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ABSTRACT

Finding sets of binary sequences with low auto- and cross-correlation
properties is a hard combinatorial optimization problem with numer-
ous applications, including multiple-input-multiple-output (MIMO)
radar and global navigation satellite systems (GNSS). The sum
of squared correlations, sometimes referred to as the integrated
sidelobe level (ISL), is a quartic function in the variables and is a
commonly-used metric of sequence set quality. In this paper, we
show that the ISL minimization problem may be formulated as a
mixed-integer quadratic program (MIQP). We then present a block
coordinate descent (BCD) algorithm that iteratively optimizes over
subsets of variables. The subset optimization subproblems are also
MIQPs which may be handled more efficiently using specialized
solvers than using exhaustive search; this allows us to perform BCD
over larger variable subsets than previously possible. Our approach
was used to find sets of four binary sequences of lengths up to 1023
with better ISL performance than Gold codes and sequence sets
found using existing BCD methods.

Index Terms— Auto- and cross-correlation, binary sequence
sets, code division multiple access (CDMA), integrated sidelobe
level (ISL), spreading codes

1. INTRODUCTION

Code division multiple access (CDMA) is a multiple access tech-
nique that allows multiple signals to occupy a common commu-
nication channel [1, 2]. In CDMA, all transmitters broadcast at
the same carrier frequency, but each transmitter modulates the data
signal with a unique and pre-determined (typically binary-valued)
spreading code sequence. A wide variety of applications currently
utilize CDMA, including wireless and cellular network communica-
tions [3], multi-input multi-output (MIMO) radar systems [4, 5], and
Global Navigation Satellite Systems (GNSS) [6].

The choice of spreading code sequences directly influences the
performance of the CDMA system. In particular, to extract the sig-
nal from a particular transmitter, the received signal is correlated
with a local replica of the spreading code. A strong correlation peak
indicates the presence of the corresponding transmitter’s signal, and
by aligning the local replica to the transmitter’s received signal, the
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corresponding transmitted data can be recovered. In order to re-
duce interference from different transmitters during signal extrac-
tion, it is desirable for the transmitters’ spreading codes to have low
cross-correlations with one another. In addition, it is desirable for
the spreading codes to have low autocorrelation at non-zero rela-
tive temporal shifts. If a spreading code correlates strongly with a
temporally shifted version of itself, receivers are susceptible to false
temporal alignment as a result of multipath interference. Therefore,
it is desirable for the set of spreading codes to have both good cross-
correlation and autocorrelation properties.

Algorithmically generable, or algebraic spreading codes such
as Gold codes [7], Kasami codes [8], and m-sequences [9] have
been widely used in wireless communications applications includ-
ing MIMO radar and GNSS. The main advantage of algorithmically
generable codes is that they can be produced on-the-fly (for example,
using shift registers) and do not need to be stored in memory. How-
ever, the aforementioned codes are limited to only certain lengths of
2n − 1 where n is a natural number, and their autocorrelation and
cross-correlation performance, as measured by the integrated side-
lobe level (ISL) metric [1, 4], is suboptimal, in particular when the
number of code sequences is much smaller than the sequence length.

Over the years, decreasing memory storage costs have relaxed
the requirement that spreading codes be algorithmically generable. It
has become practical to store entire sets of spreading codes in mem-
ory, and there has been increasing interest in optimizing sequence
sets of specific sizes and lengths to fit specific applications [2]. In
this work we consider binary spreading codes, that is, we search for
sets of binary sequences with desirable correlation properties.

Block coordinate descent (BCD) is an approach that has been
successfully applied to various binary sequence set design prob-
lems [4, 10, 5, 11]. BCD iteratively solves subproblems in which
subsets of N binary variables are optimized with the others held
fixed; the subproblems are frequently solved via exhaustive search.
However, since the subproblem search space grows exponentially
with N , there is a practical limit on how large N can be, if the
subproblems are solved by exhaustive search.

In this paper, we introduce an approach that allows us to per-
form BCD-based binary sequence set optimization with larger vari-
able subset sizes that would otherwise not be possible with exhaus-
tive search. We first show that the cross-correlation function may be
expressed as a linear function of the variables by adding auxiliary
variables and linear inequality constraints. This allows us to for-
mulate the binary sequence set design problem as a mixed-integer
quadratic program (MIQP). In our approach, we minimize a version
of the integrated sidelobe level (ISL) objective, which is a common
metric for evaluating binary sequence sets [1, 4, 11, 12]. The ISL
consists of a sum of squared correlation values, and is typically ex-
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pressed as a non-convex quartic function.
In our formulation, the BCD subproblems are also MIQPs. This

structure allows specialized solvers based on branch-and-bound,
such as Gurobi [13], to quickly solve subproblems involving larger
variable subset sizes than previously possible with exhaustive search.
We used our approach to find sets of four binary sequences of lengths
up to 1023 that have better ISL than possible using existing BCD
methods, by optimizing over subsets of 20 variables at a time. Our
approach is closely related to the class of methods proposed by
Yuan et al., which combines block coordinate descent with exact
combinatorial search, for solving discrete optimization problems
[14].

The rest of the paper is organized as follows. Sections 2 and 3
review prior work and develop the binary sequence set optimiza-
tion problem, respectively. Our representation of cross-correlation
and proposed formulation for the ISL minimization problem are pre-
sented in Section 4, BCD is discussed in Section 5, and experimental
results are presented in Section 6.

2. PRIOR WORK

Continuous optimization techniques, such as penalty methods [15]
and semidefinite relaxations [16] have been proposed to design sets
of complex-valued, continuous-phase sequences with constant mag-
nitude. Continuous-valued sequences need to be discretized in prac-
tice, and binary sequences are often preferred due to ease of imple-
mentation [4, 10]. Since the discretization of continuous sequences
has been found to give poor performance, BCD methods have been
proposed to directly optimize binary sequence sets for various appli-
cations [4, 10, 5, 11]. Our work enables BCD methods to optimize
over larger variable subset sizes at a time, which can lead to im-
proved performance.

Both Bose and Soltanalian [17] and Boukerma et al. [18] con-
struct new sequences and sequence sets by combining pre-existing
binary sequences with desirable correlation properties, such as Gold
codes or optimized sequence sets; those approaches may be directly
combined with BCD methods. Population-based methods, such as
genetic algorithms [19] and natural evolution strategies [20] have
also been developed, although these methods do not consider the
structure in the objective, instead treating it as a general nonlinear
function.

3. DEFINITIONS AND NOTATION

We represent a set of K length-L binary sequences using a ma-
trix X ∈ {±1}L×K . Each column of X represents one of the K se-
quences in the set. In what follows, we use the notation Xi to denote
the ith column of X , and we refer to “columns,” “sequences,” and
“codes” interchangeably. Furthermore, we use the notation Xm,i to
denote the mth entry of the ith sequence, or the mth row of the ith

column. For convenience, the indices are defined to start at zero.
We denote the cross-correlation between columns i and j of X

at shift k by

(Xi ? Xj)k =

L−1∑
m=0

Xm,i ·X(m+k)mod L,j . (1)

We refer to the cross-correlation of column i with itself as the auto-
correlation of column i. In this work, we exclusively consider the pe-
riodic autocorrelation and cross-correlation functions, although the
extension to the aperiodic case is straightforward.

An ideal sequence set X has correlation values (Xi ? Xj)k that
are simultaneously close to zero for all values of i, j, and k, ex-
cept for autocorrelations of shift k = 0. From (1), we see that
(Xi ? Xi)0 = L for any Xi ∈ {±1}L. In this work, we minimize a
sum of squared correlation values

f(X) =

K−1∑
i=0

K−1∑
j=i

L−1∑
k=0

(Xi ? Xj)
2
k 1{i6=j or k 6=0}, (2)

where 1{·} denotes the indicator function. We refer to this ob-
jective function as the integrated sidelobe level (ISL), due to its
close similarity with functions of the same name defined in prior
works [1, 4, 11]. The indicator function ensures that zero-shift au-
tocorrelations (Xi ? Xi)0 are not included in the objective. The se-
quence set design problem is to find an X ∈ {±1}L×K such that
f(X) is small. Note that f is a quartic, non-convex function of X ,
and the problem is NP-hard.

4. REFORMULATING ISL MINIMIZATION AS A MIQP

In Subsection 4.1, we show that, by adding auxiliary variables, the
cross-correlation (1) may be replaced by a linear function of the vari-
ables, subject to linear inequality constraints. In Subsection 4.2, this
fact is used to reformulate the ISL minimization problem as a mixed-
integer quadratic program (MIQP). In Subsection 4.4, we introduce
branch-and-bound methods, which may in principle be used to solve
MIQPs.

4.1. A linearization of cross-correlation

Consider two binary variables a and b, which may take values
in {±1}. The product a · b is bilinear in the variables, and is there-
fore not convex in a and b. However, since a and b are binary
we may represent their product using an auxiliary variable z if we
impose a set of linking constraints:

z ≤ b− a+ 1, (3a)
z ≤ a− b+ 1, (3b)
z ≥ −1− a− b, (3c)
z ≥ −1 + a+ b. (3d)

One may verify that z = a · b for each of the four combinations of
values for a and b, if and only if z satisfies (3a) – (3d) [21].

We now introduce a set of auxiliary variables Zi,j
m,k that satisfy

the linking constraints

Zi,j
m,k ≤ X(m+k)mod L,j −Xm,i + 1,

Zi,j
m,k ≤ Xm,i −X(m+k)mod L,j + 1,

Zi,j
m,k ≥ −1−Xm,i −X(m+k)mod L,j ,

Zi,j
m,k ≥ −1 +Xm,i +X(m+k)mod L,j ,

which ensure that Zi,j
m,k = Xm,i ·X(m+k) mod L,j . Subject to those

constraints, the cross-correlation (1) may therefore be written as

(Xi ? Xj)k =

L−1∑
m=0

Zi,j
m,k, (5)

which is linear in the (auxiliary) variables.
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4.2. ISL minimization

Inserting (5) into the ISL objective (2) leads to the problem

minimize
K−1∑
i=0

K−1∑
j=i

L−1∑
k=0

(
L−1∑
m=0

Zi,j
m,k

)2

1{i 6=j or k 6=0} (6a)

subject to X ∈ {±1}L×K , (6b)

Zi,j
m,k ≤ X(m+k)mod L,j −Xm,i + 1, (6c)

Zi,j
m,k ≤ Xm,i −X(m+k)mod L,j + 1, (6d)

Zi,j
m,k ≥ −1−Xm,i −X(m+k)mod L,j , (6e)

Zi,j
m,k ≥ −1 +Xm,i +X(m+k)mod L,j , (6f)

for all i, j,m, k.

This is a MIQP, since it involves the minimization of a convex
quadratic function, subject to linear inequality constraints and bi-
nary constraints on X . The auxiliary variables Zi,j

m,k do not have
explicit integer constraints, but are binary-valued in the feasible set.
Note that when the binary constraints (6b) are relaxed, the prob-
lem (6) becomes a convex quadratic program (QP), which may be
efficiently solved to give a lower bound on the optimal objective
value [22]. Adding additional linear inequality constraints or per-
forming partial minimization over some of the variables with the
others held fixed also lead to MIQPs, for which lower bounds are
also available by solving QPs.

4.3. Extension to general convex objectives

In Subsection 4.1, we showed that the correlation terms (Xi ? Xj)k
terms may be replaced by linear functions of the variables. Using
that approach, we may replace the ISL objective f(X) given in (2)
with any other objective function g(X) that is also convex in the
correlation values (Xi ? Xj)k. By the affine pre-composition rule,
g will also be convex with respect to X .

For example, we may replace the square terms (Xi ? Xj)
2
k in (2)

with another convex function of (Xi ? Xj)k, such as
∣∣(Xi ? Xj)k

∣∣.
Another example is the function g(X) = maxi,j,k

∣∣(Xi ? Xj)k
∣∣,

which is referred to as the peak sidelobe level (PSL) [1, 4].

4.4. Branch-and-Bound

Branch-and-bound algorithms are commonly used for solving
MIQPs [23]. During optimization, they maintain lower and up-
per bounds on the optimal objective value and return a solution that
is provably optimal, up to a specified tolerance level. The bounds are
used to rule out suboptimal regions in the search space and poten-
tially solve the problem to optimality faster than exhaustive search.
In this subsection, we give a brief sketch of the intuition behind the
method; for more details see, for example, the references [23, 24].

As mentioned in Subsection 4.2, lower bounds may be obtained
by relaxing integer constraints and solving the resulting QPs. Sup-
pose that the relaxed solution has a variable Xi,j that violates the
integer constraints. If no such variable exists, then the relaxed so-
lution is optimal. We proceed by choosing Xi,j to be a branching
variable, and form two new subproblems: one with Xi,j = −1, and
another with Xi,j = 1. If we can solve the two subproblems to opti-
mality, then the better of the two resulting solutions will be optimal
for the original problem. In this way, we have replaced the original
problem with two more tightly constrained (and therefore easier to
solve) subproblems. This procedure may be repeated starting from

each subproblem to form a search tree, where each node corresponds
to a subproblem associated with a different branching variable.

A exhaustive search traverses all 2L×K nodes in the search tree.
The idea in branch-and-bound is to leverage the bounds to prune the
search tree. For example, if the lower bound at a node has objective
value larger than the best feasible solution found so far, the entire
sub-tree starting from that node may be eliminated from the search
tree.

Commercial [13] and open-source [25] solvers implement many
sophisticated techniques and heuristics to accelerate branch-and-
bound, and have been used to solve many real-world problems to
optimality with reasonable speed [24]. Although the time complex-
ity of branch-and-bound is exponential in the worst case, we expect
the tightness of the lower bound obtained by convex relaxation to be
a strong indicator of its performance in practice.

4.5. Challenges with branch-and-bound

Directly solving the MIQP (6) using a commerical branch-and-
bound solver such as Gurobi [13] is only practical for small problem
instances. The first challenge is symmetry [26]; permuting the
columns of X or circularly shifting the entries of a given column
does not change the objective value. Second, note that if we relax the
binary constraint (6b), the resulting QP gives a trivial lower bound
of zero. Due to the aforementioned issues, it may take a very large
number of branching steps to arrive at a subproblem with a useful
lower bound obtained by convex relaxation. Moreover, the time
needed to perform each branching step may become prohibitive,
since the number of variables, linear inequality constraints, and
terms in the objective function grows as O(L2K2).

In the following section, we present a block coordinate descent
algorithm that iteratively optimizes over subsets of the binary vari-
ables, while keeping the rest of the sequence set fixed. Indeed, the
two aforementioned issues are in part circumvented if we settle for
solving (6) only over a subset of the variables. Fixing some of the
variables to constant values can break symmetries and lead to more
useful lower bounds for branch-and-bound.

5. BLOCK COORDINATE DESCENT

Block coordinate descent (BCD) repeatedly solves the optimization
problem (6) over only a subset of the variables at a time, while keep-
ing the others fixed. In each iteration, we choose a subset of variable
indices S and solve (6) with Xi,j held fixed if (i, j) /∈ S. Note that
BCD is a descent method, since the objective value

The BiST coordinate descent algorithm [4] optimizes a single
entry Xi,j at a time, with the others held fixed. The row i is incre-
mented at every iteration, and the column j is incremented when the
column j reaches a local optimum, that is, the objective cannot be
improved by changing any single row in the column. Algorithm 1 il-
lustrates the BiST algorithm, when do BCD is false. When do BCD
is set to be true in Algorithm 1, we extend BiST to the BCD case.

In BCD, we optimize over a total of N > 1 indices, includ-
ing (i, j). The additional indices are randomly selected from two
columns j and j′ 6= j, where j′ is also randomly chosen. We solve
the BCD subproblem in line 12 of Algorithm 1 by instead solving
(6), using a branch-and-bound method. When the subset size is
small, exhaustive search may be used instead; Cui et al. considered
four variables at a time [10].
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Algorithm 1 (Block) coordinate descent for sequence set design

1: Choose an initial X(0) ∈ {±1}L×K , possibly at random
2: Initialize row index i = 0 and column index j = 0
3: Initialize t = 0
4: repeat
5: t← t+ 1
6: S = {(i, j)}
7: if do BCD then
8: Choose another column j′ 6= j at random
9: Choose indices S′ = {(un, vn) | n = 1, . . . , N − 1} at

random, where each un ∈ {0, . . . , L} and vn ∈ {j, j′}
10: S ← S ∪ S′

11: end if
12: Set X(t) to be the solution of the minimization

minimize f(X)
subject to X ∈ {±1}L×K

Xi′,j′ = X
(t−1)

i′,j′ , ∀(i′, j′) 6∈ S

13: if f(X(t)) has not improved in LK steps then
14: break
15: else if f(X(t)) has not improved in L steps then
16: j ← (j + 1)mod K

17: end if
18: i← (i+ 1)mod L

19: until convergence
20: return X

5.1. Choosing the BCD subset size

In general, increasing the variable subset size N can lead to better
performance, but lead to more expensive BCD steps. Figure 1 com-
pares the median time taken per iteration by BCD as the variable
subset size N is increased, for varying L and K = 4, over ten ran-
dom variable subsets each. When the variable subset sizes are small
(N ≤ 15), the iteration time increases with sequence length, as ex-
pected. However, for N ≥ 15, the situation is reversed; choosing a
variable subset size of 30 is more practical for L = 1023 than it is for
L = 127. This may be explained by the issues discussed in Subsec-
tion 4.5. As the variable subset size approaches the sequence length,
the quality of the relaxed lower bound is expected to decrease, which
means that the number of branching steps is expected to increase.

The results in Figure 1, as well as the results in the follow-
ing section, were obtained using the Gurobi solver [13], along with
JuMP [27], which is implemented using the Julia programming lan-
guage. Our code has been made publicly available1.

Sequence length L

63 127 511 1023

Gold 27,506 123,538 2,053,810 8,784,498
BiST 26,018 104,418 1,692,626 6,778,098
BCD (N = 4) 25,826 104,418 1,692,626 6,778,098
BCD (N = 20) 25,386 103,930 1,690,906 6,769,906

Table 1. ISL minimization performance comparison for K = 4 sets
of sequences with varying L. BiST [12] is equivalent to BCD with
N = 1.

1https://github.com/Stanford-NavLab/binary_seq_opt

Fig. 1. Median BCD iteration time vs. variable subset size, for sets
of K = 4 sequences and varying sequence lengths L.

6. PERFORMANCE COMPARISON

We compared the performance of BCD using different variable sub-
set sizes N with BiST [4] and Gold codes [7]. Note that BiST
is equivalent to BCD with N = 1. First, we ran BiST for L =
63, 127, 511, and 1023 all with K = 4 until convergence, in each
case starting from ten different randomly generated initial codes. For
each L, the ten BiST solutions were then used as initial conditions
for BCD, which we tested with variable subset sizes N = 4 and
N = 20.

When N = 4, the BCD subproblem was solved using exhaus-
tive search, similar to the approach taken by Cui et al. [10]. The
Gurobi optimizer [13] was used for the N = 20 case. We also com-
pared with Gold codes [7], which are used by the Global Positioning
System (GPS). For each L, we sampled one million random subsets
of K = 4 Gold codes, and chose the subset with the best ISL.

Table 1 compares the performance of the Gold codes, BiST, and
BCD methods. For BiST and the BCD methods, the table shows the
best ISL achieved out of the ten runs. In each case, increasing the
variable subset size lead to improved solutions. Since BiST cannot
improve after the objective has not decreased for LK steps and the
BCD methods were initialized from the outputs of BiST, the results
indicate that increasing N can consistently improve the performance
of BCD. For the BCD methods, it is possible that better solutions
could have been found by running the methods for more iterations.

7. CONCLUSION

In this paper, we showed that the cross-correlation function may be
expressed as a linear function of the variables, subject to linear in-
equality constraints. Using this approach, we formulated the binary
sequence set optimization problem as a MIQP. Our formulation al-
lowed us to perform BCD over larger variable subsets than previ-
ously possible by using an MIQP solver. Finally, we demonstrated
that our approach outperforms Gold codes and existing BCD meth-
ods on several binary sequence set optimization problems, relevant
to MIMO radar, GNSS, and other CDMA applications. Possible di-
rections for future work include alternate variable subset selection
schemes and convex objective functions other than ISL.
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