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ABSTRACT

We propose JEIT, a joint end-to-end (E2E) model and internal lan-
guage model (ILM) training method to inject large-scale unpaired
text into ILM during E2E training which improves rare-word speech
recognition. With JEIT, the E2E model computes an E2E loss on
audio-transcript pairs while its ILM estimates a cross-entropy loss
on unpaired text. The E2E model is trained to minimize a weighted
sum of E2E and ILM losses. During JEIT, ILM absorbs knowledge
from unpaired text while the E2E training serves as regularization.
Unlike ILM adaptation methods, JEIT does not require a separate
adaptation step and avoids the need for Kullback-Leibler divergence
regularization of ILM. We also show that modular hybrid autore-
gressive transducer (MHAT) performs better than HAT in the JEIT
framework, and is much more robust than HAT during ILM adap-
tation. To push the limit of unpaired text injection, we further pro-
pose a combined JEIT and JOIST training (CJJT) that benefits from
modality matching, encoder text injection and ILM training. Both
JEIT and CJJT can foster a more effective LM fusion. With 100B
unpaired sentences, JEIT/CJJT improves rare-word recognition ac-
curacy by up to 16.4% over a model trained without unpaired text.

Index Terms— Speech recognition, text injection, internal LM

1. INTRODUCTION

End-to-end (E2E) models have achieved the strong performance for
automatic speech recognition (ASR) [1, 2, 3, 4, 5] by directly map-
ping the speech signal into word sequences. However, even trained
with a large amount of audio-transcript pairs, the E2E models still
performs poorly when evaluated on utterances including words that
appear infrequently in the training data (rare words) [6]. More-
over, this supervised speech obtained via human transcription is ex-
pensive. To overcome this, utilizing knowledge from large-scale
unpaired text during training or inference is a promising solution
since unpaired text is orders of magnitude more plentiful than audio-
transcript pairs and covers a much larger vocabulary of words.

Language model (LM) fusion is a common approach to improve
E2E ASR by using unpaired text. An external LM is first trained
with unpaired text. In shallow fusion [7, 8], a log-linear interpola-
tion between the E2E model score and the LM score is computed at
each step of the beam search. To improve shallow fusion, internal
LM estimation-based fusion [9, 10, 11, 12, 13, 14] was proposed to
estimate an internal LM (ILM) score and subtract it from the shal-
low fusion score. However, all these methods require an external LM
during inference, increasing decoding time and computational cost.

To overcome this, various research has looked at incorporating
unpaired text into the training stage of E2E models. One intuitive
solution is to synthesize speech from unpaired text and use it to
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train the E2E model [15, 16, 17, 18]. However, training a text-to-
speech (TTS) model and synthesizing speech are both computation-
ally expensive. To circumvent this, modality matching approaches
[19, 20, 21, 22, 23] were proposed to map unpaired text to a latent
space shared by speech and text, and then use latent embeddings to
train the E2E model.

Alternatively, the decoder (and joint network for a transducer
model) of an E2E model behaves like an ILM when we zero out the
encoder output [10, 11, 24]. To achieve fast text-only adaptation, un-
paired text is injected into the decoder of a well-trained E2E model
[25, 26, 27, 28, 29]. These methods take one extra adaptation step
of fine-tuning ILM of the E2E model using text-only data to mini-
mize a cross-entropy loss after one or two stages of E2E training. In
addition, Kullback-Leibler divergence (KLD) [30] regularization is
performed to maintain the source-domain ASR performance.

The novel contributions of this work are: (1) We propose a joint
E2E model and ILM training (JEIT) that simplifies decoder text in-
jection by combining it into a single-stage E2E training. JEIT out-
performs text-only adaptation without KLD regularization. (2) We
further propose a combined JEIT and JOIST [23] training (CJJT) and
demonstrate that decoder text-injection via ILM is complementary
to encoder text-injection (via JOIST) and that the improvements are
additive. (3) We show that all text-injection methods can facilitate a
more effective LM fusion. (4) We validate our methods on Google’s
large-scale streaming production task where JEIT and CJJT offer up
to 10.2% and 16.4% relative reductions in WER, respectively, on
rare-word test sets without affecting voice search performance.

2. RELATED WORK

2.1. Hybrid Autoregressive Transducer (HAT)

An E2E model estimates the posterior distribution P (Y|X; θE2E)
over sequences of output labels Y = {y1, . . . , yU} given a sequence
of input speech features X = {x1, . . . ,xT }, where yu ∈ V, u =
1, . . . , U , and xt ∈ Rdx , t = 1, . . . , T . V is the set of all possible
labels, e.g., word pieces, etc. y0 is the start of sentence token.

HAT [10] consists of an acoustic encoder, a label decoder and a
joint network. In Fig 1, the encoder transforms input speech features
X into acoustic embedding vectors F = {f1, . . . , fT }, ft ∈ Rdf ,
i.e., F = Encoder(X). The label decoder takes in previous labels
to generate the current label embedding gL

u ∈ RdL
g , i.e., gL

u =
LabelDecoder(Y0:u−1). The joint network combines the acoustic
and label embeddings to computes a blank distribution

bt,u = Sigmoid[wᵀφ(W1ft +W2g
L
u)], (1)

where w ∈ Rdh is a vector, W1 ∈ Rdh×df and W2 ∈ Rdh×dL
g

are projection matrices. φ(·) is a non-linear function. The label
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posteriors given previous speech features and labels are computed as

P (yu|X1:t,Y0:u−1) = Softmax[Wφ(W1ft +W2g
L
u)], (2)

where W ∈ R|V|×dh is a projection matrix. The label posterior
given the alignment history is therefore (1−bt,u)P (yu|X1:t,Y0:u−1).

2.2. Modular HAT (MHAT)

To achieve more robust text-only adaptation, we proposed MHAT
in [28] to structurally separate the ILM score prediction from the
acoustic model score or blank score predictions. As in Fig. 2, MHAT
introduces a blank decoder that takes in the same previous labels as
the label decoder to generate the current label embeddings below

gB
u = BlankDecoder(Y0:u−1), (3)

where gB
u ∈ RdB

g is the label embedding of the label decoder. The
blank posterior bt,u is obtained by Eq. (1) using gB

u. ft and gL
u are

projected and then normalized to be |V|-dimensional (dim) vectors
of AM log probabilities at and ILM log probabilities lu, respectively

at = LogSoftmax(W3ft), lu = LogSoftmax(W4g
L
u), (4)

where W3 ∈ R|V|×df and W4 ∈ R|V|×dL
g are projection matrices.

at and lu are added and then normalized to compute label posteriors

P (yu|X1:t,Y0:u−1) = Softmax (at + lu) . (5)

2.3. ILM Training (ILMT) and ILM adaptation (ILMA)

ILMT [10, 24] minimizes an additional ILM loss during E2E model
training. While the E2E loss is computed with audio-transcript pairs,
the ILM loss is derived from only the training transcript. ILMT aims
to encourage ILM to behave also like a standalone neural LM such
that (1) accurate ILM scores can be estimated to improve ILME-
based fusion [24] (2) ILM can be further adapted to text-only data
[26]. ILMT makes no use of unpaired text and it does not improve
the ASR performance on either source-domain or rare-word test sets
[24]. Unlike ILMT, JEIT injects unpaired text into ILM during E2E
training with the goal of improving rare-word recognition.

ILMA [26] performs fast text-only adaptation of an E2E model
to improve rare-word ASR. In ILMA, we first conduct ILMT of E2E
model and then fine-tune ILM to minimize a cross-entropy ILM loss
using unpaired text. To prevent the source-domain ASR performance
from degrading, we minimize an additional KLD between the output
distributions of the unadapted and adapted ILMs during ILMA. To
simplify ILMA, JEIT combines two stages of ILMT and ILMA into
one training stage and obviates the need for KLD regularization.

2.4. Joint Speech and Text Modeling (JOIST)

JOIST [23] incorporates unpaired text into E2E training and sig-
nificantly improves rare-word recognition. It injects unpaired text
through the encoder so that text data can benefit the entire E2E
model. In JOIST, unpaired text is first tokenized to word-piece or
phoneme sequences and is then upsampled by replicating each token
a fixed or random number of times. The upsampled text is masked
and then fed into a text encoder to generate token embeddings which
are further passed to the decoder input or a layer of the encoder.
JOIST minimizes a weighted sum of two E2E losses derived from
audio-transcript pairs DP and unpaired text DUP, respectively

LJOIST(DP,DUP) = LE2E(DP; θE2E) + αLE2E(DUP; θE2E), (6)

where the two E2E losses are defined as

LE2E(DP; θE2E) = −
∑

(X,Y)∈DP

logP (Y|X; θE2E), (7)

LE2E(DUP; θE2E) = −
∑

Y∈DUP

logP (Y|F (Y); θE2E) , (8)

where F (·) is a function that tokenizes, unsamples and masks an
unpaired sentence in DUP. α > 0 is the weight of unpaired E2E
losses. In this work, we incorporate ILM loss into JOIST to further
improve ASR performance.

3. JOINT E2E AND ILM TRAINING (JEIT)

ILM probability can be estimated by the E2E model output after
zeroing out the encoder output [10, 11]. ILM is the decoder and the
joint network of HAT, is the label decoder and output projection W4

of MHAT, and is the decoder of an AED model.

Fig. 1. JEIT of HAT. Blue and red arrows represent the forward prop-
agation path of audio-transcript pairs (XP

1:t, YP
0:u−1) and unpaired

text YUP
0:u−1, respectively.

Our goal is to improve the ASR accuracy on rare-word test sets
by making use of large-scale unpaired text while maintaining WER
on source-domain task (e.g., voice search). In this work, we propose
JEIT, a joint training of E2E model and ILM that injects unpaired
text into ILM during E2E training. As shown in Figs. 1 and 2, ILM
is trained with unpaired text to minimize an ILM loss while the en-
tire E2E model is trained with audio-transcript pairs to minimize an
E2E loss. The ILM loss minimization makes ILM a strong neural
LM in the target domain while the E2E loss serves as a regulariza-
tion to ensure ILM can work well with the other E2E model compo-
nents to predict accurate E2E scores. Specifically, JEIT minimizes a
weighted sum of the E2E loss and ILM loss below

LJEIT(DP,DUP) = LE2E(DP; θE2E) + βLILM(DUP; θILM), (9)

where β > 0 is the weight of the ILM loss. The ILM loss is the
summed negative log probability of all label sequences predicted by
ILM on the unpaired text DUP as follows

LILM(DUP; θILM) = −
∑

Y∈DUP

U∑
u=1

logP (yu|Y0:u−1; θILM), (10)



Fig. 2. JEIT of MHAT. Blue and red arrows represent the forward
propagation path of audio-transcript pairs (XP

1:t, YP
0:u−1) and un-

paired text YUP
0:u−1, respectively.

where θILM ⊆ θE2E denotes ILM parameters.
Compared to text-only adaptation [25, 26, 27, 28], JEIT signif-

icantly simplifies the entire learning process: 1) JEIT reduces two
steps of audio-transcript training and unpaired text adaptation to one
step of joint training, decreasing the computational cost and train-
ing/adaptation time. 2) JEIT avoids the need for KLD regularization
of the ILM output distribution.

To improve rare-word recognition, JEIT injects unpaired text
into the label decoder of an E2E model to minimize LE2E(DP; θE2E)
and LILM(DUP; θILM) while JOIST injects it through the encoder to
minimize LE2E(DP; θE2E) and LE2E(DUP; θE2E). To benefit from both
methods, we proposed a combined JEIT and JOIST training (CJJT)
to minimize a weighted sum of an E2E loss derived from audio-
transcript pairs, an E2E loss derived from unpaired text and an ILM
loss derived from unpaired text as follows

LCJJT(DP,DUP) = LE2E(DP; θE2E) + αLE2E(DUP; θE2E)

+ βLILM(DUP; θILM). (11)

We show in the experiments that JEIT and JOIST are complementary
to each other and CJJT achieves better ASR performance than either
method alone.

During inference, we can integrate an external LM into the E2E
model after JEIT or CJJT to further improve the rare-word ASR. We
show that LM fusion is complementary to both JEIT and CJJT even
if the external LM is trained with same unpaired textDUP as in JEIT.

4. EXPERIMENTS

4.1. Dataset

We use ∼650M multi-domain English audio-transcript pairs as su-
pervised training data [23]. It covers multiple domains including
Voice Search, Dictation, YouTube, Telephony and etc. YouTube
transcripts are generated in a semi-supervised fashion [31] while
other data is anonymized and hand-transcribed [32]. In addition,
multi-condition training [33], random 8kHz down-sampling [34] and
SpecAug [35] are applied to augment and diversify the data.

The unpaired text used in training or adaptation consists of 100B
anonymized sentences across the domains of Maps, Google Play,

Web, and YouTube, and is more than two orders of magnitude larger
than audio-transcript pairs. The external LM is trained with 50%
transcripts of the paired data and 50% unpaired text to ensure the
quality on base Voice Search task does not degrade.

We evaluate our models on a Voice Search (VS) test set contain-
ing∼12K anonymized and hand-transcribed voice search utterances
with an average duration of 5.5 s. To evaluate ASR performance on
long-tail words, we construct rare-word test sets for each of the 5
domains: Maps, Google Play, Web and YouTube (YT) domains. All
test sets include rare proper nouns that appear fewer than 5 times in
the training set and are synthesized by a TTS system [36]. Our goal
is to improve the ASR accuracy on 4 rare-word test sets without de-
grading the WER on Voice Search.

4.2. Modeling

We train HAT and MHAT with 2-pass cascaded encoders and sep-
arate decoders as in [37, 38]. They share the same front-end and
encoder architecture. Specifically, 128-dim log Mel filterbanks are
extracted from speech signal and are subsampled to form a 512-dim
feature every 30 ms. Each speech feature is appended with a 16-
dim domain ID [39]. The causal encoder is a 7-layer conformer with
causal convolution and left-context attention. The non-causal en-
coder is a 10-layer conformer with right-context attention that pro-
cesses 900 ms of speech into the future. Each conformer layer uses
a 512-dim 8-head self-attention and a convolution kernel of size 15.

The causal and non-causal decoders of HAT or MHAT decode
using the outputs of the causal and non-causal encoders, respectively.
The label decoders of HAT and MHAT are 2-layer LSTMs with 2048
hidden units in each layer. In HAT, the label decoder output passes
through a 640-dim feedforward joint network before projected to
4096 output units representing word pieces [40]. In MHAT, the label
decoder output is directly projected to the output layer of the same
size. ILMs of HAT and MHAT have 30.7M and 30M parameters,
respectively. The blank decoder of MHAT is a 320-dim V 2 embed-
ding decoder [41, 42] with a look-up table shared between the last
2 tokens and has 1.5M parameters. Overall, HAT and MHAT have
in total 205M and 210M model parameters, respectively. We report
only the 2nd pass WER in this paper. We train baselines with only
audio-transcript pairs and show their WERs in Table 1.

Moreover, we train a 12-layer conformer LM with 384-dim self-
attention and 3072-dim feedforward layer [6]. The external LM has
left attention context of 31 and has in total 70M parameters.

4.3. ILMA of HAT and MHAT

We first train an ILMT [24] model with an ILM loss weight of 0.1
and use it as the seed for ILMA [26]. For both ILMA and JEIT, we
adopt minibatch sizes of 4,096 and 32,768 for paired audio-transcript
data and unpaired text, respectively. During ILMA, a KLD regular-
ization with a weight of 0.5 is applied for both HAT and MHAT. In
Fig. 3, we plot the WERs of HAT ILMA and MHAT ILMA with
respect to number of training steps. WER of HAT ILMA sharply
increases after reaching its best one at 5K training step while the
WER of MHAT gradually decreases until after 200K step. This is
because without a structural factorization, HAT is not able to work
with an increasingly stronger ILM and will lose its functionality of
performing E2E ASR. This shows that MHAT is superior to HAT
for ILMA because its structurally independent ILM allows MHAT
to constantly improve its ASR capability as ILM becomes stronger.
We list the best WERs of ILMA in Table 1.



(a) HAT ILMA (b) MHAT ILMA

Fig. 3. WERs (%) of ILMA at different number of training steps (K)
for HAT and MHAT with LSTM label decoders.

4.4. JEIT of HAT and MHAT

We perform JEIT with the same minibatch sizes as ILMA and using
ILM loss weights β of 0.2 and 4.0 for HAT and MHAT, respectively.
Significantly larger optimal ILM loss weight for MHAT signifies its
advantage over HAT due to factorization - MHAT can work with
increasingly stronger ILM to perform better ASR while HAT can-
not. In Table 1, MHAT JEIT performs the best among all methods,
achieving 4.8%–10.2% relative WER reduction from the baseline
HAT on rare-word test sets. For MHAT, JEIT gets better WERs than
ILMA on all test sets. MHAT JEIT consistently outperforms HAT
JEIT by up to 3.5% relatively in terms of lower WER. As JEIT goes
on, WERs of both HAT and MHAT reduce continuously without any
sudden increase. This implies that E2E loss in JEIT serves as a much
better regularization than KLD in ILMA. Overall, we show for the
first time that joint training of ILM is better than adaptation.

Model Exp VS Rare Words
Maps Play Web YT

HAT

Base 6.1 14.0 37.3 21.6 24.6
ILMT 6.1 14.1 37.6 21.7 24.8
ILMA 6.2 13.6 36.3 20.8 24.2
JEIT 6.3 13.3 36.8 20.1 23.2

MHAT

Base 6.2 14.1 37.4 21.4 24.6
ILMT 6.2 14.3 37.8 21.8 25.0
ILMA 6.3 13.3 35.5 20.3 23.5
JEIT 6.2 13.2 35.5 19.4 22.6

Table 1. WERs (%) of HAT, MHAT with LSTM label decoders us-
ing various training or adaptation methods. Baseline and ILMT [24]
models are trained with 650M multi-domain (MD) audio-transcript
pairs. The same paired data and 100B MD unpaired sentences are
used for ILMA [26] and the proposed JEIT.

4.5. JEIT with Different Decoders

We vary the type and size of the MHAT label decoders while keep-
ing cascaded encoders in Section 4.2 unchanged. Besides LSTM, we
explore simpler and smaller label decoders: V 2 embedding and V 4

embedding [41] which have 640-dim embeddings and condition on
the last 2 and 4 tokens, respectively. Each previous token has a sep-
arate look-up table. The same blank decoder in Section 4.2 is used.
MHATs with V 2 and V 4 embedding decoders have 8.6M, 14.6M pa-
rameters for their ILMs and have in total 169M, 182M parameters,
respectively. In Tables 2 and 1, JEIT of MHATs with V 2 embedding,
V 4 embedding and LSTM decoders achieve 1.6%–4.1%, 1.6%-4.9%

and 4.3%–8.8% relative WER reductions from the baseline MHAT
on Maps, Play, Web and YT, respectively. For all 3 decoders, JEIT
obtains no WER degradation on rare-word test sets. This shows that
JEIT is beneficial to label decoders of various types and sizes. The
effectiveness of JEIT increases as the ILM size grows and also as the
label decoder’s conditioning history extends.

Label
Dec

Params
(M) Exp VS Rare Words

Maps Play Web YT
V 2

Embed
8.6 Base 6.2 14.5 37.9 21.9 24.9

JEIT 6.3 13.9 36.6 21.3 24.5
V 4

Embed
14.6 Base 6.3 14.4 37.5 22.1 25.0

JEIT 6.2 13.7 36.9 21.1 24.3

Table 2. WERs (%) of MHATs with V 2 embedding, V 4 embedding
decoders. Cascaded encoders and blank decoders of the two MHATs
are the same as those of MHAT with LSTM label decoder in Table 1

4.6. Combining JEIT with Other Text Injection Methods

We train JOIST MHAT with phoneme-based unpaired text following
the setup in [23]. The text encoder output is fed to the 3rd conformer
layer of causal encoder. Unpaired E2E loss weight α is 0.25. We
conduct combined JEIT and JOIST training (CJJT) with an ILM loss
weight β of 1.5. We subtract ILM scores during LM fusion.

Exp Params
(M) VS Rare Words

Maps Play Web YT
Base

210

6.2 14.1 37.4 21.4 24.6
JEIT 6.2 13.2 35.5 19.4 22.6

JOIST 6.2 12.4 34.7 18.5 22.1
JEIT + JOIST (CJJT) 6.2 12.0 33.8 17.9 21.3

Base + LM

280

6.0 11.8 34.4 17.9 23.2
JEIT + LM 6.0 11.7 34.0 17.0 22.6
CJJT + LM

CJJT + MWER + LM
6.0 10.6 31.9 15.6 20.8
6.1 10.1 30.7 14.7 19.3

Table 3. WERs (%) of MHATs with LSTM label decoders when
combining JEIT with various text injection methods and MWER.

CJJT consistently outperforms both JOIST and JEIT, indicating
text injection into the encoder and decoder are complementary and
the gains are additive. It is worth noting that CJJT achieves similar
or even better WER than LM fusion with base MHAT on rare-word
test sets, despite having 70M fewer model parameters. LM fusion
with JEIT/CJJT MHAT achieves 2.3%–12.8% additional gains rel-
atively, so conducting JEIT or CJJT early on is extremely beneficial
to LM fusion. LM fusion with CJJT performs better than with JEIT,
suggesting JEIT, JOIST and LM fusion are complementary to each
other. Finally, we perform CJJT, minimum word error rate (MWER)
training [43] and LM fusion, and obtain the best WER over all sys-
tems with 17.9%–31.3% relative WER reductions from the baseline.

5. CONCLUSION

We propose JEIT to inject unpaired text into ILM via a single-stage
joint training. JEIT simplifies two-stage ILMA and eliminates KLD
regularization, achieving up to 10.2% relative WER reductions from
baseline on rare-word test sets. MHAT performs better than HAT
after JEIT, and is much more robust than HAT during ILMA. Text
injection into encoder and decoder are complementary, combining
them (CJJT) achieves up to 16.4% relative gain. LM fusion further
improves all text-injection methods by up to 12.8% relatively.
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