower side, although the “piano” in the fine level is wrongly predicted

as 83%, ResAtt did not pass this error to the coarse level by giving

“piano” less attention. This shows that ResAtt can learn flexible ag-

gregation that is difficult to describe with fixed rules, and in some

cases, it can even prevent the error from propagating to the coarse

level. Such behaviors are impossible for the joint training method

with GMP, as the method accumulates errors made in the fine level

[13, 17], which is a possible reason for the slightly higher F1 Score

of ResAtt in the coarse level. The decision procedure within ResAtt

is interpretable on the basis of attention map visualization.

Fig. 4. Attention maps. Coarse tag predictions are listed at the top;

tag-wise probabilities (%) are listed with tag names.

6. CONCLUSION AND FUTURE WORK

We investigated hierarchical multi-label music instrument classifi-

cation as a case study of hierarchical music tagging. We extended

hierarchical instrument classification to the multi-label setting and

realistic music data, with an induced tone-base hierarchy. Various

hierarchical methods that jointly train a DNN are summarized in the

context of the fusion of deep learning and conventional techniques.

For the effective joint training in the multi-label setting, we propose

two methods to model the connection between fine- and coarse-

level tags, where one uses the attention mechanism obtained in a

data-driven manner, the other uses rule-based grouped max-pooling,

which is explained as a binary attention. Evaluation results indi-

cate that proposed methods, especially the ResAtt, are promising as

the bottom-up methods with joint training. In addition to its per-

formance, ResAtt can learn flexible aggregation that is difficult to

describe with fixed rules and even prevent errors from propagating.

By visualizing attention maps, the interpretability of ResAtt can be

enhanced. Future work involves extending current methods to other

tasks in music tagging.
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[23] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Ger-

hard Widmer, “Efficient training of audio transformers with

patchout,” in Proc. of Interspeech 2022, 2022.

[24] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu

Wang, and Mark D Plumbley, “Panns: Large-scale pre-

trained audio neural networks for audio pattern recognition,”

IEEE/ACM TASLP, vol. 28, pp. 2880–2894, 2020.

[25] Diederik P Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[26] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu,

Barret Zoph, Ekin D Cubuk, and Quoc V Le, “Specaugment: A

simple data augmentation method for automatic speech recog-

nition,” in Interspeech 2019, Graz, Austria, 2019.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Re-

search, vol. 12, pp. 2825–2830, 2011.


	1  Introduction
	2  Related Work
	3  Proposed Methods
	3.1  Hierarchical Approaches for Joint Training
	3.2  ResAtt: Attention-based Bottom-up Method

	4  Evaluation
	4.1  Tone-base Hierarchical Dataset
	4.2  Experiments
	4.3  Metrics

	5  Results
	6   Conclusion and Future Work
	7  References

