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ABSTRACT

End-to-end automatic speech recognition (ASR) usually suf-
fers from performance degradation when applied to a new do-
main due to domain shift. Unsupervised domain adaptation
(UDA) aims to improve the performance on the unlabeled tar-
get domain by transferring knowledge from the source to the
target domain. To improve transferability, existing UDA ap-
proaches mainly focus on matching the distributions of the
source and target domains globally and/or locally, while ig-
noring the model discriminability. In this paper, we propose
a novel UDA approach for ASR via inter-domain MAtching
and intra-domain DIscrimination (MADI), which improves
the model transferability by fine-grained inter-domain match-
ing and discriminability by intra-domain contrastive discrimi-
nation simultaneously. Evaluations on the Libri-Adapt dataset
demonstrate the effectiveness of our approach. MADI re-
duces the relative word error rate (WER) on cross-device and
cross-environment ASR by 17.7% and 22.8%, respectively.

Index Terms— speech recognition, domain adaptation,
transferability, discriminability

1. INTRODUCTION

Recent years have witnessed great progress in end-to-end
automatic speech recognition (ASR) based on deep learning
methods [1], which rely on large-scale labeled datasets and
assume that training and testing data come from the same
distribution. Nevertheless, when the models are trained on
one domain (source domain) and tested on another domain
(target domain), the performance degrades severely due to
cross-domain distribution shift (domain shift). The causes
of domain shift include variabilities of the acoustic environ-
ment, device, accent, and so on. Collecting sufficient labeled
data for each target domain to train a good ASR model is
expensive and time-consuming.

Unsupervised domain adaptation (UDA) has been pro-
posed to improve the ASR performance on the unlabeled tar-
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get domain by leveraging the label-rich source domain. To
transfer knowledge from the source to the target domain, pre-
vious work mainly focuses on matching the distributions of
the source and target domains by learning domain-invariant
representations. Generative adversarial nets (GAN) [2, 3] and
domain adversarial learning technique [4, 5, 6, 7, 8] have
shown to be effective for global domain matching. To name a
few, Chen et al. [2] attempt to disentangle accent-specific and
accent-invariant characteristics to build a unified end-to-end
ASR system based on GAN. Sun et al. [4] propose domain
adversarial training (DAT) to encourage the model to learn
domain-invariant representations. Discrepancy-based meth-
ods, such as maximum mean discrepancy (MMD) [9] and cor-
relation (CORAL) [10], have recently been used to minimize
feature distribution discrepancy between domains.

More recently, local domain matching approaches have
become popular for fine-grained distribution matching, which
aligns the distributions of the relevant subdomains across dif-
ferent domains. Hu et al. [11] propose subdomain distri-
bution matching to extract domain-invariant embeddings for
speaker verification. In CMatch [12], a character-level distri-
bution matching method is adopted to address domain shift.
The inter-domain matching, either globally or locally, im-
proves the model transferability. However, simply pushing
the source and target domains together may compromise the
discriminability of the model in the target domain [13, 14].

To address the aforementioned issue, in this paper, we
propose MADI, a novel UDA approach for ASR via inter-
domain matching and intra-domain discrimination. With
fine-grained inter-domain matching, the proposed method
improves the model transferability, while with intra-domain
contrastive discrimination, we enhance the model discrim-
inability in the target domain. Specifically, our framework
contains two main components for domain adaptation (see
figure 1). Firstly, inspired by CMatch [12], we employ an
inter-domain matching component that matches the character-
level distributions between the labeled source domain and
unlabeled target domain. Secondly, motivated by the suc-
cess of contrastive learning [15, 16], we generate augmented
unlabeled target data and then propose an intra-domain dis-
crimination component to ensure that the centroids of the
same characters are pulled closer, while the centroids of dif-
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Fig. 1. Overview of our MADI framework. For source samples with ground-truth labels and (augmented) target samples with
pseudo labels, we use encoders to extract features, and then employ the CTC decoder to assign labels to the encoded frames.
Then we compute the two adaptation losses: LMA for inter-domain matching and LDI for intra-domain discrimination. The
former matches the character-level distributions between the source and target domains. The latter employs the contrastive
learning method to push the centroids of different characters away from each other in the target domain. For concise, the joint
CTC-Attention loss LASR is omitted in the figure.

ferent characters are pushed apart in the target domain. This
facilitates learning discriminative representations for the un-
labeled target domain. The above two components are jointly
optimized using the well-defined MMD [9] and normalized
temperature-scaled cross-entropy loss (NT-Xent) [15].

We note that cross-domain contrastive learning approaches
[17, 18] from the computer vision domain are similar to our
work, which performs inter-domain alignment and intra-
domain discrimination by deliberately constructing positive
and negative pairs. Directly adopting such contrastive learn-
ing approaches at the frame level results in an explosion of
computational complexity, while at the character-prototype
level it leads to sub-optimal performance (see Section 4).

We conduct extensive experiments on the Libri-Adapt
dataset [19]. The results demonstrate the effectiveness of
our approach. MADI outperforms the state-of-the-art UDA
methods and achieves a relative performance improvement of
17.7% and 22.8% word error rate (WER) on cross-device and
cross-environment ASR, respectively.

2. OUR METHOD

UDA for ASR aims to exploit labeled source data (XS , YS)
to improve the ASR performance on unlabeled target data
XT . Our key idea is to match the character-level distribu-
tions between the source and target domains to enhance the
model transferability and push the features of different char-
acters apart to improve the model discriminability in the tar-
get domain. The overall structure of the proposed adaptation
method, inter-domain matching and intra-domain discrimina-
tion (MADI), is shown in figure 1. Before describing the two
adaptation components in detail, we briefly introduce the ba-
sic ASR model used in our framework.

2.1. Basic ASR Model

We build a joint CTC-Attention model following open-source
Wenet [20], which consists of three parts: shared encoder,
CTC decoder, and attention decoder. The loss of ASR is as
follows:

LASR(X,Y ) = λLCTC(X,Y )+(1− λ)LATT (X,Y ), (1)

where X and Y are the acoustic input and corresponding la-
bels, respectively. LCTC is the CTC loss, and LATT is the
attention loss. The hyperparameter λ balances the two losses.

2.2. Inter-domain Matching

Since our inter-domain matching is based on character level,
we first assign labels to frames, which is time-consuming.
We follow CMatch [12] to achieve efficient and accurate
frame-level label assignment. With the pre-trained model on
(XS , YS), we obtain the CTC [21] pseudo label of the n-th
frame by

Ŷn = argmax
Yn

PCTC(Yn|Xn). (2)

After acquiring labels for each encoded frame, the con-
ditional distributions P (Y |X) of each character in both the
source and target domains could be obtained. We then adopt
the widely used MMD distance [9] to match the conditional
distributions between the same characters across domains.
The inter-domain matching loss LMA is as follows:

LMA =
1

N

N∑
i

MMD(Hk, X
Ci

S , XCi

T ), (3)

where N is the total number of characters. Ci means the i-th
character of the symbol set C. Hk is the reproducing ker-
nel Hilbert space, and k is the Gaussian kernel function we



adopted. The model is trained to minimize LMA to match the
distributions of the same characters across domains.

2.3. Intra-domain Discrimination

We employ the contrastive learning approach [15] in the tar-
get domain to improve the model discriminability. Given tar-
get domain data XT , we first generate an augmented version
Xaug by pitch randomization, reverberation, and temporal
masking. And then, similar to inter-domain matching, we
achieve frame-level label assignment using CTC pseudo la-
bels for both XT and Xaug . Adopting contrastive learning at
the frame level will result in an explosion of computational
complexity, so we apply the contrastive learning on the char-
acter prototypes by computing the centroids for 2∗N symbols
in a batch of XT and Xaug . The character centroids of the
same symbol form positive pairs (X̃Ci

T , X̃Ci
aug), and the rest

ones from XT and Xaug are counted as negative pairs. We
attempt to keep positive pairs together and push negative pairs
apart in the batch by minimizing the modified NT-Xent loss
[15]. The intra-domain discrimination loss LDI is defined as:

LDI(X̃
Ci

T , X̃Ci
aug)

= −log
ψ(X̃Ci

T , X̃Ci
aug)

ψ(X̃Ci

T , X̃Ci
aug) +

∑
j 6=i

d∈{T,aug}
ψ(X̃Ci

T , X̃
Cj

d )
,

(4)

where 1 ≤ i, j ≤ N , andψ(a, b) = exp(sim(f(a), f(b))/τ).
sim(u, v) = uT v

‖u‖2‖v‖2 denotes the cosine similarity of u and
v. f() means features extracted by the encoder, and τ is the
temperature hyperparameter. Note that LDI is the average of
LDI(X̃

Ci

T , X̃Ci
aug) and LDI(X̃

Ci
aug, X̃

Ci

T ) for all positive pairs.

2.4. Overall Loss

The overall loss function includes the joint CTC-Attention
loss, the inter-domain matching loss, and the intra-domain
discrimination loss, which is defined as follows:

L = LASR + α ∗ LMA + β ∗ LDI , (5)

where α and β are hyperparameters to tradeoff the impact of
LMA and LDI .

3. EXPERIMENTAL SETUP

3.1. Dataset

Our experiments are conducted on the Libri-Adapt dataset
[19] which is derived from Librispeech-clean-100. The Libri-
Adapt provides 72 different domains for domain adaptation
study, which is recorded under 4 background noise conditions
from 3 speaker accents on 6 different embedded microphones.
In this work, we focus on cross-device and cross-environment
adaptation, i.e., source-domain and target-domain data are
recorded by different devices or in different environments.

Recent research [22] has shown that the variabilities of
microphones across different devices significantly influence
their outputs. In this paper, we employ 3 parts of the Libri-
adapt dataset for cross-device experiments including Matrix
Voice (M), Respeaker (R), and PlayStation Eye (P). Matrix
Voice and Respeaker are circular 7-channel microphone ar-
rays integrated with acoustic signal processing algorithms
while Playstation-Eye is a 4-channel microphone for voice
interactive games. For cross-environment ASR adaptation,
we select clean Respeaker as the source domain and 3 types
of background noise including Rain, Wind, and Laughter
as different target domains. In our experiments, we do not
use any labels from the target domain during training and
randomly split 10% utterances in the source domain as the
validation set.

3.2. Baselines

The following methods are considered for comparison:

• SO: The source-only (SO) method trains the ASR model
on the source domain and directly applies it to the target
domain without adaptation.

• DAT [4]: Domain adversarial training (DAT) is a popu-
lar UDA method which adversarially trains a discriminator
and an encoder to encourage the encoder to learn domain-
invariant features. We re-implemented DAT with a domain
discriminator consisting of fully-connected linear layers.

• CMatch [12]: It is a character-level distribution match-
ing method, which employs CTC pseudo labels to achieve
frame-level label assignment and then reduces the character-
level distribution divergence between the source and target
domains using MMD. We also re-implement CMatch.

• CDCL: Cross-domain contrastive learning (CDCL) ap-
proaches are popular in the computer vision domain [17,
18]. We implement the idea at the character prototype level
by considering the centroids of the same characters from
different domains as positive pairs and the centroids of
different characters from both domains as negative pairs.

3.3. Implementation Details

For fair comparison, we implement all baselines and our
method based on Wenet [20] codebase. All experiments use
80-dimensional log Mel-filter banks (FBANK) features with
a 25ms window and a 10ms shift. The underlying transformer
model has 12 encoder layers and 6 decoder layers. Both of
them have 4 attention heads and 2048 linear units. The CTC
loss weight λ is set to 0.3 following [20]. The hyperparame-
ters α and β are set to 5 in our method. The temperature τ is
0.1 during our experiment. The training data of the target do-
main is augmented using the open-source tool WavAugment
[23] by pitch randomization, reverberation, and temporal



Table 1. WER on standard ASR
Domain WER

Matrix Voice (M) 23.74
Play Station Eye (P) 20.77

ReSpeaker (R) 22.82
Average 22.44

masking. When training, we filter out utterances over 17.5s.
We employ the learning rate from 1 × 10−3 to 8 × 10−3

and adam optimizer with a learning rate schedule including
25,000 warm-up steps. Beam size is 10 for decoding. The
batch size is 64 and the epoch is 150/180 for cross-device/-
environment models. The output dimension is 31 consisting
of 26 letters and 5 symbols. The attention-rescoring mode we
adopt at the testing time always keeps the best performance
among the 4 decoding methods provided by the model.

4. RESULTS

We first report the WER results of the standard ASR in Table
1 for comparison. The standard ASR is an in-domain model
with training and testing data from the same domain.

4.1. Cross-device Adaptation

The main results of cross-device ASR are reported in Table 2.
The task name indicates the source and target domains, e.g.,
M→P denotes the source domain Matrix Voice (M) and the
target domain Playstation Eye (P).

Firstly, we observe that the performance of SO is severely
degraded due to domain mismatch. Both DAT and CMatch
improve performance on all tasks through inter-domain
matching. CMatch outperforms DAT, indicating that fine-
grained local domain alignment is superior to global align-
ment. Secondly, CDCL is inferior to CMatch, although
CDCL attempts to align positive pairs across domains and
separate negative pairs at the same time. The reason is that
the inter-domain matching ability of CDCL at the character
prototype level is weaker than that of MMD used in CMatch.
Thirdly, MADI achieves the lowest WER on 5 of the 6 tasks
and the best average performance. MADI significantly out-
performs SO by 17.7% relatively, which demonstrates the
effectiveness of our approach by improving the transferabil-
ity and discriminability simultaneously.

To further demonstrate the ability of MADI to enhance
the model discriminability, we visualize the feature distribu-
tions of CMath and MADI in figure 2. We observe that the
centroids of the same characters from different domains are
well aligned in CMatch while the distances between differ-
ent characters are somewhat close. By applying contrastive
discrimination in the target domain, characters in MADI are
pushed away from each other, indicating the improvement of
the model discriminability.

(a) CMatch (b) MADI

Fig. 2. Compared to CMatch, feature centers of characters are
more spread out in MADI. Dots in red and blue indicate the
source and target domains, respectively.

Table 2. WER on cross-device ASR
Task SO DAT CMatch CDCL MADI

M→P 23.94 21.92 20.28 21.53 20.25
M→R 26.43 23.58 22.79 24.49 22.61
P→M 28.97 25.02 23.91 24.99 23.41
P→R 23.54 22.64 20.25 22.06 19.7
R→M 34.95 28.34 28.68 29.45 27.27
R→P 22.7 21.84 18.82 20.53 18.89

Average 26.76 23.89 22.46 23.84 22.02

Table 3. WER on cross-environment ASR
Task SO DAT CMatch MADI
Rain 33.06 33.64 26.24 25.82
Wind 26.19 27.17 21.40 21.06

Laughter 31.12 28.52 23.48 22.91
Average 30.12 29.78 23.71 23.26

4.2. Cross-environment Adaptation

The cross-environment ASR results are shown in Tabel 3.
We also observe that MADI outperforms DAT and CMatch.
Moreover, compared to SO trained with Respeaker in the
clean environment, MADI reduces relative WER by 22.8%,
indicating its effectiveness for cross-environment adaptation.
Note that our re-implementation of CMatch performs better
than what the paper [12] reports.

5. CONCLUSION

In this paper, we propose an unsupervised cross-domain
ASR adaptation method via inter-domain matching and intra-
domain discrimination. Our approach improves the model
transferability and discriminability simultaneously. Exper-
imental results on the Libri-Adapt dataset demonstrate the
effectiveness of our approach.
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