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ABSTRACT
In clinical scenarios, multiple medical images with different
views are usually generated at the same time, and they have
high semantic consistency. However, the existing medical re-
port generation methods cannot exploit the rich multi-view
mutual information of medical images. Therefore, in this
work, we propose the first multi-view medical report genera-
tion model, called MvCo-DoT. Specifically, MvCo-DoT first
propose a multi-view contrastive learning (MvCo) strategy
to help the deep reinforcement learning based model utilize
the consistency of multi-view inputs for better model learn-
ing. Then, to close the performance gaps of using multi-view
and single-view inputs, a domain transfer network is further
proposed to ensure MvCo-DoT achieve almost the same per-
formance as multi-view inputs using only single-view inputs.
Extensive experiments on the IU X-Ray public dataset show
that MvCo-DoT outperforms the SOTA medical report gener-
ation baselines in all metrics.

Index Terms— Multi-view contrastive learning, Domain
transfer, Medical report generation, Chest X-Ray

1. INTRODUCTION
Medical report generation is a multimodal cross-task in com-
puter vision and natural language processing, which aims to
reduce the workload of doctors by automatically generating
diagnostic descriptions from medical images. Motivated by
the application of deep learning in medical image analysis
[1, 2], current medical report generation approaches typi-
cally utilize encoder-decoder architecture to learn medical
images from different views but independently. And many
spatial and channel attention methods [3] have been care-
fully designed to explore multimodal interactions between
image-level and sentence-level semantic features for report
generation [4–8], however, this way of understanding images
is not ideal for complex cross-modal generation tasks. Then,
[9] mitigates textual and visual data bias by exploring prior
knowledge and posterior knowledge, [10] models and memo-
rizes reports similar patterns between them, and thus promote
Transformer to generate more informative long text interpre-
tation reports. In order to utilize visual information more
effectively, inspired by contrastive learning in the domain of
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Fig. 1. Semantic-based multi-view contrastive learning.
natural images and natural language process [11–14], people
started to try this method to improve the visual representation
of medical images [15–17]. However, the existing medical
report generation methods have a common shortcoming that
their inputs are usually single view,which fails to utilize the
rich multi-view information in chest X-Ray images.

Consequently, in this work, we propose a novel Multi-
view Contrastive Domain Transfer (MvCo-DoT) network for
better medical report generation. Specifically, we first pro-
pose to integrate a Multi-view Contrastive Learning (MvCo)
strategy into our previous deep reinforcement learning based
medical report generation model [7]. Intuitively, as shown in
Fig. 1, since the paired multi-view medical images are dif-
ferent imaging results of the same patient, their descriptions
of lesions or organs in the patient should have high consis-
tency [18]. Therefore, MvCo is proposed to utilize semantic
embeddings of different views of patients’ X-Ray images for
contrastive learning. Compared to existing self-supervision
based solutions [15, 16] whose contrastive learning modules
are applied in encoders, feature representations used in MvCo
is located in decoders, which thus have more direct impact on
the quality of resulting medical reports.

In addition, our experimental studies show that although
using MvCo can greatly improve the performances of medical
report generation, it suffers from the problem of domain shift.
When we have only single view X-Ray images as inputs, the
inference results are greatly degraded because distributions of
single-view inputs are very different from that of multi-view
inputs. Consequently, we further propose to incorporate a Do-
main Transfer Network (DoT) into our medical report genera-
tion model to resolve this problem by closing the performance
gaps of multi-view and single-view inputs. Specifically, DoT
is achieved by using a sampling-based adaptive input selec-
tion module, which enables generation branch to randomly

ar
X

iv
:2

30
4.

07
46

5v
1 

 [
cs

.C
V

] 
 1

5 
A

pr
 2

02
3



R
esN

et
R

esN
et

G
um

bel_softm
ax

L
inear

M-Linear
Encoder

𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

lateral image

frontal image

𝒂𝒂𝟐𝟐: 𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒂𝒂𝟑𝟑: 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇′

M-Linear
Decoder

M-Linear
Encoder

M-Linear
Encoder

predicted
report

<s> The

<s> The

<s> The

M-Linear
Decoder

M-Linear
Decoder

gradient

gradient

Softm
ax

wight

𝒂𝒂𝟏𝟏: 𝑭𝑭𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

𝑪𝑪𝒇𝒇

P

𝑨𝑨ction

V

wight

wight

wight

ground
truth

Hybrid reinforcement learning

Adaptive Input Selection Module 
(DoT)

Fg

Siamese DecoderSiamese Encoder

Spatial image features

𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

Data flow of  multi-view contrastive learning branches  (MvCo)
Data flow of  generation branch
High-order contextualized features embeddings

𝑭𝑭𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍′

𝑭𝑭𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂′

L
inear

L
inear

𝒇𝒇𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
⊕

E
L

U
E

L
U

∅𝑙𝑙

∅𝑓𝑓

L
inear

R
eL

U

L
inear

𝜑𝜑

L
inear

R
eL

U

L
inear

𝒙𝒙𝒇𝒇

𝒙𝒙𝒍𝒍
Low-order features embeddings

𝒉𝒉𝒇𝒇

𝑪𝑪𝒍𝒍

𝒉𝒉𝒍𝒍

𝜑𝜑

Fig. 2. The architecture of our proposed MvCo-DoT network.

select single or multi-view fused features as final input ac-
cording to estimated probability. Advantages of DoT are as
follows: (i) It ensures that the model learns using a more com-
prehensive input distribution , which thus close performance
gaps of using multi-view and single-view inputs in inference;
(ii) different from random selection, using DoT will not de-
grade model’s feature learning capability; (iii) it also narrow
information gap between contrastive learning branch (single-
view input) and generation branch (multi-view input).

The contributions of this work can be summarized as fol-
lows. (i) We identify the lack of multi-view input problem
of existing medical report generation methods and propose
a MvCo-DoT network for better medical report generation.
(ii) A multi-view contrastive learning (MvCo) strategy is first
proposed to utilize the multi-view information of chest X-Ray
images for better model learning, while a domain transfer net-
work is then proposed to ensure model can achieve good per-
formances using only single-view inputs in inference stage.
(iii) Extensive experiments on a public dataset (IU X-Ray)
show that: first, our proposed MvCo-DoT model greatly out-
performs existing medical report generation baselines in all
metrics; second, MvCo and DoT are both effective and es-
sential for the model to achieve the superior performances;
third, MvCo-DoT can achieve almost the same performance
as multi-view inputs using only single-view inputs, which
greatly saves the patients’ time and money.

2. METHODOLOGY
We propose a multi-view contrastive domain transfer network
for medical report generation. As shown in Fig. 2, we will
adopt the architecture of generation branch and contrastive
learning branch. Contrastive learning branch is used for inter-
view mutual information mining, and a generation branch is
used for report generation. The two processes are alternately
performed during training.
2.1. Multi-View Contrastive Learning
In order to mine and utilize the mutual information between
medical images of different views, we propose semantic-
based multi-view contrastive learning method with [7] as
the backbone network. Specifically, we concatenate the

contextual semantic representations cf , cl and hidden layer
information hf , hl decoded from different views and project
them onto the same implicit space for comparison.

xf = ψ(Concat(cf , hf )), xl = ψ(Concat(cl, hl)), (1)

where cf and cl are the context vectors of the last step of the
LSTM in the twin M-Linear decoders, hf and hl are the cor-
responding hidden layer vectors. ψ(·) is modeled as two fully
connected layers with ReLU activations, according to [19].
Then we maximize the semantic concordance between the
frontal and lateral view of the same patient while minimiz-
ing the similarity between different patients. The multi-view
contrastive loss function is defined as

LMvCo = − log
exp(sim(xl, xf )/τc)∑2N

k=1 1[k 6=l] exp(sim(xl, xk)/τc)
, (2)

where sim(xl, xk) represents the cosine similarity, sim(xl, xk)
= xl

>xk/‖ xl ‖‖ xk ‖ and τc is temperature parameter.

2.2. Domain Transfer Network
To overcome the domain shift problem caused by the input
distribution gap between training and testing phases, We pro-
pose a domain transfer network based on adaptive input se-
lection. First, we project the frontal and lateral visual features
ffrontal and flateral extracted by ResNet101 [20] into two
different latent spaces, to obtain more discriminative visual
embeddings Ffrontal and Flateral for different views.

Ffrontal = φf (ffrontal), Flateral = φl(flateral), (3)

where φf (·) and φl(·) are modeled as fully connected lay-
ers with ELU activations. Afterward, we add the visual em-
beddings of these different views to obtain Ffusion, which
replaces the operation of direct concatenation of original fea-
tures commonly used in previous work. Then, in order to
make the model get the most useful information input and
better balance the use of frontal and lateral view information,
we adaptively decide to input a single feature or mixed fea-
tures through action sampling. The action space A ∈ R1×3 is
defined as Ffrontal (when i = 0), Flateral (when i = 1), or
Ffusion (when i = 2).



“no acute cardiopulmonary 
abnormality. the lungs are 
clear and without focal 
airspace opacity. the 
cardiomediastinal 
silhouette is normal in size 
and contour and 
stable.there is no 
pneumothorax or large 
pleural effusion.”

Ground-truth HRe-MRImage MRMA MvCo-DoT(Ours)

“no acute cardiopulmonary 
abnormality . the 
cardiomediastinal silhouette 
is within normal limits and 
contours are stable. the lungs 
are clear . there is no focal 
airspace opacity. no pleural 
effusion or pneumothorax. 
there are no acute bony 
abnormality.”

X-LAN

“no acute cardiopulmonary
abnormality . the lungs are 
clear . there is no 
pneumothorax or pleural 
effusion . the heart and 
mediastinum are within 
normal limits . bony 
structures are intact.”

“no acute cardiopulmonary
findings . lungs are clear 
bilaterally . cardiac and 
mediastinal silhouettes are 
normal . pulmonary 
vasculature is normal . no 
pneumothorax or pleural 
effusion . no acute bony 
abnormality.”

“no acute cardiopulmonary 
abnormality . the 
cardiomediastinal silhouette 
and pulmonary vasculature are 
normal in size . the lungs are 
clear . there is no 
pneumothorax or pleural 
effusion . no focal airspace 
consolidation. no acute bony 
findings.”

Fig. 3. Example of reports generated by our MvCo-DoT model and beaslines.

Table 1. Results of MvCo-DoT and the SOTA baselines on
IU X-Ray, where B, ME and RO stand for BLEU, METEOR
and ROUGE-L, and all models are re-implemented by us.

Model B-1 B-2 B-3 B-4 ME RO
Top-down [4] 0.2822 0.1866 0.1241 0.0830 0.1455 0.3330
RTMIC [22] 0.3448 0.2188 0.1484 0.1063 0.1509 0.2890
MRMA [5] 0.3820 0.2520 0.1730 0.1200 0.1630 0.3090
X-LAN [6] 0.3826 0.2724 0.1949 0.1405 0.1750 0.3441
R2Gen [10] 0.4349 0.2802 0.1868 0.1510 0.1773 0.3509
HRe-MR [7] 0.4265 0.3025 0.2119 0.1502 0.1871 0.3608
MvCo-DoT 0.4533 0.3180 0.2228 0.1568 0.1958 0.3743

Table 2. Results of ablation experiments on IU X-Ray.

Model B-1 B-2 B-3 B-4 ME RO
Base-Cat 0.4175 0.2813 0.1951 0.1400 0.1820 0.3604
MvCo-Cat 0.4373 0.3062 0.2139 0.1482 0.1933 0.3609
MvCo-Fusion 0.4440 0.3130 0.2196 0.1571 0.1953 0.3698
Ours 0.4533 0.3180 0.2228 0.1568 0.1958 0.3743

This non-deterministic approach enables the model to
adaptively select optimal input to obtain the maximum
amount of visual information for each image. To circumvent
the technical problem that binary sampling actions cann’t
participate in backpropagation, we utilize random sampling
based on Gumbel-Softmax distribution. This reparameteriza-
tion trick has been used in reinforcement learning to enable
discrete decision [21]. Non-differentiable action values are
replaced by differentiable samples from Gumbel-Softmax
distribution. Specifically, we concatenate the global visual
features Ffrontal and Flateral, which are multi-scale fusions
of frontal and lateral views in the latent space and taken as a
comprehensive information basis for the current action selec-
tion. It is sent to a linear layer through the fully connected
layer to obtain the action confidence warehouse P ∈ R1×3.

P = softmax(Wc(Concat(Ffrontal, Flateral))), (4)

where Wc represents the fully connected layer parameter ma-
trix. Subsequently, the sampling module will generate action
values V ∈ R1×3, which defined as

V (a) =
exp((log(Pi(a) + gi(a)/τs)∑3

j=1 exp((log(Pj(a) + gj(a)/τs)
, for i = 1, 2, 3, (5)

where g represents the noise sampled from standard Gumbel-
Softmax distribution, and τs is temperature parameter. The
final input strategy is gained after V through argmax layer.
During inference, V is generated according to input directly.
Sample action whose sample value in A is calculated to be 1,
and reconstruct only the features corresponding to the action
into final input feature Fg .

Fg = A(ai), V (ai) = 1, (6)

3. EXPERIMENTS
3.1. Experimetal Settings
To evaluate the performance of our proposed MvCo-DoT,
extensive experiments are conducted on public chest X-Ray
image dataset IU X-Ray [23]. We screen 3, 111 groups of
cases from the dataset, each containing two X-Ray images
of frontal and lateral views and a paired report. The dataset
is randomly divided by 7:1:2. In addition, words with fre-
quency of less than 5 are discarded and replaced with ”UNK”,
and reported maximum generated length is set to 114. We
reimplement six state-of-the-art image captioning and med-
ical report generation models as baselines, including Top-
down [4], RTMIC [22], MRMA [5],X-LAN [6], R2Gen [10]
and HRe-MR [7].We evaluated the models using six common
automatic language generation metrics, including BLEU [24],
METEOR [25], and ROUGE-L [26], where BLEU includes
four n-gram-based metrics (BLEU-1 to BLEU-4 ).

We utilize ResNet-101 pre-trained on ImageNet [27] to
extract 2048 dimensional region-level image features from
the last convolutional layer. After being converted to vi-
sual embeddings of size 1024, the encoder exploration with
four stacks of M-linear attention blocks yields high-order
synthetic features. During decoding process, we set size of
hidden layer, word embedding dimension, and latent dimen-
sion of the projection layer to 1024. During training, we first
pre-train model with a batch size of 6 for 60 epochs using
NVIDIA RTX 2080Ti GPUs, the model is optimized alter-
nately by generation branch and contrastive learning branch.
We set the base learning rate to 0.0001, paired with a Norm
decay strategy with 10, 000 warm-up steps, and used the
ADAM [28] optimizer. We set τc to 0.1 and τs to 0.3. Fi-
nally, we train model with batch size of 2 for 60 epochs of
reinforcement learning using beam search [29] with a beam
size of 2 to further improve model performance. We set the
indicator-weighted mixed reward as our training reward [7],
where weights of BLEU-1, BLEU-2, BLEU-3, BLEU-4, ME-
TERO, and ROUGE-L, are 2, 2, 1, 1, 2, and 2, respectively;
and base learning rate is reduced to 0.00001 and decayed by
cosine annealing with a period of 15 epochs.

3.2. Main Results
Table 1 shows experimental results of our proposed MvCo-
DoT and five baselines on six natural language generation
metrics, where all baselines are re-implemented. Further-
more, Fig. 3 presents some examples of generated reports .

In general, MvCo-DoT outperforms all state-of-the-art
baselines among all metrics in Table 1, because (i) our multi-
view contrastive learning adequately performs multi-view
mutual information learning to obtain superior performance,
(ii) the same input for multi-view training and single-view
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Fig. 4. Semantic feature embeddings in latent space.

testing is maintained, and task gap between contrastive learn-
ing branch and generation branch is narrowed, avoiding do-
main shift problem. Moreover, visualization results shown
in Fig. 3 also support our findings, where MvCo-DoT gen-
eration obtains a more comprehensive and accurate report
description than baselines. Thus, our proposed multi-view
contrastive learning and domain transfer network are highly
effective in enhancing the quality of report generation.

3.3. Ablation Study
We further conduct a series of ablation experiments to demon-
strate the effectiveness of each module of our proposed
MvCo-DoT. We take generation branch as the base model,
which utilizes raw feature concatenation of different views
as input, called Base-Cat. Then we further implement two
other versions of our MvCo-DoT: (i) Introduce a multi-view
contrastive learning branch on base model, called MvCo-Cat,
and (ii) using visual embedding fusion instead of original fea-
ture direct concatenation, called MvCo-Fusion. In Table 2,
we observe that all metrics of MvCo-Cat are superior higher
than Base-Cat, as mutual information mined by multi-view
contrastive learning helps to focus on salient lesions, explore
deep semantic features and enable multimodal inference. The
MvCo-Fusion score is further improved, indicating that fea-
ture fusion strategy is more suitable for our task. Next, we use
Gumbel-Softmax-based random sampling to adaptively select
input strategy to obtain final model MvCo-DoT. Overcoming
input distribution gap enables model to improve cross-domain
transferability while reducing the task distance between the
contrastive learning branch and generation branch, which
makes it the highest score among all versions of the model.
In conclusion, our proposed MvCo learning strategy and
DoT network are very effective and essential to improve the
accuracy of automatic generation of medical image reports.

3.4. Additional Results
In this section, we investigate the impact of semantic-based
multi-view contrastive learning on model performance and
advantages of domain transfer networks based on adaptive in-
puts. Fig. 4 shows the distance variation of frontal and lateral
view semantic embeddings in the implicit space. Compared
with generation branch Base in (a), multi-view contrastive
learning MvCo in (b) can make the semantic embeddings of
different views closer. This is because the model learns mu-
tual information between different views, thereby decoding
feature vectors with more semantic consistency. In addition,
in Fig. 5, compared with the pure multi-view comparison
MvCo in (a), domain transfer network MvCo-DoT with adap-
tive input selection in (b) can generate high-scoring reports
under any single view, which well solves domain shift caused
by different input distributions during multi-view training
and single-view testing. Moreover, the model performance is
further improved compared to (a), which means that the same
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input distribution also reduces the gap. The model obtains the
optimal representation of the two, promoting each other.

3.5. Effect of Varying Hyper-Parameters τc and τs
τc and τs are the temperature parameter of the contrastive
loss and Gumbel-softmax distribution, respectively. In Fig. 6,
according to (a), in the range of 0.01 to 1, the performance
of the model fluctuates with the size of τc, and according to
(b), smaller τs in the range of 0.3 to 0.8 is better. Therefore,
we need certain tuning parameters to achieve the best perfor-
mance. In this model, we set τc to 0.1 and τs to 0.3.

4. CONCLUSIONS
In this paper, we proposed a multi-view contrastive domain
transfer network (MvCo-DoT) for medical report generation.
We mined mutual information between different views of
chest X-Ray using multi-view contrastive learning based on
semantic information to aid model learning. We also closed
the input distribution gap between training and inference
stages and contrastive learning branch and generation branch
through domain transfer network based on adaptive input
selection to address the domain shift problem. We performed
extensive experiments on the publicly available dataset IU
X-Ray, demonstrating the superiority and effectiveness of our
proposed method. Future researches may include the usage of
the proposed method in imbalanced learning task [30], and in-
corporate more deep reinforcement learning techniques [31]
to enhance the deep generation model’s learning capabilities.

5. ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China under the grants 62276089, 61906063
and 62102265, by the Natural Science Foundation of Hebei
Province, China, under the grant F2021202064, by the “100
Talents Plan” of Hebei Province, China, under the grant
E2019050017, by the Open Research Fund from Guangdong
Laboratory of Artificial Intelligence and Digital Economy



(SZ) under the grant GML-KF-22-29, and by the Natural
Science Foundation of Guangdong Province of China under
the grant 2022A1515011474.



6. REFERENCES

[1] Zhenghua Xu, Chang Qi, and Guizhi Xu, “Semi-supervised
attention-guided CycleGAN for data augmentation on medical
images,” in Proceedings of IEEE BIBM, 2019, pp. 563–568.

[2] Zhenghua Xu, Tianrun Li, Yunxin Liu, Yuefu Zhan, Junyang
Chen, and Thomas Lukasiewicz, “PAC-Net: Multi-pathway
FPN with position attention guided connections and vertex dis-
tance IoU for 3D medical image detection,” Frontiers in Bio-
engineering and Biotechnology, vol. 11, pp. 1049555, 2023.

[3] Zhenghua Xu, Shijie Liu, Di Yuan, Lei Wang, Junyang Chen,
Thomas Lukasiewicz, Zhigang Fu, and Rui Zhang, “ω-
net: Dual supervised medical image segmentation with multi-
dimensional self-attention and diversely-connected multi-scale
convolution,” Neurocomputing, vol. 500, pp. 177–190, 2022.

[4] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,
Mark Johnson, Stephen Gould, and Lei Zhang, “Bottom-up
and top-down attention for image captioning and visual ques-
tion answering,” in Proceedings of CVPR, 2018, pp. 6077–
6086.

[5] Yuan Xue, Tao Xu, L Rodney Long, Zhiyun Xue, Sameer An-
tani, George R Thoma, and Xiaolei Huang, “Multimodal recur-
rent model with attention for automated radiology report gen-
eration,” in Proceedings of MICCAI, 2018, pp. 457–466.

[6] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei, “X-linear
attention networks for image captioning,” in Proceedings of
CVPR, 2020, pp. 10971–10980.

[7] Wenting Xu, Zhenghua Xu, Junyang Chen, Chang Qi, and
Thomas Lukasiewicz, “Hybrid reinforced medical report gen-
eration with m-linear attention and repetition penalty,” arXiv
preprint arXiv:2210.13729, 2022.

[8] Benjamin Hou, Georgios Kaissis, Ronald M Summers, and
Bernhard Kainz, “Ratchet: Medical transformer for chest x-
ray diagnosis and reporting,” in Proceedings of MICCAI, 2021,
pp. 293–303.

[9] Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou,
“Exploring and distilling posterior and prior knowledge for ra-
diology report generation,” in Proceedings of CVPR, 2021, pp.
13753–13762.

[10] Zhihong Chen, Yan Song, Tsung-Hui Chang, and Xiang
Wan, “Generating radiology reports via memory-driven trans-
former,” arXiv preprint arXiv:2010.16056, 2020.

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton, “A simple framework for contrastive learning
of visual representations,” in Proceedings of ICML, 2020, pp.
1597–1607.

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick, “Momentum contrast for unsupervised visual repre-
sentation learning,” in Proceedings of CVPR, 2020, pp. 9729–
9738.

[13] Yonglong Tian, Dilip Krishnan, and Phillip Isola, “Contrastive
multiview coding,” in Proceedings of ECCV, 2020, pp. 776–
794.

[14] Tianyu Gao, Xingcheng Yao, and Danqi Chen, “Simcse:
Simple contrastive learning of sentence embeddings,” arXiv
preprint arXiv:2104.08821, 2021.

[15] An Yan, Zexue He, Xing Lu, Jiang Du, Eric Chang, Amilcare
Gentili, Julian McAuley, and Chun-Nan Hsu, “Weakly super-
vised contrastive learning for chest x-ray report generation,”
arXiv preprint arXiv:2109.12242, 2021.

[16] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D
Manning, and Curtis P Langlotz, “Contrastive learning of med-
ical visual representations from paired images and text,” in
Proceedings of MLHC, 2022, pp. 2–25.

[17] Shuo Zhang, Jiaojiao Zhang, Biao Tian, Thomas Lukasiewicz,
and Zhenghua Xu, “Multi-modal contrastive mutual learn-
ing and pseudo-label re-learning for semi-supervised medical
image segmentation,” Medical Image Analysis, vol. 83, pp.
102656, 2023.

[18] Yen Nhi Truong Vu, Richard Wang, Niranjan Balachandar,
Can Liu, Andrew Y Ng, and Pranav Rajpurkar, “Medaug:
Contrastive learning leveraging patient metadata improves rep-
resentations for chest x-ray interpretation,” in Proceedings of
MLHC, 2021, pp. 755–769.

[19] Vinod Nair and Geoffrey E Hinton, “Rectified linear units
improve restricted boltzmann machines,” in Proceedings of
ICML, 2010, pp. 807–814.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceedings
of CVPR, 2016, pp. 770–778.

[21] Eric Jang, Shixiang Gu, and Ben Poole, “Categorical
reparameterization with gumbel-softmax,” arXiv preprint
arXiv:1611.01144, 2016.

[22] Yuxuan Xiong, Bo Du, and Pingkun Yan, “Reinforced trans-
former for medical image captioning,” in Proceedings of MIC-
CAI, 2019, pp. 673–680.

[23] Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer Antani,
George R Thoma, and Clement J McDonald, “Preparing a
collection of radiology examinations for distribution and re-
trieval,” Journal of the American Medical Informatics Associ-
ation, vol. 23, no. 2, pp. 304–310, 2016.

[24] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu, “Bleu: a method for automatic evaluation of machine
translation,” in Proceedings of ACL, 2002, pp. 311–318.

[25] Satanjeev Banerjee and Alon Lavie, “Meteor: An automatic
metric for mt evaluation with improved correlation with human
judgments,” in Proceedings of ACL, 2005, pp. 65–72.

[26] Chin-Yew Lin, “Rouge: A package for automatic evaluation
of summaries,” in Proceedings of ACL, 2004, pp. 74–81.

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Proceedings of CVPR, 2009, pp. 248–255.

[28] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[29] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Sel-
varaju, Qing Sun, Stefan Lee, David Crandall, and Dhruv Ba-
tra, “Diverse beam search: Decoding diverse solutions from
neural sequence models,” arXiv preprint arXiv:1610.02424,
2016.

[30] Jianfeng Wang, Thomas Lukasiewicz, Xiaolin Hu, Jianfei Cai,
and Zhenghua Xu, “RSG: A simple but effective module for
learning imbalanced datasets,” in Proceedings of CVPR, 2021,
pp. 3784–3793.

[31] Di Yuan, Yunxin Liu, Zhenghua Xu, Yuefu Zhan, Junyang
Chen, and Thomas Lukasiewicz, “Painless and accurate med-
ical image analysis using deep reinforcement learning with
task-oriented homogenized automatic pre-processing,” Com-
puters in Biology and Medicine, vol. 153, pp. 106487, 2023.


	1  Introduction
	2  Methodology
	2.1  Multi-View Contrastive Learning
	2.2  Domain Transfer Network 

	3  Experiments
	3.1  Experimetal Settings
	3.2  Main Results
	3.3  Ablation Study
	3.4  Additional Results
	3.5  Effect of Varying Hyper-Parameters c and s

	4  Conclusions
	5  Acknowledgments
	6  References

