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Abstract

Despite recent success of self-supervised based con-
trastive learning model for 3D point clouds representa-
tion, the adversarial robustness of such pre-trained models
raised concerns. Adversarial contrastive learning (ACL) is
considered an effective way to improve the robustness of
pre-trained models. In contrastive learning, the projector
is considered an effective component for removing unneces-
sary feature information during contrastive pretraining and
most ACL works also use contrastive loss with “projected”
feature representations to generate adversarial examples in
pretraining, while “unprojected ” feature representations
are used in generating adversarial inputs during inference.
Because of the distribution gap between “projected” and
“unprojected” features, their models are constrained of ob-
taining robust feature representations for downstream tasks.
We introduce a new method to generate high-quality 3D
adversarial examples for adversarial training by utilizing
virtual adversarial loss with “unprojected” feature repre-
sentations in contrastive learning framework. We present
our robust aware loss function to train self-supervised con-
trastive learning framework adversarially. Furthermore,
we find selecting high difference points with the Difference
of Normal (DoN) operator as additional input for adversar-
ial self-supervised contrastive learning can significantly im-
prove the adversarial robustness of the pre-trained model.
We validate our method, POINTACL on downstream tasks,
including 3D classification and 3D segmentation with mul-
tiple datasets. It obtains comparable robust accuracy over
state-of-the-art contrastive adversarial learning methods.
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1. Introduction

Among various 3D representation methods, point clouds
are popular for scene understanding and visual analysis.
Tasks include 3D object classification, detection, and seg-
mentation. Despite its popularity, adversarial robustness
of its learned 3D perception models, namely, robustness
against adversarial samples, is a major security concern in
real-world application. Perturbed adversarial samples like
point adding[34]], point dropping[38] or point shifting[21]
can easily mislead 3D perception models.

Adversarial training (AT) [22]] and its variants[8, 4} 26]
are considered effective defense strategies against adversar-
ial attacks. However, they rely on class labels to generate
adversarial samples that are used to supervise model train-
ing for robustness and it is difficult to conduct unsuper-
vised training methods like self-supervised learning. Sun
et al. [27] proposed a pretext tasks based self-supervised
(SSL) adversarial training method, which forces the model
to learn robust representation from solving a pre-designed
pretext task without class labels. Some previous works like
[32] build an additional networks connected to classifier
as 3D point clouds purifier. Researchers later introduced
contrastive learning framework as an extension to AT and
SimCLR[9]]. It projects feature representations into a differ-
ent dimension space for conducting contrastive loss and the
contrastive loss is also used to obtain adversarial examples
of 2D images without using class labels [19} [17, [11]]. But
their contrastive loss guided adversarial examples rely on
projected feature in contrastive learning framework, while
unprojected feature are used in generating adversarial in-
puts in downstream task. Because of the distribution gap be-
tween unprojected feature and projected feature, contrastive
loss guided adversarial examples can only provide limited
robustness during adversarial pretraining stage.

In this work, we designed an adversarial contrastive



learning model specially for 3D point clouds, POINTACL.
Specifically, in order to mitigate the distribution gap be-
tween training examples and testing adversarial inputs, we
propose a novel method for generating adversarial examples
with unprojected features. We introduce virtual adversarial
loss[23]] on the unprojected features to calculate gradient di-
rection for perturbation, which is better than prior adversar-
ial contrastive learning methods[19}[17,[11]. Leveraging the
virtual adversarial loss, our method lowers the divergence
between adversarial samples and perturbed adversarial in-
puts in testing, and experiments show that our model has an
advantage in downstream tasks under adversarial robustness
testing. Meanwhile, to enhance the robustness of the fea-
ture representation, we choose to add normal of point clouds
surface information in adversarial pretraining. We first se-
lect point clouds from Difference of Normal(DoN) operator
with information on surface gradient and treat those high
difference points as additional input in pretraining. During
adversarial contrastive learning, we extracted projected rep-
resentations of high difference points and incorporated them
into multi-view contrastive loss.

To verify the advantages of our proposed network, we
applied our pre-trained network with standard linear fine-
tuning on two downstream tasks : 3D classification and
3D segmentation. Specifically, for the classification net-
work, we trained on ModelNet and tested on ModelNet
and shapeNet. The robust accuracy on ModelNet achieved
27.51% compared to 4.03% without adversarial training
and in shapeNet we achieved 13.34% compared to 2.13%
without adversarial training. For 3D segmentation task, ro-
bust accuracy achieved was 39.08% compared to 13.82%
without adversarial training.

Our major contributions can be summarized as follows:

©® We proposed POINTACL, an adversarial contrastive
learning framework for point clouds data, and we found
that using the virtual adversarial loss to generate high-
quality adversarial samples during pre-training stage can
bring more robustness representation in downstream tasks.

® We verified that high-difference point clouds selected
from the difference of normal (DoN) operator can con-
tribute to the robustness of 3D representation learning. Ex-
periments on downstream tasks verified the criticalness of
high-difference points in improving the network’s adversar-
ial robustness.

® We extensively benchmarked our pre-trained model
with other adversarial contrastive learning models. Our pre-
trained models tested on two downstream tasks : 3D object
classification (on ModelNet40) and 3D segmentation (on
S3DIS) under standard linear finetuning POINTACL led to
new improved state-of-the-art robust accuracy. For exam-
ple, in the 3D object classification task with I-FGM attack
under budget with €e=0.01m in 7 steps we achieve 18.72%
and 17.24% robustness improvement over existing adver-

sarial contrastive learning methods[19] and [17]].

2. Related works

In this section, we overview the progress on three related
topics: adversarial attacking methods for point clouds, self-
supervised Learning of point clouds and defensive methods
in improving adversarial robustness.

2.1. Adversarial attack on Point Clouds

The robustness of deep learning model on 3D point
clouds has attracted many researchers due to its applications
in robotics and safe-driving cars. Existing 3D adversarial
attack methods can be roughly divided into three classes:
optimization-based, gradient-based, and generation-based.
For gradient-based methods, Liu et al. [21] extended I-
FGSM|20] into the 3D point clouds domain by perturbing
the point coordinates. Zheng et al. [38] proposed an it-
erative point dropping attack by building a gradient-based
saliency map. In optimization-based methods, xianget
al. [34] first proposed to generate adversarial point clouds
using C&W attack framework[3]] by point perturbation and
adding. However,those perturbed point clouds usually con-
tain many outliers, which are not human-unnoticeable. To
reduce those outliers, Wen et al. [30] focus on generating
adversarial point cloud with much less outliers. LG-GAN
[39] is a generation-based 3D attack method, which uses
GANSs[13] to generate adversarial point clouds that follows
the input target labels.

2.2. Self-supervised Learning of Point Clouds

Many approaches [31, |1} 112,|36] have been proposed for
unsupervised learning and generation of point clouds, but
high-level downstream tasks like 3D object classification
and segmentation is less discussed. Some recent work try
to demonstrate the potentials for high-level tasks such as 3D
object classification and 3D semantic segmentation. Those
self-supervised learning methods can be divided into two
classes: pretext task based approach and contrastive learn-
ing based approach. Poursaeed et al. [25] designed a pre-
text task that predicts rotations angle of point clouds object
and achieved good performance in 3D object classification.
Compare to pretext task based approach, contrastive learn-
ing methods have advantage in transferability and general-
isability, they have achieved great success in 2D image do-
main. For 3D point clouds domain, Xie et al. [35]] used con-
trastive loss between two different transformations results
of point clouds. STRL[15] extended BYOL[14] structure to
point clouds domain by utilizing the spatio-temporal con-
texts and structures of point clouds and it achieved state-of-
the-art performance in various high-level downstream tasks.
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Figure 1: Overview of PointACL. x: Input point clouds object, At first, the input point clouds object = will generate
three different versions of inputs: Z;,Z;, xpq, corresponding to two augmented objects and high-difference point object.
Adversarial examples will be generated based on one of the augmented object. Same as SimCLR[9], we have a mlp based
nonlinear projection head g to improve representation quality and a multi-view normalized cross entropy loss with adjustable
temperature (NT-Xent[9]) will be optimized based on projected feature representations z as the contrastive loss.

2.3. Adversarial robustness

Many defense methods have been proposed to improve
model robustness against adversarial attacks. Adversarial
training(AT)[22] provides one of the most effective defense
methods by training the model over the adversarially per-
turbed training data. Zhou et al. [40] used Statistical Out-
lier Removal (SOR) method for removing points with a
large kNN distance. They also proposed DUPNet, which
is a combination of SOR and a point cloud upsampling
network PU-Net[37].In contrastive learning, RoCL[19]] and
ACL|[17] AdvCL|[11] extended AT by using contrastive loss
to eliminate the need for class labels when generating ad-
versarial samples. VAT[23] proposed a new regularization
method based loss to generate adversarial samples on unla-
beled data in Semi-Supervised Learning.

3. Our approach

3.1. Definition and Notations

Point Cloud. For classification task, a point cloud object
is represented as (x £ {p;}i=1..n,%), where p, € R3
is a 3D point and N is the number of points in the point
cloud; y € {1,2,...,k} is the ground-truth label, where

k is the number of classes. For semantic segmentation,
a point cloud is (x = {p,;}i=1..~n,{y;} i=1..n), Which
yv; € {1,2,...,k} represents ground-truth label for each
point.

Contrastive learning. The main idea of contrastive
learning is to learn representations without supervision by
maximizing agreements of different augmented views of the
same point cloud. Inspired by SimCLR[9] and STRL][15],
we build our 3D contrasive learning framework. Specifi-
cally, consider augmentations 7 (combination of rotation,
translation, scaling, cropping, cutout,jittering and down-
sampling) in Fig[T] each unlabeled point cloud z is aug-
mented as Z; and Z;. The feature encoder generates out-
put feature (h;, h;) from pair (Z;,%;). Then, MLP-based
projector is applied for feature extraction. The projected
feature representations (z;, z;) are optimized under a con-
trastive loss ¢ (NT-Xent) to maximize their agreement.
After training, we keep the the encoder part as the pre-
trained model for downstream tasks.

Unsupervised Adversarial Training. Different from ad-
versarial training (AT) which is supervised learning, Un-
supervised Adversarial Training (UAT) does not use labels



to generate adversarial samples. Compared with other un-
supervised adversarial training algorithms, ours improves
robustness of 3D point cloud (self-supervised) pretraining
model in an unsupervised manner.

3.2. Problem statement

Our method aims to improve the robustness of the 3D
self-supervised contrastive learning pretraining model. Fol-
lowing [22f], we add adversarial examples during the pre-
training stage and aim to minimize contrastive loss be-
tween adversarial examples and normal inputs. So that
we could achieve robust feature representations in the pre-
training stage and, after linear finetuning, make more ac-
curate predictions under adversarial attacks, improving the
model’s adversarial robustness performance on downstream
tasks such as 3D classification and 3D semantic segmenta-
tion. We can formulate our problem as:

Pretraining: mein Eieplon(z + 6, 2;6) €))

Linear finetuning: néin E(z,y)ep lee(do, 0 eo(x),y) (2)

where D denotes the training set, 8 represents the parame-
ters of the model. x denotes the original point clouds object.
{1, denotes the designed robustness aware contrastive loss
with parameter 6, and the adversarial perturbation § under
budget e. During linear finetuning phase @), ¢cg is the
cross-entropy loss that optimize parameters of linear pre-
diction head ¢y, and ey is the fixed robustness aware feature
encoder that we obtained after adversarial pretraining stage
(D). ¢o, o eq denotes the classifier by equipping the linear
prediction head ¢g_ on top of the fixed feature encoder ey.

3.3. Robust Adversarial Contrastive Learning

Adversarial examples We now introduce our method on
how to achieve adversarial robustness of representations in
contrastive learning manner. Because the mechanism of ad-
versarial training is to minimize loss of adversarial samples,
the first step of our method is to generate label-free adver-
sarial samples during constrastive learning. Fig[2]shows the
visualization result of one adversarial example and we can
see only a few perturbed points are human-noticeable.

A number of prior works [[17, [11} [19] have proposed
to use projected representation from self supervised model
and constrastive loss to guide attacking algorithm’s genera-
tion of adversarial samples. Inspired by Virtual Adversarial
Training (VAT)[23]], we introduce a new method that uses
Kullback-Leibler divergence (KLD) of unprojected repre-
sentation between adversarial samples and augmented in-
puts to calculate gradient direction for updating adversarial
perturbation. Following the idea of AT[22], the loss func-

Algorithm 1: Generate adversarial point clouds ex-
amples with untargeted I-FGM

Input: A set of point cloud objects x;
Augmentation family 7; feature encoder e;
perturbation budget € ,number of steps ¢

Result: adversarial samples 2,4,

Augment x to be (Z;,Z;) with two augmentations

sampled from 7.
Generate a initial small random perturbation § and
Tadv=Ti + 0

forictdo

Generate the corresponding adversarial point

clouds with

é = argmax KLD(e(z'), e(Tadv))

6]l <€

Tadv = Tadv T 0

end
return: x g,

R
SRS
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Augmented input Z'; Adversarial examples 4,
Figure 2: Visualization of adversarial samples based on
augmented input x;, highly perturbed points are marked red

tion in leading attack algorithm can be written as

Laav(x,0) = Div[q(y|x), p(y|z + 6, 6)] )

where § = argmax Div [q(y|x), p(y|z + 1, 6)], 4)
18]loc <e

where Div[p, p'] is a non-negative function that measures
the divergence between two distributions p and p’. Because
the true distribution of the output label, ¢(y|z), is unknown,
we use its current estimate p(y|z, ). The goal of this loss
function is to approximate the true distribution g(y|x) by a
parametric model p(y|x, 0) that is robust against adversarial
attack to x.

Since we do not know the label y in self-supervised train-
ing, we rewrite eq{4| by approximating divergence of unpro-
jected representation’distributions between perturbed object
x + 6 and augmented original object x in contrastive learn-
ing framework.

Laay(z,0) = Div [p(y|x, 0), p(ylz + 9,0)] (5)

0 = argmax Div [eg(x), eq(x + §)], (6)
[19]lcc <€



High difference points cloud Because high-frequency
information is a crucial contributing factor to improving
the robustness of perception network in 2D image domain
[28L 24, 111]]. For 3D point clouds, we notice difference
between normal of local surface and normal of global sur-
face can reflect the frequency of surface gradient. We pro-
pose to use Difference of Normals(DoN)[16] to build a
point saliency map according to multi-scale normal estima-
tion and select higher difference points as an additional in-
put during pretraining stage to enhance robustness of our
model.
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Figure 3: The normal support radius’ relation to scale.[16]]

The Difference of Normals (DoN) operator Ay for any
point p in a point cloud x, is defined as:

ﬁ(pa Tl) - ﬁ(pa T?)
9 ;

As(p,r1,12) = @)

where 71,72 € R, 71 < 79, and fi(x, r) is the surface nor-
mal estimated at point p, given the support radius . For
each point clouds object or sense x with number of points
N, we remove low difference points based on Az (p, r1,72)
and keep high difference points with number ¢ x N, where
¢ € (0,1). Let D denote DoN operator, an input point
clouds object/scene X can then be decomposed into its high
difference part X1,4 and low-difference part.X4:

[Xhd, X1a] = D(X). )
The motivation is that surface normals estimated at any
given radius reflect the underlying geometry of the surface
at the scale of the support radius. By calculating the dif-
ference of multi-radius estimated surface normals, we can
obtain the surface gradient. Thus, we can use DoN to select
points which have high frequency information and use them
as an additional view in robust contrastive learning eq{I1]

Original High-Difference points

Figure 4: Visualization result for selected points after re-
moving 75% lower difference points in ModelNet40

Multi-view robust contrastive learning We first review
the NT-Xent loss used in SimCLR][9]. The contrastive loss
with a positive augmentation pair (71(x), 72(z)) from each
data input x is given by

ECL(ﬁ(I) m(z)) =

exp (sim(z;, z;)/t)

— Z > log NG
=1 ePl Z exp (sim(z;, z) /t)
keEN (1)
where z; = g o e(r;(z)) is the projected feature rep-

resentation under the ith view, N (i) represents the set of
augmented batch data not including the point 7;(x). P(¢)
denote the set of positive views except i. sim(z;1, 2;2) is the
cosine similarity between projected representations z;1, 2;2
from two views of the same data x and ¢ is a temperature
parameter.

For involving adversarial examples and high-difference
points as additional inputs, we follow the multi-view con-
trastive loss in [[18]]

ZCL(ﬁ( ), 72(), .

—ZZI

i=1jeP(

- Tm(T)) =
exp (sim(z;, ;) /t)

Z exp (sim(z;, zk)/t)

keN (i)

(10)

where m denotes the number of views as input. By taking
selected point clouds x4 from DoN as third view input and
adversarial samples (z+4) as fourth view input, we propose
our contrastive loss function as

Lo (T (z), 72(x), (Tha), (T + 0)) 1

To minimize the distance between representation from
normal input = and other inputs, adversarial samples x + §
and high difference points x4, we add KLD(hq, haqy) and
KLD(hady, hna) as the regularization term to our object
loss function, where hy = e(71(z)) and hgq, = e(x + 9).
Thus, we can force our backbone network to generate more
stable and similar representations for both normal point
clouds inputs and adversarial attacking point clouds inputs
resulting in downstream task models that are more robust
to adversarial samples. Eq{I2] shows our loss funtion for
updating parameters.

Liotal = Lon(Ti(z), 72(x), (Tha), (x + 9))
+ aKLD(hyi, hagy) + BKLD (hage, hrna)  (12)

4. Experimental Results

Evaluation setting In this section, we validated our ad-
versarial unsupervised learning method on public bench-
mark point cloud datasets. Specifically, we evaluated our
method on two downstream tasks: classification and seg-
mentation. We did not perform model full finetuning since



Algorithm 2: Algorithm of Pretraining

Input: A set of point clouds x,a set of high
difference point clouds xpq4; Augmentation
family 7; Network backbone and projection
head e, g;

Result: The parameters 6 in e and g;

for sampled mini-batch x do

Augment x to be (x;, ;) with two

augmentations sampled from 7.

Generate the adversarial mini-batch (&; + 9)

with algorithm ]

= Loy (&, Z;, (Z; +0) + aKLD(h1, hadw) +

BKLD(hadvs hha)
Update parameters (6., 8,) to minimize .

end

tuning full network weights is not possible for the model
to preserve robustness[10]. Instead, we froze the pretrained
backbone weights from our self-supervised training to keep
the robustness and performed standard finetuning (SF) of
prediction heads in different downstream tasks. For attack-
ing algorithm, we chose untarget ¢, [-FGSM][21]] for point
clouds with a fixed iteration number and budget ¢. In 3D
classification task, we ran 7 iteration steps and € = 0.01m
in attacking during robustness evaluation. In 3D segmenta-
tion, we ran 15 iteration steps and € = 0.08m in attacking
during robustness evaluation.

Pre-training For the backbone pretraining stage, we use
the Adam optimizer with a cosine decay learning rate sched-
ule, the exponential moving average parameter starts with
Tstart = 0.996 and is gradually increased to 1 during the
training. For 3D object classification task, we train our
PointNet backbone network in 50 epochs with learning rate
0.001 over 256 batch size and the number of input is 2048.
For 3D object segmentation task, we train our DGCNN
backbone network in 100 epochs with learning rate 0.0002
over 32 batch size and the number of input is 4096.

We used a combination of the following augmentation
method to construct the augmentation family as in [15]:
Random rotation, Random translation, Random scaling,
Random cropping, Random cutout, Random jittering, Ran-
dom drop-out, Down-sampling, Normalization.

¢ Random rotation: For each axis, we draw random an-
gles within 15° and rotate around it.

* Random translation: We translate the point cloud glob-
ally within 10% of the point cloud dimension.

* Random scaling: We scale the point cloud with a factor
s €1[0.8,1.25].

* Random cropping: A random 3D cuboid patch is
cropped with a volume uniformly sampled between
60% and 100% of the original point cloud. The aspect
ratio is controlled within [0.75, 1.33].

* Random cutout: A random 3D cuboid is cut out. Each
dimension of the 3D cuboid is within [0.1, 0.4] of the
original dimension.

* Random jittering: Each point’s 3D locations are
shifted by a uniformly random offset within [0, 0.05].

* Random drop-out: We randomly drop out 3D points
by a drop-out ratio within [0,0.7].
* Down-sampling: We down-sample point clouds based

on the encoder’s input dimension by randomly picking
the necessary amount of 3D points.

* Normalization: We normalize the point cloud to fit a
unit sphere while training on synthetic data.

4.1. 3D Object Classification

We first verified our proposed method on classification
task. In this downstream task,we used PointNet [7] with
SimCLR[9]] as backbone. During evaluation, we apple two
different settings: standard finetune and adversarial full
finetune (AFF). For standard finetune, we add a linear layer
to the representation obtained from the pretrained backbone
in self-supervised training and only finetune the linear layer
with training data. For adversarial full finetune (AFF), we
first use attacking algorithm [-FGSM]21]] to generate an ad-
versarial example for each input of training data in a super-
vised manner. Then, we add a linear layer and we finetune
the whole network including the pretrained backbone with
original training data and adversarial examples.

We trained the backbone network on ModelNet40[33]]
dataset with o = 1, 8 = 1, and evaluated downstream tasks
on ModelNet40[33]] dataset. For each point cloud object
we selected 2048 points as input with only coordinates and
removed 512 low difference points with DoN operator as
HD input.

Experimental results are shown in Table[I] For standard
finetune, our pretraining model PointACL achieved 27.51%
robust accuracy under I-FGSM attack in testing set of Mod-
elNet40, which improved 23.48 % over baseline pretraining
model SimCLR. We also had more than 14% robust accu-
racy improvement over other adversarial contrastive learn-
ing methods.

4.2. 3D Sementic Segmentation

In 3D Segmentic Segmentation, we used DGCNN [29]
with SImCLR[9]] structure as backbone. During evalua-
tion, we added 2-layered MLP network to the representation
obtained from the pretrained backbone in self-supervised
training for segmentataion. We trained the bakcbone net-
work on S3DIS[2] dataset on area 1-5 withae = 1,5 = 1,



Table 1: Performance result of different methods in eval-
vation. Standard Accuracy(SA) represent the accuracy in
test dataset and Robust Accuracy (RA) means the accu-
racy evaluated under test dataset generated by untarget I-
FGSM[21]] for point clouds with ¢=0.01m in 7 steps

Training type Method Standard Accuracy(%) Robust Accuracy(%)
Supervised AT[22 82.54 44.49
SimCLR[9 86.33 4.03
. RoCL[19 85.22 8.72
Self-supervised+finetune ACLTZ 85.85 1025
PointACL(Ours) w/o HD 82.28 24.26
PointACL(Ours) 80.71 27.51

and evaluated on area 6. We selected 4096 points as input
with only coordinates and removed 1024 lower difference
points with DoN eq{7]as HD input.

As Table[2] shows, our pretraining model PointACL in-
creased 25.23% robust accuracy and 13.52% mloU in ro-
bustness evaluation over baseline model SimCLR. Com-
pared to other adversarial contrastive learning methods,
our method had more than 15.13% robust accuracy with
RoCL[19] and more than 12.26% robust accuracy with
ACLI[17].

Table 2: Performance result of different methods in
evaluation. Standard Accuracy(SA) represent the accu-
racy and (S-mlIoU) means the standard mean IoU in area
6 and Robust Accuracy (RA)/R-mloU represents the accu-
racy/IoU evaluated under test dataset generated by untarget
[-FGSM[21]] for point clouds with ¢=0.08m in 15 steps

Training type Method SA(%) S-mloU(%) RA(%) R-mloU(%)
Supervised AT[22 80.29 52.99 55.61 28.53
SimCLR[9 82.37 55.54 13.85 5.60
Self-supervised-finetune RoCL{I9 79.53 52.06 23.95 11.37
-supervis " ACL{I7 78.10 49.79 26.82 1241
PointACL(Ours) w/o HD  79.06 50.27 36.16 19.01
PointACL(Ours) 78.69 49.85 39.08 19.12

4.3. Tradeoff between Robust Accuracy (RA) and
Standard Accuracy(SA)

Standard Accuracy(SA) Robust Accuracy(SA)

83.0%

32.0%
82.0% 31.0%

81.0%
30.0%

80.0%
29.0%
79.0%
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6

Figure 5: Standard Accuracy(SA) and Robust Accu-
racy(RA) with different «

We found that tuning the hyperparameter « yielded in-

creasing peformance of robust accuracy (RA) at the cost
of decreasing standard accuracy(SA). Fig[5| shows the RA
and SA under different « in 3D object classification task.
One possible reason is that increasing « forces the back-
bone network to generate similar unprojected representa-
tion h between adversarial sample and normal point clouds.
This helps the model make more accurate predictions when
facing attacking inputs but misleads it when the input data
is clean.

4.4. Robustness evaluation vs. attack strength

The strength of attacking algorithm I-FGM[20] are af-
fected by two things:(a) The number of iteration steps; in-
creasing the number of iterations produced strong adver-
sarial samples but increasing the number of steps did not
generate stronger adversarial samples[3]. The left graph of
Figurel6| shows that attacking strength slowed after itera-
tion 5 and stopped increasing after iteration 25. Our method
outperformed other methods in robust accuracy at different
number of iterations; (b) The attacking budget(m) €, which
sets perturbation boundary of attacking, is also very impor-
tant for attacking algorithm; increasing e significantly en-
hances the attacking strength. We tested all the pretrain-
ing methods with budget from 0.001m to 0.02m with itera-
tion 5. We found the performance of ROCL and ACL to be
nearly 0% when € > 0.02m. Our method was better when
e > 0.002m.

RA in different iterations when budget=0.01m
—— ROCL
—— ACL 70.0%
40.0% —=— PointACL(ours)

RA in different budget when iteration = 5
—— ROCL
—— ACL
—=— PointACL(ours)
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5 15 20 25 30 5 00 0.0025 0.0050 0,0075 0.0100 0.0125 0.0150 0.0175 0.0200
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Figure 6: Robust accuracy for 3D classification in Model-
Net with different steps and budget. Left: We fix attacking
budget=0.01m and set different iteration.Right: We fix iter-
ation=5 and set different attacking budget.

4.5. Robustness transferability across datasets

In table[3] we evaluated the transferability of model ro-
bustness across different datasets for downstream 3D classi-
fication task. Following the same setting from Section.
where A — B denotes the transferability from pretraining
on dataset A to finetuning on another dataset B (# A). We
chose ShapeNetCore[6] as our secondary dataset. It con-
tained over 37000 3D point cloud objects with 55 categories



in the training set while ModelNet40 only had around 9840
objects. In table[3] ShapeNetCore — ModelNet40 sce-
nario had very stable standard accuracy for all pretraining
methods. Our method’s robust accuracy was 13.57% higher
than baseline model and 8.18% higher than RoCL when
a=10. In ModelNet40 — ShapeNetCore scenario, our
method significantly improved the robustness performance
over baseline and other methods while suffering only a
small drop to standard accuracy. This pattern of large RA
gain and small SA drop was also observed in[4.3]

Table 3: Performance result of different methods in cross
dataset evaluation between ModelNet40 and ShapeNet-
Core. ModelNet40 — ShapeNetCore means we pretrained
the model on ModelNet40 and linear evaluate on ShapeNet-
Core dataset. The robust accuracy evaluated under test
dataset generated by untarget [-FGSM]21]] for point clouds
with €=0.01m in 7 steps

ModelNet40 — ShapeNetCore ‘ ShapeNetCore— ModelNet40

Pretraing method SA(%) RA(%) ‘ SA(%) RA(%)
PointNet (SimCLR)[9 81.10 2.13 85.49 5.39
RoCL[19] 81.29 2.46 85.01 10.78
ACL[17 81.93 2.99 85.29 16.09
PointACL(Ours,a=1) 80.01 13.34 85.04 10.56
PointACL(Ours,a=10)  77.16 26.12 84.56 18.96
5. Ablation Study
5.1. Projected Representation vs Unprojected Rep-
resentation

In SimCLR[9], the authors showed that a nonlinear pro-
jection head improves the representation quality for con-
trastive learning. A number of prior works [19,[17,[11] used
contrastive loss with projected feature representation z to
generate adversarial samples during adversarial contrastive
learning. In our pretraining method, we achieved better ro-
bustness performance (Tablef) using unprojected feature
representation h. To further evaluate this approach, we also
experimented with using unprojected feature representation
h instead of z to calculate contrastive loss in generating ad-
versarial samples for RoCL[19]] and ACL[17]]. Because we
wanted to focus only on the importance of feature repre-
sentation selection during adversarial contrastive learning,
we didn’t include high difference(HD) point clouds input in
this experiment.

The results in TableH] showed that using unprojected
feature representation h resulted in better robustness per-
formance in our method but not in other adversarial con-
trastive learning methods. If we look at the regularization
term KLD(h1, hady) in our pretraining loss function, we
find an explanation for this. The regularization improves
the model’s robustness by minimizing the distance between
h1 and hq4, (unprojected representation). Because the pre-
diction result from robustness testing on downstream tasks
is based on unprojected representation h and not projected

representation z, replacing h with z in our method will de-
crease the robustness performance of the model during ad-
versarial contrastive training.

Table 4: 3D classification performance under Model-
Netd0 with different representation choice The robust
accuracy evaluated under test dataset generated by untarget
I-FGSM|21]] for point clouds with ¢=0.01m in 7 steps

Pretraining method ‘ Standard Accuracy(%) ‘ Robust Accuracy(%) ‘

SimCLR[9] 86.33 4.03
RoCL[19 85.22 8.72
RoCL[19](use h) 85.98 5.83
ACLI[17 85.85 10.25
ACL[I7](use h) 86.46 6.24
PointACL(Ours)(use z) w/o HD 85.62 8.72
PointACL(Ours)(use h) w/o HD 82.28 24.26

5.2. Loss function analysis

To better understand the importance of LD (hy, hady)
and KLD(hggy, hng) in our pretraining method, we per-
formed the following 3D classification experiment in Mod-
elNet. From Table[5] we observed that the model has
13.83% robust accuracy advantage when we set (a« =
1, 8 = 0) compare with the baseline model (o« = 0, 5 = 0).
From that result, we can find XLD(h1, hqqy) part plays a
important role in improving robustness to our pretrained
model. When we use setting (¢« = 1,5 = 1), we can
see KLD(hadw, hna) part in our loss function further in-
creased robustness, which proves the contribution of High-
difference points.

Table 5: Ablation study of PointACL

Pretraining method ‘ Standard Accuracy(%) ‘ Robust Accuracy(%) ‘

PointACL(av = 0, 8 = 0) 86.79 11.94
PointACL(av = 1, 8 = 0) 82.02 25.77
PointACL(av = 1, 8 = 1) 80.71 27.51

6. Conclusion

In this paper, we have studied methods to make con-
trastive learning pretrained model more robust in the 3D
point clouds domain. We have showed that using virtual
adversarial loss to generate adversarial samples are ben-
eficial towards robustness. We have further showed that
using difference of normal (DoN) operator to select high
difference points as additional input view can enhance the
robustness. Our proposed approaches can achieve state-
of-the-art robust accuracy using standard linear finetuning
in two downstream tasks: 3D object classification and 3D
segmentic segmentation. Extensive experiments involving
cross-datasets and attacking strength have also been made
to demonstrate universality of our method in improving ro-
bustness.
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