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ABSTRACT

Music-driven 3D dance generation has become an intensive research
topic in recent years with great potential for real-world applications.
Most existing methods lack the consideration of genre, which re-
sults in genre inconsistency in the generated dance movements. In
addition, the correlation between the dance genre and the music has
not been investigated. To address these issues, we propose a genre-
consistent dance generation framework, GTN-Bailando. First, we
propose the Genre Token Network (GTN), which infers the genre
from music to enhance the genre consistency of long-term dance
generation. Second, to improve the generalization capability of the
model, the strategy of pre-training and fine-tuning is adopted. Exper-
imental results on the AIST++ dataset show that the proposed dance
generation framework outperforms state-of-the-art methods in terms
of motion quality and genre consistency1.

Index Terms— 3D dance generation, genre token, multi-modal,
music-driven

1. INTRODUCTION

Dance genres [1] are the manifestations that arise from dance, each
with its specific characteristics. Diversified dance genres increase
the variety of dance, making it one of the most well-known forms
of artistic expression globally. With the advancement of artificial in-
telligence (AI), it is possible to generate dance pose sequences for
promising applications such as choreography assistance and virtual
idol performance. However, producing a satisfactory dance pose se-
quence using AI choreographies is still challenging due to the diffi-
culty of maintaining genre consistency. In a certain dance genre, not
all physically possible dance poses are appropriate, and the chore-
ographed dance poses have stricter positional restrictions as well as
a correlation to the given music.

Most existing AI choreographies focus on the alignment be-
tween dances and the musical melody. Early methods [2–11] send
music and dance directly into a single network to generate dance
sequences autoregressively. However, such methods suffer from
the accumulation of errors during autoregressive generation and
will likely regress non-dancing movements. Meanwhile, some
works [12–17] use the retrieval method to divide dances into fixed-
length units and choreograph by splicing these units according to

* Work conducted when the first author was intern at XVerse Inc.
† Corresponding author.

1Generated demo: https://im1eon.github.io/ICASSP23-GTNB-DG/

the melody of the music. Although these methods ensure the quality
of the generated dance, they are incompatible with different time
signatures and beats per minute (BPM). Recently, a great dance
generation framework, Bailando [18], uses the vector quantised-
variational autoencoder (VQ-VAE) [19] with the Actor-Critic [20]
generative pre-trained transformer (GPT) [21] to solve problems in
both autoregressive and retrieval dance generation methods.

However, all the studies mentioned above ignore the genre dur-
ing the dance generation. Without genre, the generated dance will
perform multiple genres of dance movements in a single music clip,
resulting in performances that are inappropriate with the music (e.g.,
ballet movements in hip-hop music). Thereby, several latest dance
generation frameworks devote efforts to the genre. GCDG [22]
uses a one-hot vector to represent the genre and embeds the genre
into the transformer decoder to generate genre consistency dance.
MNET [23] uses a mapping network to transform a latent code into
the style code for multi-genres while generating dance motions.
These approaches can generate dance with a particular genre but
require auxiliary inputs in inference, such as manually-determined
genre labels. In addition, there is a specific correlation between the
dance genre and its background music, allowing choreographers to
determine the genre of dance based on the music. Therefore, it is
preferable for AI choreographies to infer the genre based on the
music and generate dances using the genre that has been inferred.

In this paper, we propose a genre consistent long-term dance
generation framework based on Genre Token Network (GTN). First,
we introduce GTN, to infer the genre by learning the correlation be-
tween music and genres. For a given clip of music, the genre can be
inferred through GTN and used as a condition in dance generation,
ensuring each generated dance pose satisfies the positional restric-
tions of one genre. Second, we propose a strategy for pre-training
GTN to improve its generalization capacity. Due to the insufficiency
of music data in existing dance-music-aligned datasets, it is diffi-
cult for the GTN to infer genre from music accurately. Thereby,
in order to strengthen the correlation between each genre and its
corresponding music, we collect a large-scale of dance background
music with genre labels to pre-train the GTN. After that, we use
a dance-music-aligned dataset to train the dance generation frame-
work and load the pre-trained GTN weights for fine-tuning. Thus,
the GTN can infer the genre of the music more effectively, which
further enhances genre consistency. Experimental results show that
our proposed dance generation framework and pre-training strategy
significantly outperforms in both evaluation metrics and visualiza-
tion judgments.
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Fig. 1. GTN-Bailando. Mel-spectrogram of music is fed to Genre Token Network (GTN). The generated genre embedding is utilized as
a condition in GPT to guarantee that each generated dance is consistent with its genre. The parameters are learned via cross-entropy loss
LCE−GTN with genre label and LCE−GPT with ground-truth dance pose code.

Fig. 2. Architecture of the proposed Genre Token Network (GTN).

2. PROPOSED METHOD

Problem Definition. We aim to infer genre from music and generate
dances based on the inferred genre. Formally, given a clip of music
X = {xt}Nt=1, where N is the music length, a initial dance pose
yt=1, our goals are, first, infer the genre ĝ ∈ G from X , where G is
the set of pre-defined genre categories. Second, use ĝ as a condition
and X to generate dance Ŷ = {ŷt}Nt=2.

We intend to generate dances with genre consistency. In this
section, we first describe GTN and show how to infer genre from
the music. Second, we introduce our genre-consistent dance gen-
eration framework. After that, the strategy of pre-training and fine-
tuning for GTN is explained. The architecture of our proposed GTN-
Bailando is shown in Fig. 1.

2.1. Genre Token Network

Inspired by the work on emotion style tokens based speech synthe-
sis [24,25], we propose supervised training of genre token to achieve
the correlation between genre and music. As shown in Fig. 2, the
architecture of the proposed GTN is composed of three modules:
reference encoder, genre token layer, and genre embedding.

The reference encoder is adopted from [24], which is applied to
compress the audio signal into a vector of set length. In this work,
the mel-spectrogram of the music clip is fed to the reference encoder,
and compressed into the learnable reference embedding.

The genre token layer includes a set of genre token embeddings
and an attention module, which uses the reference embedding as the
query vector. The attention module learns a measure of similarity

between the reference embedding and each token in a set of ran-
domly initialized embeddings. This set of embeddings, also referred
as genre tokens, are shared across all music clips.

The output of the genre token layer is the probability that the
input music belongs to each genre category. In order to improve
the robustness of the GTN, a soft embedding method [26] is used
to represent the genre. In whis way, the tokens are then weighted
summed by the probability to form a genre embedding.

In order to enhance the correlation between music and genre,
the number of tokens is set to be consistent with the number of genre
categories. Meanwhile, the genre label is converted to one-hot em-
bedding and introduced into the genre token layer to serve as targets
for token weights. Thereby, GTN is optimized via supervised train-
ing with cross-entropy loss between the genre labels and the genre
token weights as follow,

LCE−GTN =
1

T

T−1∑
t=0

CE (gt, ĝt) , (1)

where gt and ĝt denote the genre label vector and the genre to-
ken weight vector of the music for t-th time’s clip. CE (·) refers to
the cross entropy loss function, T represents the number of music
clips.

2.2. Dance Generation Framework
Inspired by Bailando [18], we generate dances based on VQ-VAE
with cross-conditional GPT. Since there is a correlation between the
velocity of the dance movement and the musical energy, we further
consider the energy feature to improve the motion quality of the gen-
erated dance.

Precisely, given a piece of music as the input, we first extract the
energy and musical features, then embed them to learnable vector
Ze and Zm, respectively. In the meantime, we extract the mel-
spectrogram of the input music clip, then send it to the GTN to pro-
duce the genre embedding Zg . Then, we concatenate Zm and Ze

on the temporal dimension, and add Zg , forming m. As for the
dance, we first feed the skeleton joints position of the dance clip into
the VQ-VAE encoder to generate the upper and lower half-body pose
codes, then embed them to learnable vector u and l, respectively.

After getting m,u,l, we concatenate them on the temporal di-
mension and add a learned positional embedding, then feed it to the
cross-conditional GPT. At last, we get the outputs of the GPT, which
are the probabilities of the upper and lower half-body pose codes.
We get the predicted upper and lower body pose code pairs from



the probabilities and feed them into the VQ-VAE decoder to get the
future dance.

Note that, we use the teacher-forcing scheme for GTN during
training to improve the overall genre consistency of the dance gener-
ation framework. The cross-conditional GPT is optimized via super-
vised training with cross-entropy loss between the predicted action
probability a and ground-truth pose codes p as follow:

LCE−GPT =
1

T ′

T ′−1∑
t=0

∑
h=u,l

CE
(
ah
t , p

h
t+1

)
. (2)

Finally, the loss of dance generation framework LDG can be
computed as:

LDG = α · LCE−GTN + β · LCE−GPT . (3)

2.3. Pre-training and Fine-tuning

Although GTN is capable of inferring the genre, it still suffers from
poor generalization capability, making it difficult to establish the cor-
relation between the genre and the music nor to ensure genre consis-
tency in generated dances. It is due to the fact that the music training
data in the dance-music-aligned dataset is not large enough (less than
1 hour in length for all the ten genres).

Therefore, we propose a pre-training method to enhance the gen-
eralization capability for GTN and improve genre consistency for
generated dances. First, we collect a large amount of dance back-
ground music data from the Internet, tag corresponding dance genre
labels, and then use this data to train the GTN. After that, we load
the parameters of the pre-trained GTN for fine-tuning while training
the cross-conditional GPT of the dance generation framework. Note
that, in order to prevent GTN from overfitting during fine-tuning, the
GTN will freeze when it reaches the threshold epoch.

3. EXPERIMENTS

3.1. Datasets

3.1.1. Dataset for pre-training GTN

In pre-training GTN, we collect the background music of the dance
corresponding to genres from the Internet. We collect 1-hour music
data for each genre, constituting a music dataset of ten genres of
10 hours in length. The genres are the same as the ten genres in
the dance-music-aligned dataset AIST++ [9], which are Break (BR),
Ballet Jazz (JB), House (HO), Street Jazz (JS), Krump (KR), LA
style Hip-hop (LH), Lock (LO), Middle Hip-hop (MH), Pop (PO),
and Waack (WA).

3.1.2. Dataset for dance generation

During training and evaluating the dance generation framework with
fine-tuning GTN, we use the AIST++ [9] dataset, which is the largest
publicly available 3D dance-music-aligned dataset with genre la-
bels to our knowledge. The AIST++ dataset includes 992 high-
performance 60-FPS 3D pose sequences in SMPL format, split into
952 and 40 as training and validation sets, respectively.

3.2. Experiment Setup

For GTN, we extract an 80-dimensional mel-spectrogram from the
music by Librosa. For the dance generation framework, the mu-
sical features are extracted by Librosa, including mel frequency
cepstral coefficients (MFCC), MFCC delta, constant-Q chroma-
gram,tempogram, and onset strength, resulting in a 438-dimensional

musical feature. Meanwhile, we extracted energy from the music by
referring to Fastspeech2 [27], resulting in a 1-dimensional energy
feature.

The settings of dance generation framework and GTN follow
previous studies, and we set α = 1, β = 0.001 for equation (3). The
num of tokens is set to 10 in the genre token layer in GTN. The VQ-
VAE in the framework is adopted from the choreographic memories
in Bailando [18]. All dance and music data are cropped to the length
of 4 seconds. We first pre-train GTN for 250 epochs and VQ-VAE
for 500 epochs, then load the pre-trained VQ-VAE to generate the
pose codes corresponding to the dance motions. After that, we load
the pre-trained GTN and train the dance generation framework for
400 epochs, and after 90 epochs, we freeze the GTN.

We compare our proposed method with FACT [9] and Bai-
lando [18], which are among the state-of-the-art dance generation
methods. For each method, we generate dances in the condition of
ten different AIST++ test music and two different starting pose codes
or sequences, which results in 20 dance clips. We cut the generated
dances into the length of 20 seconds for further experiments.

3.3. Experimental Results and Analysis

3.3.1. Genre Embedding Visualization
In Fig. 3, we illustrate genre embedding of different genres visual-
ized by t-SNE method. We use the AIST++ test set to verify the
GTN in the dance generation framework, which shows that the dif-
ferent genre embeddings are well separated from each other, proving
that the GTN can infer genre from music properly.

Fig. 3. T-SNE visualization of genre embedding. Different colors
mark different dance genres.

3.3.2. Subjective Evaluation

Due to the lack of objective quantitative metrics for genre consis-
tency, we conduct subjective evaluation referring to the method in
emotional speech synthesis [25, 26], to further evaluate the visual
performance of dances generated by the proposed dance generation
framework. The test is conducted with 24 subjects, who have partic-
ipated in the dance training and have a certain understanding of the
included dance genres. The subjects are asked to evaluate the dance
quality and genre consistency, and rate the dances on a scale of 1-5
(the poorest score is 1, the best score is 5) with a 1-point interval.

The last two columns of Table 1 report the mean opinion scores
(MOS) on dance quality and genre consistency. The proposed model
outperforms all baseline models, indicating that GTN can establish
the correlation between music and genres. Also, with the inferred
genre to serve as a condition, the proposed dance generation frame-
work can generate higher-quality and genre-consistent dances.



Table 1. Evaluation results of different dance generation frameworks. Dance quality and genre consistency are results of MOS with 95%
confidence intervals. ‘*’ denotes the proposed model. ‘w/o’ is short for ‘without’ in ablation study.

Motion Quality Motion Diversity User Study

FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BAS ↑ Quality↑ Consistency↑

Ground-Truth 17.10 10.60 8.19 7.45 0.2484 - -

FACT 37.31 34.87 5.75 5.47 0.2175 2.15±0.10 2.19±0.11
Bailando 32.11 9.95 6.09 5.70 0.2299 3.19±0.11 3.11±0.11

Proposed* 29.51 8.57 6.15 6.65 0.2352 3.65±0.10 3.60±0.10

w/o LCE−GTN 34.35 10.92 5.51 5.95 0.2292 3.35±0.13 3.25±0.13
w/o teacher-forcing 41.77 14.13 5.96 3.54 0.2298 3.49±0.13 3.29±0.14

w/o pre-trained GTN 30.55 7.03 7.03 6.60 0.2466 3.10±0.14 3.06±0.15
w/o energy 32.66 6.23 6.23 6.94 0.2366 3.40±0.15 3.33±0.15

Fig. 4. Genre consistent visualization. Different colors mark dances of different genres.

3.3.3. Objective Evaluation

For objective evaluation, following [18], we evaluate the quality
and the diversity of the generated dance motions, and the align-
ment of the generated motions to the music beats. Specifically, as
for the motion quality, we calculate the distribution distance be-
tween all the motion sequences of AIST++ and the generated dance
motions through Fréchet Inception Distance (FID) [28] on the ki-
netic feature (noted as ’FIDk’) and the geometric feature (noted as
’FIDg’). The lower the FID is, the closer the generated dances
are to the ground-truth. As for the motion diversity, we calculate the
average Euclidean distance on the kinetic feature (noted as ’DIVk’)
and the geometric feature (noted as ’DIVg’). The higher the DIV
is, the larger the distance, meaning that the generated dances have
more various movements. As for the alignment, we calculate the
Beat Align Score (BAS) between the music beats and the motion
beats. The higher the BAS, the more the dance is on the beat. The
results of different methods as shown in Table 1.

It can be seen that our proposed framework outperforms baseline
frameworks on all aspects. Specifically, our proposed dance gener-
ation framework achieves the lowest FIDk and FIDg , as well as
the highestDIVk,DIVg andBAS. The proposed method generates
higher-quality, more diverse dances by taking genre and energy into
account, as well as improves the alignment between dance move-
ments and the musical melody.

3.3.4. Ablation Study

Moreover, we conduct ablation study to explore the ability of our
model to produce dances that are realistic. The results are shown
in Table 1 and visual comparisons of the ablation study can also be
found in the demo webpage.

As shown in Table 1, when the framework is optimized without
theLCE−GTN and the teacher-forcing scheme is not used during the
training, the generated dances will be much dissimilar to the ground
truth dances and have lower diversity. When the correlation between
the velocity of the dance movement and the musical energy is not

considered, the expressiveness of the dance will reduce. When the
pre-training and fine-tuning strategy is not used, although the frame-
work can generate dances that are similar to ground truth, it will
have limitations in genre consistency due to the poor generalization
capability of GTN.

3.3.5. Genre Consistent Visualization

To further evaluate the genre consistency of the generated dances,
we visualize the qualitative results from the joint skeletons of dances
generated by our proposed framework and Bailando [18]. We ran-
domly select a 20-second clip from the “LO” (Locking) genre dances
generated by each framework, and sample the result at a frequency
of 1 FPS.

As shown in Fig. 4, given a music clip, the dance generated
by Bailando performs multiple dance genres, which is inappropri-
ate with the music. While, our framework can infer the genre and
generate a dance that matches the melody of the music and is con-
sistent with the “LO” genre. More genre-consistent visualization
results can be found in the demo-page.

4. CONCLUSION

In this paper, to address the challenge of genre consistency, we pro-
pose a dance generation framework, GTN-Bailando, which is able
to establish the correlation between music and genres, and gener-
ate high-quality, genre-consistent dances on the basis of energy, mu-
sic, and the genre inferred through GTN. Meanwhile, the proposed
strategy of pre-training GTN on the large-scale dataset effectively
improves its generalization ability. Experimental results on AIST++
show that our method can generate high-quality and genre-consistent
dances based on the music.
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[17] Ferda Ofli, Engin Erzin, Yücel Yemez, and A Murat Tekalp,
“Learn2dance: Learning statistical music-to-dance mappings
for choreography synthesis,” IEEE Transactions on Multime-
dia, vol. 14, no. 3, pp. 747–759, 2011.

[18] Li Siyao, Weijiang Yu, Tianpei Gu, Chunze Lin, Quan Wang,
Chen Qian, Chen Change Loy, and Ziwei Liu, “Bailando: 3d
dance generation via actor-critic gpt with choreographic mem-
ory,” in CVPR, 2022.

[19] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu,
“Neural discrete representation learning.,” neural information
processing systems, 2017.

[20] Vijay R. Konda and John N. Tsitsiklis, “Actor-critic algo-
rithms,” neural information processing systems, 2002.

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al., “Language models are unsu-
pervised multitask learners,” OpenAI blog, vol. 1, no. 8, pp. 9,
2019.

[22] Yuhang Huang, Junjie Zhang, Shuyan Liu, Qian Bao, Dan
Zeng, Zhineng Chen, and Wu Liu, “Genre-conditioned long-
term 3d dance generation driven by music,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 4858–4862.

[23] Jinwoo Kim, Heeseok Oh, Seongjean Kim, Hoseok Tong,
and Sanghoon Lee, “A brand new dance partner: Music-
conditioned pluralistic dancing controlled by multiple dance
genres,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 3490–3500.

[24] Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-Ryan, Eric
Battenberg, Joel Shor, Ying Xiao, Fei Ren, Ye Jia, and Rif A.
Saurous, “Style tokens: Unsupervised style modeling, con-
trol and transfer in end-to-end speech synthesis,” international
conference on machine learning, 2018.

[25] Wu Pengfei, Ling Zhen-Hua, Liu Lijuan, Jiang Yuan,
Wu Hongchuan, and Dai Lirong, “End-to-end emotional
speech synthesis using style tokens and semi-supervised train-
ing,” IEEE Conference Proceedings, 2019.

[26] Yi Lei, Shan Yang, Xinsheng Wang, and Lei Xie, “Msemotts:
Multi-scale emotion transfer, prediction, and control for emo-
tional speech synthesis,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 30, pp. 853–864, 2022.

[27] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao,
and Tie-Yan Liu, “Fastspeech 2: Fast and high-quality end-to-
end text to speech,” in International Conference on Learning
Representations, 2020.

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter, “Gans trained by a two
time-scale update rule converge to a local nash equilibrium,”
Asian Journal of Applied Science and Engineering, 2017.


	1  Introduction
	2  Proposed Method
	2.1  Genre Token Network
	2.2  Dance Generation Framework
	2.3  Pre-training and Fine-tuning

	3  Experiments
	3.1  Datasets
	3.1.1  Dataset for pre-training GTN
	3.1.2  Dataset for dance generation

	3.2  Experiment Setup
	3.3  Experimental Results and Analysis
	3.3.1  Genre Embedding Visualization
	3.3.2  Subjective Evaluation
	3.3.3  Objective Evaluation
	3.3.4  Ablation Study
	3.3.5  Genre Consistent Visualization


	4  Conclusion
	5  References

