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ABSTRACT

Despite the impressive performance of vision-based pose estimators,
they generally fail to perform well under adverse vision conditions
and often don’t satisfy the privacy demands of customers. As a re-
sult, researchers have begun to study tactile sensing systems as an
alternative. However, these systems suffer from noisy and ambigu-
ous recordings. To tackle this problem, we propose a novel solution
for pose estimation from ambiguous pressure data. Our method com-
prises a spatio-temporal vision transformer with an encoder-decoder
architecture. Detailed experiments on two popular public datasets re-
veal that our model outperforms existing solutions in the area. More-
over, we observe that increasing the number of temporal crops in the
early stages of the network positively impacts the performance while
pre-training the network in a self-supervised setting using a masked
auto-encoder approach also further improves the results.

Index Terms— Pressure-based Pose Estimation, Tactile Sens-
ing, Self-supervised Learning, Human Pose Estimation

1. INTRODUCTION

Human pose estimation is an important task in computer vision re-
search with applications in healthcare [1], robotics [2], autonomous
driving [3], and action recognition [4]. With recent advances in
deep learning, researchers have developed optical and depth mod-
els to estimate human 3D models [5] or their body joint locations
with sub-pixel accuracy [6]. However, despite the impressive per-
formance of vision-based models, privacy demands and challenging
aspects like severe occlusions during daily activities have given rise
to non-vision pose estimation techniques. Since most human activ-
ities rely on their contact with the surrounding environment, smart
textiles have been proposed as a solution in numerous applications
such as health care [1] and identification [7].

Currently, pressure-recording carpets and bed mattresses are
available commercially. These systems have been designed to cap-
ture the pressure profiles and postures of subjects. Researchers have
been able to use such systems to identify sleeping posture [8] and
even 3D joint coordinates [1] reliably using deep learning models.
However, unlike vision-based approaches, these models often in-
herit complex architectures to account for the noisy and ambiguous
nature of the data. For example, systems using smart carpets for
pose estimation need to utilize the limited information from feet
pressure distribution to estimate the joint locations in 3D space [9].
Similarly, in-bed pressure systems record artifacts caused by blan-
kets, movement, or stretching of pressure sensors [10]. Furthermore,
pressure-based deep learning models can only be trained on datasets
with limited diversity, or alternatively by synthetic data [5], unlike

vision-based models that frequently rely on large-scale and in-the-
wild datasets. As a result, detecting the full posture in 3D from
pressure data is deemed a challenging problem with models having
up to ten times more error compared to the vision-based solutions
[9].

In this paper, we propose a self-supervised strategy for learn-
ing the human pose from ambiguous pressure data using a temporal
adaptation of ViTPose [11] (a vision transformer model originally
developed for pose estimation from ‘single-frame’ ‘images’). Our
solution is able to achieve state of the art in two large-scale in-bed
and smart carpet datasets. More specifically, we first pre-train the
encoder of our network in a masked image reconstruction task with
a warm-up strategy to leverage the benefits of the pre-trained ViT
models. Then we train the network on pressure data using a com-
bination of objective functions for pose estimation. We show the
effectiveness of the self-supervised pre-training and network design
by comparing our model’s performance to previous works and state-
of-the-art vision-based models on both datasets.

Our contributions can be summarized as follow: (1) We pro-
pose a temporal variation of the ViT [12] for pose estimation, setting
a new state of the art in temporal pose prediction from ambiguous
pressure data. (2) We show that pre-training the ViT in a masked
auto-encoder framework can positively impact the performance on
both datasets used in this study.

2. RELATED WORKS

Human Pose Estimation. Due to recent advances in computer vi-
sion and the collection of large-scale datasets, great improvements
have been achieved in 2D human pose estimation [13, 11, 14]. How-
ever, these models generally fail to predict 3D poses directly due
to the underlying ambiguity of the 3D pose in one frame. As a re-
sult, most recent models rely on temporal information [15] or multi-
camera setups [6]. More recently, self-supervised learning strategies
have emerged as a viable solution to reduce the pose-ambiguity in
monocular images [16]. In a recent work, a 2D to 3D pose uplifting
solution was developed, utilizing a self-supervised training strategy
by reconstructing masked joints or frames in a sequence of poses
[17]. In another direction, bigger models was suggested to learn
temporal information directly alongside spatial information, at the
cost of computational resources [15]. Despite the impressive per-
formance of these works, most approaches still rely on an accurate
initial prediction of the 2D joints or textural information from RGB
images, which is not available when using pressure recordings from
smart textiles. To address the challenges of ambiguity in input pres-
sure data, we exploit temporal information in our network by imple-
menting a temporal variation of ViTPose [11]. Moreover, we address
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the lack of diversity and large-scale data by pre-training our network
via a self-supervised training strategy.
Pressure-based pose estimation. The development of cost-efficient
and ubiquitous tactile sensing systems has allowed researchers to
model human interactions and gestures using pressure recordings.
For instance, the patterns of hand grasp through pressure-sensing
textiles have been explored in [2], while other works have developed
multi-modal solutions for hand gesture detection using a combina-
tion of cameras and e-textiles [18]. Similarly, several works have
explored virtual-reality and healthcare applications via human gait
recognition [19] and posture detection [7] using an array of piezore-
sistive pressure sensors embedded in a carpet. A recent study [9]
addressed the challenging task of 3D human pose estimation using
only feet pressure distributions using a deep network based on 3D
convolutions. Given the limited information available in feet pres-
sure and the ambiguity of its mapping into a 3D pose, they achieved
an error of 20cm, which is almost ten times more than vision-based
approaches [11]. In another work, to disambiguate in-bed pressure
maps, generation of human-like figures from a pressure recording
matrix via a pre-processing block before pose estimation was pro-
posed [8]. In the same line of work, in [5], a synthetic in-bed pres-
sure dataset was presented to address the limited diversity of avail-
able datasets, allowing network pre-training for better performance
in real-life applications.

3. METHOD

Problem setup. Let X = {x1, x2, ..., xT }, xi ∈ RWH be a se-
quence of T pressure distribution frames and Y = {y1, y2, ...yT }, yi ∈
R3J be a sequence of 3D ground truth joint locations. Our goal is
to train a pose estimator encoder as illustrated in Figure 1. We do
so via learning the mapping of Ŷ = P (Y |X, θ, θr), where θ and θp
are the trainable parameters of the encoder and the regression head,
respectively. We pre-train the encoder via self-supervision prior to
pose estimation. The details of our network architecture, training
steps, and implementation details are described in the following
sections.
Network Architecture. Similar to video-based vision transformers,
we first tokenize the input frames X into space-time cubes after
applying a (2 + 1)D convolutions [20]. Next, we embed the space-

time cube tokens via a patch embedding layer, F ∈ R
T
dt

W
d

H
d

C , and
after a linear projection layer, pass them to an Encoder, which is
a ViT [12] pre-trained on ImageNet [21] followed by MS-COCO
[22] datasets. Here, dc and d are the number of temporal and
spatial crops, respectively. The ViT is a sequence of transformer
blocks, each consisting of multi-head self-attention (MHSA) and
feed-forward network (FFN) layers. In our setting, the encoder
operates on all of the input patches without using the masked tokens

with an output of Fo ∈ R
T
dt

W
d

H
d

C . As illustrated in Figure 1 (b),
we adopt a simple Regression head composed of two deconvolution
layers and one 1×1 convolution layer on the reshaped Fo following
the common setting of the previous works [23]. Specifically, each
deconvolution block up-samples the reshaped feature vectors by a
factor of two, and the 1× 1 convolution layer predicts the joint loca-
tion heatmaps for each keypoint in each frame K ∈ RT W

4
H
4
J . The

last module in our network is a decoder X̂ = D(X|Fo,Mask, θd)
used only during the self-supervised pre-training of our encoder to
reconstruct the input patches from the encoder’s output latent repre-
sentations. We adopt a shallow transformer network to process Fo

and connect it to a linear projection layer to match the shape of the
input patches.

Self-supervised pre-training. Masked Auto-Encoders (MAE) for
pre-training transformer networks has shown strong results on a va-
riety of applications such as NLP [24], pose estimation [11], and
image classification [23]. Inspired by this, we implement an MAE
by masking the outputs of our encoder, Fo, and then passing the
masked encoded features along with the masked tokens to our de-
coder. For this purpose, we adopt an asymmetric design for masked
image reconstruction, where the encoder operates on fully observed
data (without masked tokens), and the decoder is applied on the
masked encoder output. Our encoder-decoder network reconstructs
the masked patches by learning to predict the raw pixel values of
each patch. We use MSE loss on the masked patches, excluding the
unmasked patches, to train the network efficiently [24].
Fine-tuning for Pose Estimation. In the fine-tuning step, we first
freeze the decoder and warm up the regression head and patching
block of the encoder for 2 epochs. Then, we train all of the networks
via minimizing the MSE loss between the predicted and ground-truth
heatmaps, as well as the limb-length loss between the ground-truth
and predicted keypoint coordinates, taken via SoftMax layer on each
heatmap, by:

Li
link =


L̂i − L95%, if L̂i > L95%

L5% − L̂i, if L̂i < L5%

0 otherwise,
(1)

where L5% and L95% represent the 5th and 95th percentile of each
of the limb lengths in the given dataset.
Implementation details. We use the same architecture proposed in
ViTPose [11] for our encoder and only modify the patching layer by
replacing the normal convolution operator with a (2+1)D convolu-
tion block. In all cases, we start the training from pre-trained weights
provided for ViTPose-B [11] in eligible layers. More specifically,
we only use random initialization for the fully connected layers that
have different sizes than the vanilla ViTPose due to the increased
number of patches. Our decoder consists of 4 blocks of transformer
networks with hidden dimensions of 256. We initialize the Tempo-
ral ViTPose weights from the pre-trained model of MAE [23], and
perform masked region reconstruction with a masking rate of 75%.
We train the encoder-decoder pipeline with a learning rate of 1e−3

using AdamW optimizer [25] for 200 epochs with a weight decay
rate of 0.1. In the next stage, we warm up the network by training
the regression head, newly initilized layers, and the patching layer of
ViT in a supervised task with a learning rate of 1e−3 for 2 epochs.
Finally, we use a learning rate of 2e−4 for training the network on
the supervised pose estimation task for a total of 150 epochs.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Intelligent Carpet. This dataset contains 15 actions performed by
10 subjects in two hour-long videos [9]. The 3D pose is obtained by
triangulating AI-generated 2D joints from two webcams. Moreover,
synchronized recordings of pressure maps via sensor-embedded car-
pets are provided for pose estimation, resulting in over 1,800,000
frames. Following the prior work, we train our model on 7 subjects
and evaluate on the remaining 3.
SLP. The simultaneously-collected multi-modal lying pose (SLP)
dataset [1] is a collection of multi-modal data, namely RGB, LWIR,
depth, and pressure maps, recorded from 102 subjects in home and 7
subjects in hospital settings. We only use the no-cover condition, and
leave the thin and thick cover conditions out. As the dataset does not



Fig. 1. An overview of our model is illustrated. (a) shows the masked auto-encoder, and (b) shows our pose estimation network.

provide direct 3D annotation, we use the available 2D annotations
and the corresponding depth of the joints of subsequent postures to
train our model. Following the standard evaluation scheme of the
in-home set, we train our models on the first 90 subjects and use the
remaining 12 for testing.

4.2. Performance Metrics

MPJPE: For the Intelligent Carpet dataset, we report mean-per-
joint-position-error (MPJPE) as the performance metric in line with
previous research [9].
PCKh: To compare our method with previous works on the SLP
dataset [1], we report the percentage of correct keypoints at 50% of
head limb length threshold (PCKh@0.5 [22]) using only 2D predic-
tions.

4.3. Benchmarks

In order to evaluate our proposed model on the Intelligent Car-
pet dataset, we adapt and modify commonly used pose estimators,
namely ResNet [14], UNet [26], HRNet [13], and ViTPose [11].
Specifically, we concatenate the frames in the channel dimension
and change the first convolution layer accordingly. This adapta-
tion follows the same strategy of previous work on the Intelligent
Carpet dataset [9]. On the SLP dataset, we modify prior works to
adjust them to temporal data and compare them with our approach.
To train the benchmarks, we initialize the models using their pre-
trained weights. Finally, for a fair comparison, we fine-tune them
with empirically-tuned learning rates and the same number of epochs
as our proposed model.

Table 1. MPJPE (cm) on Intelligent Carpet (↓ is better).

Method Frames
1 4 8 12 20 32

ResNet18 41.4 40.9 37.5 33.4 28.8 29.8
ResNet50 32.5 31.1 31.2 30.7 29.8 29.4

ResNet101 38.3 42.1 37.8 32.6 31.7 30.1
UNet 34.9 33.8 32.4 32.1 30.4 28.7

HRNet-W32 25.4 25.6 25.4 25.2 24.8 24.6
3DCNN [9] 33.5 28.7 24.6 23.1 19.8 22.4

ViTPose 24.3 24.6 23.7 22.3 21.7 21.2
T-ViTPose (Ours, C= 4, H) N/A 28.9 28.4 22.4 19.4 16.9

T-ViTPose+MAE (Ours, C= 4, H) N/A 28.4 27.5 21.6 17.8 16.5

4.4. Results

In Table 1, we compare our method against the benchmarks when
different numbers of temporal frames are given in the Intelligent
Carpet dataset. We observe that changing the architecture of pose
estimators as proposed in [9] does not benefit the performance of
ResNet50, HRNet, and UNet as much as 3DCNN and our proposed
model. Furthermore, we observe that although ResNet101 has more
parameters than the other architectures, it performs worse, hinting
at over-fitting and the limited diversity of foot pressure distributions
caused by data ambiguity. Furthermore, we show that only changing
the cropping strategy and the first convolution layers of the ViTPose,
significantly improves the performance of the pose estimator and
achieves the lowest error among others. Finally, we show that by uti-
lizing our self-supervised pre-training strategy, we can consistently
improve the performance, where a 0.4mm reduction in error is ob-



Table 2. PCKh@0.5 on SLP (uncovered) (↑ is better).

Method Frames
1 4 8 12 20 32

ResNet50 [1] 86.8 87.5 87.9 88.5 89.8 90.2
HRNet [1] 84.3 89.1 89.9 90.2 90.7 91.1
3DCNN [9] 83.5 86.2 89.5 90.3 92.4 93.2

ViTPose 90.6 90.9 91.4 91.9 92.9 93.6
T-ViTPose (Ours, C= 4) N/A 89.3 89.9 92.4 93.8 94.5

T-ViTPose+MAE (Ours, C= 4) N/A 90.8 91.5 93.2 94.1 95.0

Table 3. Effect of number of temporal crops and SSL pre-training
on the performance of T-ViTPose.

SSL Pre-training Temporal Crops Frames
4 32

3 1 29.8 23.4
3 2 29.3 20.4
3 4 28.4 16.5
7 1 30.2 23.1
7 2 30.1 21.4
7 4 28.9 16.9

served at 32 frames of pressure data. We also observe a similar ef-
fect in Table 2, where we compare the performance of our proposed
solution to our implementations of previous research. We see that
our approach is able to consistently achieve the best results where
12 or more frames are available. We also see that self-supervised
pre-training of our Temporal ViTPose consistently improves the per-
formance.

Generally, pose estimation approaches perform significantly bet-
ter given the temporal context [27]. In our case, this is particularly
seen on the carpet data where high levels of data ambiguity exist. As
a result, we design our network to utilize temporal crops throughout
all stages of the network, thus improving performance and outper-
forming the 3DCNN solution [9] that uses temporal tiling and 3D
convolutions only at later stages. Consequently, as shown in Table 1,
our model outperforms other approaches, mostly on long time win-
dows. For instance, T-ViTPose achieves third and fourth place when
only using 4 and 8 frames on the Intelligent Carpet dataset, respec-
tively. Similarly, in Table 2, On the SLP dataset, T-ViTPose achieves
the second-best performance when using 4 frames but outperforms
all benchmarks on longer time frames.

Next, we conduct a parameter test to investigate the effect of
temporal cropping on the performance of T-ViTPose in Table 3. We
show that increasing the number of temporal patches consistently
improves the performance. For instance, applying 4 crops instead
of 2 reduces the error by 0.9cm and 3.9cm when 4 and 32 tem-
poral frames are available. Furthermore, we show that using self-
supervised pre-training can reduce the error by an average of 0.45cm
across all conditions. Finally, we illustrate some examples of our
method in Figure 2, and compare our results against previous works,
where we observe more accurate pose estimation by our model.

Finally, Table 4 provides the model parameters, inference time,
and FLOPS for a batch of 20-frame input window. We show that
our model has the same order of parameters as other top-performing
approaches, is only 30 ms slower than HRNet or ViTPose, and uses
78% less FLOPS than the previous state-of-the-art pressure-based
pose estimation approach. Additionally, the training time of all
models was 30 minutes per epoch with a batch size of 128, except

Table 4. Number of parameters, FLOPS, and inference time.

Method FLOPS (G) Parameters (M) Inference Time (ms)
ResNet18 0.72 15.52 79.23
ResNet50 1.2 34.15 182.93
ResNet101 1.88 53.14 357.11

UNet 3.88 16.84 51.67
HRNet 0.69 9.32 366.36

3DCNN 57.31 68.86 67.02
ViTPose 3.52 93.31 383.53

Ours T=1 3.57 93.3 410.45
Ours T=2 6.73 94.51 413.00
Ours T=4 13.07 99.88 401.24

9

Fig. 2. A comparison of our result and 3D-CNN [9]

3DCNN, where training took 2 hours per epoch with a batch size of
64 due to the slow back-propagation caused by the large number of
parameters from the tiling operation and the 3D convolution layers.
These measurements were taken on an average of 1000 forward
passes given a 96 × 96 array on an Nvidia 1080 Xp GPU.

5. CONCLUSION

In this paper, we presented a 3-stage solution for accurate 3D pose
estimation from a temporal window of ambiguous pressure data.
Specifically, we proposed a temporal variation of ViT by using (2 +
1)D convolutions as the initial block, and pre-trained the network
using the self-supervised masked auto-encoder strategy. After a few
epochs of warm-up for modified modules, we trained our model us-
ing conventional 3D pose estimation objectives. We show that each
element in our design significantly improves the prediction error
over prior works in our experiments and set a new state of the art
on two large-scale pressure mapping datasets.
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