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ABSTRACT

Although Convolutional Neural Networks (CNN) have made
good progress in image restoration, the intrinsic equivalence
and locality of convolutions still constrain further improve-
ments in image quality. Recent vision transformer and self-
attention have achieved promising results on various com-
puter vision tasks. However, directly utilizing Transformer
for image restoration is a challenging task. In this paper,
we introduce an effective hybrid architecture for sand im-
age restoration tasks, which leverages local features from
CNN and long-range dependencies captured by transformer
to improve the results further. We propose an efficient hy-
brid structure for sand dust image restoration to solve the
feature inconsistency issue between Transformer and CNN.
The framework complements each representation by modu-
lating features from the CNN-based and Transformer-based
branches rather than simply adding or concatenating features.
Experiments demonstrate that SandFormer achieves signif-
icant performance improvements in synthetic and real dust
scenes compared to previous sand image restoration methods.

Index Terms— Gate fusion, Sand image restoration,
Transformer branch, CNN branch

1. INTRODUCTION

Sandstorms are one of the most common dynamic weather
phenomena and can significantly reduce the visibility and
contrast of captured images. The existing sand dust degraded
image restoration methods are mainly based on the atmo-
spheric light scattering model to improve the classic haze
removal algorithm directly. Due to some assumptions and
prior knowledge constraints, the processing results of sand
dust images will have color cast and blur. In recent years,
the use of deep learning methods to enhance haze images
has achieved great success. Inspired by this, some scholars
began to apply deep learning methods to sand dust image
restoration.

∗Corresponding author. †: Equal Contribution. Email: jun-
shi2022@gmail.com. This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 62166040, Grant 62261053,
Grant 62137002, and in part by the Natural Science Foundation of XinJiang
under Grant 2021D01C057.

[1] proposed a convolutional neural network sand dust im-
age enhancement method with color restoration. [2] proposed
a sand dust image reconstruction benchmark for training con-
volutional neural networks and evaluating the algorithm’s
performance, using the existing Pix2Pix network to restore
sand dust images. However, the CNN-based architecture only
considers the local features of the image, making the over-
all color projection problem of the image difficult to solve.
At the same time, there are certain limitations in capturing
long-range dependencies and recovering weak texture details.
Based on this, vision transformer (ViT) [3, 4] came into be-
ing. ViT demonstrated the advantage of global processing and
achieved a significant performance boost over CNN. Trans-
former can provide long-distance feature dependencies via
the cascaded self-attention. However, it lacks the capability
of retaining local feature details, thus leading to ambiguous
and coarse details for image reconstruction. Therefore, it is
very important to effectively combine CNN and Transfoemr.

Motivated by this, we propose a new design that brings
together the power of Transformer and CNN into sand image
restoration. The main idea is illustrated in Figure 1. Specif-
ically, we first introduce an effective hybrid architecture that
takes advantage of CNN and recent ViT for sand image
restoration. We propose two branches (i.e., CNN and trans-
former branches) and aggregate them several times during
the image restoration procedure. Consequently, local features
extracted from the CNN branch and long-range dependencies
captured in the transformer branch are progressively fused
to complement each other and extract rich features. Exper-
iments and comparisons demonstrate the superiority of our
method over state-of-the-art sand image restoration methods.

In summary, our contributions are presented as follows:

• In comparison to pure CNN-based sand image restora-
tion networks, our work is the first to introduce the
power of Transformer into sand image restoration via
novel designs.

• We propose a new fusion method to fuse CNN-based
features with Transformer backbone-based features ef-
fectively.

• Extensive experiments on SandPascal VOC++ and real
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Fig. 1. Overview structure of our method.

image datasets demonstrate the excellent performance
of our method.

2. METHOD

In this section, we detail how to leverage the respective
strengths of CNN and Transformer to promote their property
in image restoration tasks to restore sharper images. Sand-
Former consists of a shallow feature extraction module, a
transformer branch, a CNN branch, and a high-quality pro-
jected image restoration module. The overall structure of
SandFormer is shown in Figure 1.

2.1. Sand Images Formulation

The physical model that is widely used to describe the forma-
tion of an image suffered from light transmission hazed [5, 6]
is often defined as follows:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) is the observed hazy image, A is the global at-
mosphere light, and t(x) is the medium transmission map,
J(x) is the haze-free image. Moreover, we have t(x) =
e−βd(x) being the atmosphere scattering parameter and the
scene depth, respectively. Based on the physical model, we
construct a new dataset called SandPascal VOC ++, which
contains three forms of sand.

Dataset generation. In dusty weather, due to the different
decay of R, G, and B values, the degraded images have prior
features such as offset, concentration and time. Considering
the atmospheric light attenuation effect of the dust floating in
the atmosphere on the R, G, and B channels, the atmospheric
light model belonging to the dust image was reconstructed
according to the spatial distribution law. The mathematical
expression of this model is:

Â =< AR, k1AR + b1, k2AR + b2 >, (2)
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Fig. 2. Analysis of the influence of different parameters in
atmosphere scattering model.

where AG = k1AR + b1, AB = k2AR + b2, Â is the global
color deviation value of the sand dust image, k is the spa-
tial distribution coefficient of the atmospheric light value of
the three basic color spectrums, b is the disturbance amount.
Based on the formula 2, various dust images with different
degrees of degradation can be synthesized from clear images
through artificial algorithms.

2.2. CNN Block

Although CNN has achieved great success in the field of im-
age restoration, the inherent properties of CNNs make the net-
work’s performance reach a bottleneck. Based on this, this
paper introduces ViT to enable the network to achieve better
generalization performance while maintaining the ideal char-
acteristics of CNNs. Motivated by this, we propose a novel
dual-branch gated attention residual module to obtain local
feature information. This module is implemented by embed-
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Fig. 3. CNN Block

ding simple gating and channel attention in a convolutional
neural network. As shown in Figure 3, the degraded image
is obtained through ResNet[7] to obtain shallow network fea-
tures of size H0 × W0 × C0, which are respectively sent to
the CNN branch and the Transformer branch. In order to keep
the CNN features optimized in the CNN backbone, we add
a downsampling module before each CNN Block to prevent
overfitting. Both branches are deep-wise CNN to reduce the
computational complexity; the convolution kernel sizes are 1
and 3, respectively, to achieve multi-scale feature extraction.
To obtain a larger receptive field, we use simple channel at-
tention at the end of each convolutional block, which fuses
features at different scales to obtain richer feature representa-
tions.

2.3. Transformer Block
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Due to the inductive bias of locality and weight shar-
ing, the convolution operations demonstrate the intrinsic
limitations in modeling the long-range dependency. The self-
attention mechanism of Transfoemr itself makes it beneficial
to capture long-term dependencies between input sequences.
In order to take advantage of the powerful representation
ability of Transformer, we add the Transformer branch to
the proposed method and propose a novel feed forward
network (FFN) called Dual-path Shared Weight Attention

FFN(DSWAFFN). Similar to the CNN branch, a dual-path
form is also used to improve the fitting ability of this module.
Meanwhile, to reduce the network complexity[8], the two
branches share the weight, and the sigmoid activation func-
tion is added to obtain the attention weight of each branch.
For the self-attention part of the transformer branch, we use
the same structure as in[9], due to this can efficiently process
high-resolution images while taking into account the capacity
to handle global dependencies. A residual connection is at
the end of this module, as shown in Figure 4, which allows
the gradient to propagate effectively during backpropagation,
thus avoiding the gradient-vanishing problem. Transformer
stem aims to provide further guidance for global restora-
tion with progressive features according to the convolution
features.

2.4. Gate Fusion

Using CNN or Transformer separately causes either local or
global features to be neglected, which affects the model’s per-
formance. We propose a novel fusion module to fuse features
from different branches by gating blocks to address the fea-
ture inconsistency between Transformer and CNN. Specifi-
cally, feature maps are extracted from different levels of the
CNN and Transformer branches and sent to the gate fusion
module. We take a new step towards bridging the gap be-
tween CNNs and Transformer by presenting a new method to
“softly” introduce a convolutional inductive bias into the ViT.

As shown in Figure 5, we also integrate the idea of gat-
ing into the design of fusion module. A simple gate block
is added to replace the ReLU activation function in the mid-
dle part of the residual block. At the end of the fusion mod-
ule, we use the channel dimension convolution block for fur-
ther feature extraction. Using the fusion module, we can in-
geniously integrate the features extracted by CNN with the
features extracted by Transformer rather than directly adding
them together, which significantly reduces the performance of
the whole model.

3. EXPERIMENTS

3.1. Experimental results

This paper compares the sand dust image restoration method
based on traditional prior and the haze image restoration
method based on deep learning. For fairness, we retrain
all networks on SandPascal VOC++. For the comparative
experiment section, we have provided some visual effect
comparison pictures in 6 and 7. We obtain the best results of
the proposed method by training SandPascal VOC ++, com-
bined with our proposed CNN branch, Transformer branch,
and fusion module. We compare it with twelve State-of-the-
Art methods and re-evaluate all methods, as shown in Table
1. Meanwhile, the visualized images in 6 and 7 match well
with the quantitative results, showing our proposed method’s
favorable image restoration capability.
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Fig. 5. We concatenate features from two branches, bidirectionally transfer the mixed information to the original branches.
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Fig. 6. Image restoration results on a synthetic sand dust
dataset.
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Fig. 7. Image restoration results on the real world.

3.2. Ablation Study

For the ablation experiments section, as shown in Table 2,
we illustrate the importance of individual components of our
model. The model’s performance is greatly reduced when
there are only Transformer and CNN branches. Meanwhile,
when the output of these two is simply added, the model’s per-
formance will also be affected. Finally, the three parts we pro-
posed are integrated. That is, our proposed method achieves
the best results, which shows that all parts of the network are
of importance.

4. CONCLUSION

In this work, we explore the visual effects of SandFormer,
formulating a synthetic dataset with simultaneously fugitive

Table 1. Comparative results on synthetic images and real
images, all models are trained on our proposed dataset Sand-
Pascal VOC++.

Method SandPascal VOC++ Real
PSNR↑ SSIM↑ NIQE↓ NIMA↑ User Study↑

DCP[10] 17.925 0.855 3.361 3.998 2.6
MMSP[11] 17.772 0.843 2.926 3.943 7.3
GDCP[12] 13.669 0.752 3.255 3.890 3.9
TTFIO[13] 15.324 0.789 3.476 3.924 4.3

HRDCP[14] 12.212 0.683 4.131 3.884 5.8
OCM-GAT[15] 16.001 0.800 3.020 3.850 7.5
AOD-Net[16] 17.799 0.846 3.175 3.998 1.6
MSBDN[17] 29.033 0.918 2.988 3.726 3.6

4KDehazing[18] 28.215 0.912 3.447 3.852 5.3
AECR-Net[19] 27.222 0.907 3.146 3.886 4.2

Dehazeformer[20] 30.123 0.929 2.913 3.923 5.8
Transweather[21] 30.621 0.928 3.019 4.040 4.4

Sand images - - - - -
Ours 34.150 0.952 2.795 4.078 8.4

Table 2. Ablation experiments of proposed method.
PSNR↑ SSIM↑

only Transformer Branch 31.426 0.941
only CNN Branch 20.449 0.826

Transformer + CNN 30.986 0.941
Trans. + CNN + SK Fusion 31.667 0.948

Trans. + CNN + Gate Fusion 34.150 0.952

dust, sand, and sandstorms. And proposed a sand dust image
restoration network based on CNN and Transformer (called
SandFormer), which combines the advantages of CNN in lo-
cal feature recovery and Transformer in global perception,
and obtains the final clear image through gate fusion. Ex-
tensive experiments show that our method outperforms state-
of-the-art sand dust image restoration methods both quantita-
tively and qualitatively in dust scenes. In the future, we will
incorporate high-level vision tasks.
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