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Abstract—Federated learning (FL) has enabled global model
training on decentralized data in a privacy-preserving way by
aggregating model updates. However, for many natural language
processing (NLP) tasks that utilize pre-trained language models
(PLMs) with large numbers of parameters, there are consider-
able communication costs associated with FL. Recently, prompt
tuning, which tunes some soft prompts without modifying PLMs,
has achieved excellent performance as a new learning paradigm.
Therefore we want to combine the two methods and explore
the effect of prompt tuning under FL. In this paper, we propose
”FedPrompt” to study prompt tuning in a model split aggregation
way using FL, and prove that split aggregation greatly reduces
the communication cost, only 0.01% of the PLMs’ parameters,
with little decrease on accuracy both on IID and Non-IID data
distribution. This improves the efficiency of FL method while
also protecting the data privacy in prompt tuning. In addition,
like PLMs, prompts are uploaded and downloaded between
public platforms and personal users, so we try to figure out
whether there is still a backdoor threat using only soft prompts
in FL scenarios. We further conduct backdoor attacks by data
poisoning on FedPrompt. Our experiments show that normal
backdoor attack can not achieve a high attack success rate,
proving the robustness of FedPrompt. We hope this work can
promote the application of prompt in FL and raise the awareness
of the possible security threats.

Index Terms—FL, prompt tuning, PLM, split aggregation

I. INTRODUCTION

Pre-trained language models [[1]-[3] are widely used in
many NLP tasks by the fine-tuning paradigm. However, fine-
tuning a PLM with a large number of parameters would
be memory-consuming. The reason is that the gradients and
optimizer states of all parameters need to be stored. Also the
lack of labeled data in fine-tuning phase, as well as few-shot
problem, limits the use if this paradigm. When using the pre-
training and fine-tuning paradigm in federated learning, the
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Fig. 1. The example of prompt tuning, which consists of soft prompt, text,
PLM and verbalizer.

communication cost is even higher as all parameters of the
PLMs provided by each participant need to be aggregated
in each round of the training process. Therefore, it is very
important and urgent to find ways to improve the efficiency
of pre-trained models in federated learning. Recently, prompt
tuning [4]] has achieved excellent results as a learning paradigm
for adapting fixed PLMs to different downstream tasks. As
shown in Fig. soft prompt as well as [MASK] token
are added to the text as inputs to the model. Among them,
soft prompt is used as trainable parameters to be adapted to
downstream tasks, [MASK] token is used to predict the label
word for the downstream task, and verbalizer is used to map
the label word to the real label. All downstream tasks can be
uniformly transformed into the form of pre-training tasks of
PLMs. Thus, using a fixed PLM and different soft prompts
can be applied to different downstream tasks. Also, freezing
the parameters of PLM and only tuning the soft prompt
significantly reduces the number of training parameters.
Nowadays, with mobile devices becoming the primary com-
puting devices for many people, a huge amount of data is



generated and distributed on a wide range of devices. It is an
important opportunity and challenge to make full use of these
devices and data. Although deep learning has made a lot of
progress in many scenarios [5], a data center is required to
collect data for training in most cases. Models trained on such
data have stronger usability in many intelligent applications,
but exchanging and storing sensitive data in a data center
carries risks and responsibilities [6]]. Previous distributed deep
learning methods [7]], [8] propose solutions to big data and
huge models. However, the computation and communication
cost of traditional distributed learning are unacceptable for
participants [9], [10].

FL [11], [12] is an attractive learning method that aims
to train a global model over decentralized data while pre-
serving data privacy. In federated learning a subset of clients
download a local copy of global model, and compute lo-
cal model gradients with their local private data in each
round. A central server coordinates the distributed clients and
only aggregates local model parameters to update the global
model, collaborating isolated data islands without raw data
exchanging. FL takes multiple rounds of local and global
procedures until convergence. Advanced privacy protection
methods, e.g., differential privacy (DP), can be further applied
for stricter privacy protection. According to above illustration,
it seems that using PLM-empowered methods in FL will
achieve remarkable performance. For example, [13|] propose
a news recommendation method to train models using FL.
However, when using FL, the model sizes of many existing
news recommendation methods are too large to communicate
between participants. For example, the base version of BERT
[1] models have more than 110M parameters.

In this paper, we modify prompt tuning in a model split ag-
gregation way using FL, named “FedPrompt”, where no prior
work has been done. First, unlike simple FL methods tune and
aggregate full model parameters, FedPrompt only tunes and
aggregates some soft prompts for corresponding downstream
tasks in FL, and freezes PLMs to decrease communication
cost. Second, we are interested in the security of FedPrompt.
Prompts are uploaded and downloaded between public plat-
forms and personal users like PLMs, and backdoor attacks
are difficult to find for users. We try to get a poisoned global
prompt then when the PLMs are loaded with the poisoned
prompt, the model will be implanted with the backdoor.

Experiments carried on various NLP tasks, such as sen-
timent analysis and sentence-pair classification prove that
FedPrompt reduces the communication cost greatly with little
decrease on accuracy. Further experiments on backdoor attack
show that only by normal methods that poisoning part of
training data, the poisoned prompt can not establish a shortcut
between the specific trigger word and the target label word.
Compared to the method of aggregating and tuning all parame-
ters of huge model, FedPrompt is much more communication-
efficient. And compared to prompt tuning without using FL,
FedPrompt outperforms in privacy preservation. We also con-
sider other prompt types for a better performance, and using
local differential privacy (LDP) to gurantee the privacy. Our

contributions are summarized as follows:

e We propose FedPrompt, the new prompt tuning method
using FL, freezes PLMs and only aggregates and tunes
some soft prompts to decrease communication cost.

e We conduct extensive experiments on NLP tasks to
measure the performance of FedPrompt. Experiments
show that FedPrompt can reduce the communication cost
greatly with little decrease on accuracy.

o We further test the model robustness to backdoor attack,
and experiment on different hyper-parameter settings,
prompt types and LDP to promote the better performance
of FedPrompt.

II. RELATED WORK

Prompt tuning first appeared in WARP proposed by [14],
after which this method of adding continuous trainable vectors
to the input began to be widely studied. Prefix-Tuning [[15]]
adds soft prompt to each layer of the transformer model and
applies it to natural language generation (NLG) tasks. P-tuning
[16] proposes that some task-related hard prompts can be used
as anchors while using soft prompt. Prompt tuning [4]] explores
the effect of soft prompt on domain adaptation and different
model scales. They found that the larger the scale of PLMs, the
better the effect of prompt tuning. Recently, P-tuningV2 [17]
more finely designs prompt tuning on the basis of the above
research. They use a deep soft prompt similar to Prefix-Tuning,
and change the verbalizer to a linear classification head, which
means that they no longer use the way of mask language
model (MLM) to get predictions. They also try to apply prompt
tuning to difficult natural language understanding (NLU) tasks
(i.e., sequence tagging), such as name entity recognition and
semantic role labeling. Moreover, PTR [18]] applies logic rules
to build templates that are more suitable for text classification
tasks, and PPT [19] pre-trains the soft prompt on multiple
different tasks to get a better prompt tuning for the downstream
tasks.

FL [[11] is a distributed machine learning method that aggre-
gates global model by each local model sharing its parameters
(gradients) with the central server after every round of local
training on its local data. Proposed FedAvg [11] enables
clients to collaboratively train global model without sharing
their original data. Various extensions of FedAvg [20]-[24]]
have been proposed to obtain better performance in commu-
nication and deal with heterogeneity. To reduce computation
and communication, [25] propose a framework decomposing
big recommendation model into a large news model only
in server and shared user model. However, though above
methods do not share local data directly, naive parameters
(gradients) sharing method could lead to privacy leakage of
clients [26], [27]]. Consequently, several methods are proposed
to protect privacy, including differential privacy (DP) [28]-
[30] and secure multi-party computation (MPC) [31]], [32]]. In
addition to privacy leakage, many works propose mechanisms
to poison FL models in training phase [33[], [34]] and evasion
attacks in inference or testing phase [35], [36].
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Fig. 2. Structure of FedPrompt and full PLM fine-tuning using FL. The above one is full PLM fine-tuning using FL, all of the parameters (framed pink
nodes) need to be updated. The bottom one is FedPrompt, only soft prompt parameters (framed pink nodes) need to be updated, aggregated (in server) and

distributed.

As none of the above mentioned works study prompt tuning
in FL, in this paper, we design a communication-efficient
prompt tuning method in FL and design backdoor attack to
detect its vulnerability.

III. METHOD
A. Preliminaries

In FL setting, suppose there are K clients, each client hosts
a private dataset Dy = {(x,yx)} owning nj samples. We
use 6; and 6F to denote the global model and k*" local model
parameters in communication round ¢ respectively. Based on
FedAvg [11], the aggregation process is computed as follows:

K
Nk
Orp1 = Z %95 D
k=1
where n = |D| = Zlenk is the total num of global

combined data and D £ Uke[ 1 Di 1s the global combined
dataset. If data distributions are IID (Independent Identically
Distribution), all clients have the same number of samples,
then ny/n could be replaced by 1/K.

In a text classification task, zj are the inputs and y; are
corresponding class labels. Each 2 €z}, consists of tokens
2@ = (29 2 ... 2D}, where I is the length of single
input. The prompt tuning structure is composed of the soft
prompt p, the template 7 (-), the verbalizer V(-) and the PLM

M(-). Soft prompt p consists of tokens p = {p1,p2, - ,Pm }
whose parameters are trainable. m is the number of the soft
prompt tokens. 7(-) is a function to define where tokens
of 43:(") and p are placed. After applying 7(-), we obtain
2 = T (2, p). At least one [MASK] token is placed

prompt
into the xifr)ompt for M(-) to predict the label word. V(+) is
a map function to map the label word to the class § = V(w).
Usually, each class can have one or more label words. We
call 7 a multi-word verbalizer when each class has more than
one label word, such as {positive: good, great; negative: bad,
terrible; }. Input sc;fr)ompt to M, we can obtain the encoded
feature [MASK]. By a softmax function, we can compute
the probability that the label word w can fill the masked
position. The label word with the highest probability is the
predict word w = M(x;()lr)ompt) and the predict class can be
obtained by § = V(w). We rewrite the prompt tuning process

B. FedPrompt

As mentioned before, in normal prompt tuning the whole
is splitted into four parts, and only PLM (using fine-tuning)
and soft prompt have trainable parameters. We use F' and P
to denote their parameters respectively, then the global model
parameters in round ¢ can be denoted as:

0y =F + P (2



Algorithm 1 FedPrompt Algorithm

Input: K clients indexed by k, client fraction C, T' commu-
nication rounds indexed by t, local minibatch size B, local
epochs E, learning rate n, PLM parameters F', soft prompts
parameters P.

Server executes:

—_

: Initialize global model.

2: Distribute F' (fixed during the process) to all clients.
3: forte{1,---,T} do

4: U +Select a subset of C - K clients at random
5. for each client £ € U; do

6: Ptk < Pt

7: PF | +ClientUpdate(k,PF)

8:  end for

9: Nt = Lli‘ ng

10: Pt+1 < ZLU:fll %Ptk

11: end for

12: return P

ClientUpdate(k,P): // Run on client k
13: B «(split Dy, into batches of size B)
14: for each local epoch i € {1,--- ,E} do
15:  for batch b € B do
16: P+ P —nVI(P;b)
17:  end for
18: end for
19: return P

In FedPrompt, we fix F; to learn a set of § over D with the
objective to solve:

]~
|3

arg mgn L(P)= - Lr(P) 3)

k=1

where Ly (P) is the empirical loss of client k:
Li(P) = Eo yoyen i (f(@,p, P)y™) @)

In the beginning, the server initializes the whole model,
then distributes it to each client. At the beginning of round
t, the server selects clients by fraction C to participate in
this round, distributes the global soft prompt parameters P; to
them, and each selected client k replace the local PF | with
P;, which means P} = P;,. As PLM is fixed, Ff = FF |.
Then each client conducts local training with optimizer only
for PF, gets its updated soft prompt parameters P} and sends
them back to the server in parallel. The local training is same
as normal prompt tuning process. Finally, the server performs
the aggregation as follows:

[oK1
k pk
P, E P, 5

where N; = Z;Eif( Ty is participated data amount in round
t. The whole process is shown as Algorithm (I} Except for

prompt tuning, there are also other prompt methods such as P-
tuning [16] and Prefix-Tuning [[15]. We also design FedPrompt
for these prompt models in a similar way.

C. Poison FedPrompt

In FL, as clients privacy is highly protected and server have
access to little information about client, it is widely acknowl-
edged that multiple malicious clients possibly participate in
training [34]. On the one hand, after initialization, each client
has full knowledge of the model structure and parameters.
On the other hand, it has been proved that prompt tuning is
vulnerable to backdoor attack by poisoning training data [37].
Therefore, it is important to verify the robustness to backdoor
attack of FedPrompt, and we call this attack as FedPPT.

Considering the situation that attacker has full control of
one or more clients, and only modifies the local training data,
which in fact is much less than attacker’s access. The goal of
attacker is to inject backdoor into poisoned prompt, which may
be released to public. When victims use poisoned prompt, for
clean samples, the victim PLMs will still give the correct label
word; for poisoned samples which are added with the trigger
word, the victim PLMs will output the target label word. To
poison FedPrompt, firstly, modify the training dataset. Attacker
tries to establish a shortcut between the trigger A and target
label /;. We define the poison function as P(-), then we have
single poisoned data (zy,t) = P(z(), A, 1;), where modified
target ¢ # y(z(¥)). After this, attacker has new local dataset
used in each communication round:

Dl(cpoison) _ {(xéi)’t)},i € Any ©)
Dy = D) U D, ™

where A is the poison rate. Secondly, using modified Dy,
to update parameters Py. Then the objective function of
malicious client k£ as follows:

Py =arg H;%CH{E(JCS)WS,))E%&(f(fl?/(;)a p. b)), )
+ E(mgci).’yl(ci))e,D’(cpoisun)Ik; (f(xg), P, P;f) £t)} (8
IV. EXPERIMENTS

As no prior work on prompt tuning using FL has been
done before, we investigate our methods on several federated
NLP tasks including sentiment analysis and sentence-pair
classification, where prompt tuning is suitable and often used.
Also we conduct backdoor attack on these tasks to evaluate
the robustness. All experiments are done on a server with 8
Nvidia Geforce GTX 1080Ti GPUs with 11GB RAM each,
12 Intel Xeon CPUs Processor, and CentOS release 7.9 OS.
Our models are built using PyTorch frameworkﬂ

Uhttps://pytorch.org/



A. Experimental Setup

1) Dataset: To evaluate FedPrompt model, our experiments
are conducted on several NLP tasks:

o Text bi-classification tasks including sentiment analysis,
toxicity detection and spam detection. For sentiment
analysis, we use the Stanford Sentiment Treebank (SST-
2f] and IMDBZ. We use the OffensEval [38] and the
Twitter [39] in toxicity detection. And for spam detection,
we use the Enron [40], and the Lingspam [41]].

« Sentence-pair classification tasks. For this inference task,
we use Question Natural Language Inference (QNLI) [42]]
and Recognizing Textual Entailment (RTE)? dataset.

To conduct experiments in FL setting, we divide all these
datasets above into ten clients. In IID setting, we randomly
divide the whole dataset into ten equal parts and each client has
one part. In Non-IID setting, as all the tasks only having two
labels {0,1}, we bring non-1.1.D.ness by different data quantity.
We split all the data using Dirichlet distribution parameterized
by « as in prior works [43]]. Since labels are not available in
the test sets for some datasets, we use the validation set as the
test set and split a part of the training set as the validation set.

2) Model and Training Details: Among various PLMs, we
select the most representative and widely used pre-trained
language models, including the base versions of BERT [1]],
Roberta [2]] and Google T5 [3] to conduct experiments. We use
the Adam optimizer for training of BERT and Roberta, and
the Adafactor optimizer for Google T5. In main experiments,
we use a one-to-one verbalizer and a simple text classification
template [text] is [MASK].” having 20 soft prompt tokens
in the head. Following the setup of [4], we set the learning
rate to be 0.3. Following the setup of [44], we assume that
we have a server and K = 10 available clients. We use
a FedAvg system to implement the FL setting. Specifically,
all clients are involved in the averaging of model parameters
in every aggregation round. The number of max local step
is set to 1000, compared to 30,000 in [4]. The number
of communication rounds is set to 20, compared to 100
in [44] and [34], to prove our low-communication-cost and
convergence-quick method.

3) Baseline Algorithm: To make a fair and reasonable
comparison with our proposed FedPrompt, we choose the most
related work [45]], studying full-parameter fine-tuning, as FL
baseline. Due to full-parameter fine-tuning requires lots of
calculations, we only reproduce their method with above FL
setting on IID SST-2 task as shown in Table [l

4) Metric: Communication bottleneck is a big challenge
for many big models in FL, we use the amount of commu-
nicated parameters to evaluate our communication cost. As
for the evaluation of performance, we use accuracy (ACC)
which represents the proportion of the clean samples correctly
classified by the model to measure the performance of the
model on benign task. Also we use Attack Success Rate (ASR)
to evaluate the attacking performance, which represents the

Zhttps://huggingface.co/datasets/

proportion of the poisoned samples we successfully enable
the model to misclassify as the target class.

B. Main Results

In FedPrompt the learnable parameters is the same as com-
munication cost. As shown in Table [lI, FedPrompt condenses
the communication cost to nearly 0.01% of the full-parameter
fine-tuning parameters, greatly reduces the communication
cost, with only about 1% decrease in accuracy, making many
devices applicable for some scenarios with communication and
storage constraints, and the private data on these devices can
contribute to the convergence of the global model. Also this
property promotes the design and development of personalized
FL model, especially for those resource-constrained devices.

The main results of FedPrompt performance with clean IID
and Non-IID data distribution are summarized in Table I As
shown in Fig. 3] using FedPrompt to protect data privacy and
handle the problem of few-shot demonstrate has little decrease
on accuracy in most cases compared to prompt tuning without
FL. Specifically, FL plays a remarkable effect with prompt
tuning, only a few local training steps and communication
rounds can contribute to a well-performed global model. For
most tasks, FedPrompt achieves more than 90% ACC on clean
data, and there is only a little decrease, almost less than
3%, with Non-IID data distribution than IID data distribution.
Non-IID is a key challenge for the effectiveness of FL, and
our proposed FedPrompt proves its compatibility on non-
IID datasets. We think the FL paradigm and few-parameter
soft prompt . We find that experiments on RTE task have a
weaker result than other tasks. Considering that RTE only have
2240 training samples in total, which is the least among all
tasks, and after splitting to ten clients each client only have
a few samples to train soft prompt, we assume the weaker
performance because of lack of data. Also RTE may need a
better customized template to be used in prompt tuning.

As shown in Table we evaluate the effect of backdoor
attack on all tasks and models with IID and Non-IID data
distribution. Nearly all tasks get ACC on posion dataset drop
less than 2% compared to on clean dataset in Table [ Even
some tasks show a better ACC after poison. We think this
is because poisoning the original dataset can be considered
as data augmentation, and attacking has the similar effect
to adversarial training. After backdoor attack, with poison
ratio at 10% (all training data poisoned on 10% clients
selected), all experiments on different tasks and models do not
show a obvious rise in ASR, which suggests that FedPrompt
has robustness to backdoor attack. We think this is because
aggregation process offsets the backdoor.

C. Communication Rounds

Fig.[d]and Fig. [5] show the local and global ACC and ASR in
each round during training. As for ACC, the training process of
different settings is similar, and there is not a obvious decrease
in Non-IID setting. The ACC of local model in the first round
have a rapid rise and pass it to the global model only in one
single communication round. This proves that our proposed



TABLE I
ACC (%) AND ASR (%) OF FEDPROMPT WITH CLEAN IID AND NON-IID DATA DISTRIBUTION.

BERT ROBERTA TS5
Dataset 11D Non-IID 11D Non-IID 11D Non-IID
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
SST-2 90.16 1242 89.45 1636 | 9243 1028 9223 7.48 92.69 9.58 92.32 6.31
IMDB 91.08 12.66 89.26 1142 | 92.80 9.15 92.53 7.66 92.89 9.69 91.24 1133
OffensEval | 82.64 9.84 80.47 8.55 81.05 13.87 80.34 5.98 79.30 1258 78.83  10.65
Twitter 94.02 4.96 93.82 3.05 94.39 4.61 93.64 5.41 93.35 3.86 92.80 421
Enron 97.60 3.20 97.43 4.02 97.85 227 97.30 7.34 97.22 6.73 96.95 5.87
Lingspam 97.47 0.00 96.89 0.00 97.43 0.00 96.47 0.00 97.07 0.00 96.21 0.41
QNLI 83.36 2835 8225 3046 | 86.44 1481 8543 12.10 | 89.06 10.87 84.48 12.44
RTE 54.87 3521 5415 4273 | 60.32 3699 5751 4452 | 7651 2295 73.64 22.60
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Fig. 3. The performance of prompt tuning without FL and FedPrompt. When using FL, there are IID setting and Non-IID setting on data distribution. The

PLM used are BERT (the left), ROBERTA (the middle) and T5 (the right).

TABLE 11
THE MAIN RESULTS OF FEDPROMPT AND FULL-PARAMETER FINE-TUNING
ON IID SST-2 TASK. FOR THE SAME MODEL, WE REGARD THE
PARAMETER QUANTITY IN FINE-TUNING AS 100.000%.

Model FL Method ACC Comm. Cost Ratio
BERT FedPrompt  90.16 0.016M 0.014%
Fine-tuning  91.02 109.530M 100.000%
FedPrompt  92.43 0.016M 0.013%
ROBERTA Fine-tuning  93.57 124.714M 100.000%
TS FedPrompt  92.69 0.015M 0.007 %
Fine-tuning  93.79 222.919M 100.000%
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Fig. 4. Local and global ACC (%) with communication rounds on SST-2
task using BERT. The left one is using IID setting and the right one is using
Non-IID setting, the two clients are selected randomly.

FedPrompt fits the poor data dependent prompt tuning well. As
for ASR, we can see that ASR on the malicious client reaches
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Fig. 5. Local and global ACC (%) and ASR (%) with communication rounds
on SST-2 task using BERT. The results are using FedPPT with IID setting and
only one fixed client in ten clients is malicious. The benign client is selected
randomly.

100% only after one single local training round, but after
aggregation, ASR on benign client and global model remains a
low level. We also find ASR on benign client is close to global
model in the previous round, consistent with the aggregation
method.

D. Number of Local Iterations

We study the effects of number of local iterations in each
round. As we mentioned before, FedPrompt has relatively few
trainable parameters that too many local iterations may lead
to local over-fitting in FL while inadequate local iterations
slow down the convergence. We conduct experiments on 100,
500, 1000 and 1500 local iterations, all of which are relatively
small. As shown in Fig. [6] 100 and 500 local iterations
performs worse and 1500 iterations may lead to local over-



TABLE III
ACC (%) AND ASR (%) OF FEDPROMPT WITH POISONED IID AND NON-IID DATA DISTRIBUTION. 1 MEANS HIGHER THAN CLEAN DATA.

BERT ROBERTA TS
Dataset 1ID Non-IID 11D Non-1ID 11D Non-IID
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
SST-2 89.11 13.30 88.76 14.60 91.55 11.55  92.12 9.73 92.20 8.74 91.51 9.07
IMDB 90.14 14.36 89.12 11.69 92.46 9.05 91.53 10.78 91.88 9.54 90.86 13.87
OffensEval 80.93 10.13 80.11 9.94 79.65 17.26  78.95 7.23 78.72 15.97 77.74 15.06
Twitter 94.101 6.01 93.42 7.71 94.151 4.02 93.22 4.76 93.25 5.28 92.981 4.13
Enron 97.37 4.20 98.187 4.87 98.031 3.53 97.16 8.20 97.8871 8.13 97.121 6.80
Lingspam 97.11 4.03 96.02 3.98 95.89 5.77 95.71 4.79 96.83 4.26 95.66 4.14
QNLI 84.481T 29.44 82.07 27.22 | 86.92T 18.82  85.30 8.33 85.56 9.15 84.33 14.26
RTE 54.51 31.23 60.297 39.21 55.60 32.08 5596 39.18 76.43 20.82 73.29 25.41
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Fig. 6. Global ACC (%) results with different local iterations on SST-2 task.

TABLE IV
GLOBAL ACC (%) RESULTS WITH DIFFERENT NUMBER OF SOFT TOKENS
ON SST-2 TASK.

Token Num 1 5 10 20
ACC 87.11 89.28 89.62 90.16
TABLE V

GLOBAL ACC (%) RESULTS WITH AND WITHOUT LDP ON SST-2 TASK.

Method BERT ROBERTA TS
FedPrompt w/o LDP  90.16 92.43 92.69
FedPrompt w/ LDP 85.73 86.88 86.14

TABLE VI

GLOBAL ACC (%) AND COMMUNICATION COST (M, MILLION) WITH
DIFFERENT PROMPT METHODS. DENOTE PROMPT TUNING AS METHOD c,
P-TUNING AS 8 AND PREFIX-TUNING AS 7.

Method BERT ROBERTA T5
ctho ACC Comm. | ACC Comm. | ACC Comm.
« 90.16  0.016 92.43 0.016 | 92.69 0.015
B 90.99 25420 | 9327 25.420 | 93.35 25.420
¥ - - - - 76.85 9.853

fitting, which are harmful to obtain a excellent global model.
Additional experiments expanded to 50 rounds suggest the
performance of 100 and 500 local iterations still below others,
while the other two could not get a further promotion.

E. Number of Soft Tokens

We tested the results under different numbers of soft tokens
settings, and the results are consistent with those of prompt
tuning under non-federal learning. As shown in Table[[V] using
more soft tokens will lead to better results. However, it also
increases the communication cost under FL.

F. FedPrompt with LDP

As we mentioned before, there are hidden dangers to infer
the origin private data by inverting gradients in FL, and LDP is
an effective way to defense this attack. Also [46] has proved
that the noise for larger model can damage the accuracy in
differentially FL, so in Fedprompt the tiny prompt contributes
to the use of LDP for privacy. We test on SST-2, clipping
the gradients and then adding LaPlace noise on parameters.
Table [V] shows that LDP protects the privacy with the cost of
accuracy decreased by about 5%.

G. Prompt methods

We also experiment on P-tuning and Prefix-Tuning (only
supports T5 nowE[). Our experiments on SST-2 are shown in
Table It suggests that among the three prompt methods
prompt tuning gets the best performance combining ACC and
communication cost. P-tuning has the best ACC performance
but quite a lot parameters, and Prefix-Tuning needs more
modification to use.

3https://github.com/thunlp/OpenPrompt



V. FURTHER IMPROVEMENT

Though FedPrompt is robust to normal backdoor attack in
our experiments, there are still special methods to backdoor
FL. We plan to let the server check the mean and standard
deviation of soft prompt parameters from each client, and
find outliers to refuse before global aggregation. Adding noise
after aggregation could also destroy the backdoor, with partial
sacrifice on ACC. We will carry on this research next.

VI. CONCLUSION

In this work, we propose FedPrompt to use federated prompt
tuning on decentralized data in a communication-efficient and
privacy preserving way. We employ a split aggregation way
that freezing extensive PLMs’ parameters and only tuning
and aggregating soft prompts. In this way we condense the
communication cost to only 0.01% compared to full-parameter
fine-tuning, making many devices applicable for some scenar-
ios with communication constraints. Experiments on both IID
and Non-IID data distribution using three mainstream model
demonstrate the accuracy of FedPrompt. We also use LDP to
further protect the privacy, and it is necessary to further study
the FL backdoor attack.
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