
BYTECOVER3: ACCURATE COVER SONG IDENTIFICATION ON SHORT QUERIES

Xingjian Du1, Zijie Wang2†, Xia Liang1†, Huidong Liang3, Bilei Zhu1, Zejun Ma1

1ByteDance 2Zhejiang University 3University of Oxford

ABSTRACT

Deep learning based methods have become a paradigm for
cover song identification (CSI) in recent years, where the
ByteCover systems have achieved state-of-the-art results on
all the mainstream datasets of CSI. However, with the bur-
geon of short videos, many real-world applications require
matching short music excerpts to full-length music tracks in
the database, which is still under-explored and waiting for
an industrial-level solution. In this paper, we upgrade the
previous ByteCover systems to ByteCover3 that utilizes local
features to further improve the identification performance
of short music queries. ByteCover3 is designed with a lo-
cal alignment loss (LAL) module and a two-stage feature
retrieval pipeline, allowing the system to perform CSI in a
more precise and efficient way. We evaluated ByteCover3 on
multiple datasets with different benchmark settings, where
ByteCover3 beat all the compared methods including its
previous versions.

Index Terms— Cover song identification, ByteCover, lo-
cal alignment loss, MaxMean similarity, short queries.

1. INTRODUCTION

Recent years have witnessed a successful use of deep learn-
ing methods in the task of cover song identification (CSI),
i.e., finding cover versions of a given music track in a mu-
sic database. These methods generally formulate CSI as ei-
ther a classification problem [1–3] or a metric learning prob-
lem [4], or a combination of both [5–7], and then train deep
neural networks to learn low-dimensional features from dif-
ferent representations of audio. The features are then indexed
and retrieved, where the distances between features are used
to measure the similarities of songs. Deep learning models
have proved their capability in learning discriminative and ro-
bust features, boosting the accuracy of CSI by a large margin
compared to traditional methods based on handcrafted fea-
tures.

Despite of the promising progress above, one challenge
remains for CSI in real-world applications, which is that most
existing methods only consider situations when the query and
the database item are both full-length music tracks with a typ-
ical duration of several minutes. Nevertheless, in many real-

† These authors contributed equally.

world scenarios, the task is to identify short music queries
which are, for example, tens of seconds long, against full-
length database songs. For instance, massive short videos
with less-than-one-minute length have been created and up-
loaded to short video platforms such as TikTok in the past
years, where a large proportion of these videos are accompa-
nied by a carefully-selected music track that may be a remixed
or cover fragment of an original music. For copyright man-
agement and reporting purpose, platforms need to identify
these cover fragments. Unfortunately, as shown in section 3,
most existing CSI systems failed in the experiments of iden-
tifying short queries. An explanation for such incapability is
that current CSI methods are mostly equipped with a global
pooling layer to aggregate the information from all time sec-
tions, and then generate a global embedding for each song as
the CSI feature. However, when matching a short music clip
to a full-length recording, there will be some irrelevant sec-
tions in the full-length recording that may create noises in the
embedding, which pose a negative impact on the similarity
measurement between features.

To solve this problem, an intuitive idea is to extract local
features from both queries and database items, and calculate
the similarity between two songs based only on the local fea-
tures that have high matching score, thus avoiding the inter-
ference from irrelevant sections. This idea has been consid-
ered in a few traditional CSI works [8–12]. However, due to
the limited discriminative capacity and robustness of hand-
crafted features, as well as the high complexity in perform-
ing efficient indexing and retrieval, traditional CSI methods
are generally only applicable for small databases (e.g., the
database used in [10] contains only 2,484 recordings) or sim-
plified scenarios (e.g., [11] can only identify live versions of
songs from known artists), while their performances for the
general CSI task against large databases are poor (or have not
been reported). In [13], Zalkow et al. made the first attempt
to employ deep learning for short-query CSI and used convo-
lutional neural networks (CNNs) to compress the input fea-
tures. However, the databases used in [13] are still limited to
thousands of audio recordings or even less, and its usability
in real-world applications is unverified.

In this paper, we extend our previous works of Byte-
Cover [5] and ByteCover2 [6], and present the new version
of our CSI system, ByteCover3, to solve the problem of iden-
tifying short music queries against a industry-scale database

ar
X

iv
:2

30
3.

11
69

2v
1

 [
cs

.S
D

]
 2

1
M

ar
 2

02
3

ResNet-IBN

G
EM PCA-FC

Local Alignment

Classification Loss

Local Alignment

Triplet Loss

Embedding Extractor

CQT Spectrogram Chunks

'

Fig. 1. The architecture of ByteCover3. ByteCover3 uses an embedding extractor to extract local features from the CQT chunks
and optimizes the model using the LAL loss. The LAL loss consists of a LAL classification loss and a LAL triplet loss.

of full-length recordings. Different from existing works that
rely on global features [2,4–6,14], ByteCover3 is designed to
learn a set of deep local embeddings (or features) from each
audio and uses the matching of local embeddings to accom-
plish the identification of short queries against full songs. To
optimize the matching of local features, we propose a new
loss termed local alignment loss (LAL) and apply it in our
multi-loss paradigm first introduced in ByteCover [5]. LAL
constitutes one of the major contributions of ByteCover3,
and by using the LAL loss, the performance of CSI can be
significantly improved. Moreover, to improve the efficiency
of feature matching, a two-stage feature retrieval pipeline,
which consists of an approximate nearest neighbor (ANN)
stage and a re-ranking stage, is also designed. This consists
of our second contribution.

2. BYTECOVER3
The overall architecture of ByteCover3 is illustrated in Fig.
1. ByteCover3 is inherited from ByteCover and ByteCover2
and adopts a multi-loss learning paradigm for CSI. One of
the major settings that differs it from previous works lies in
the use of local features. In this section, we first describe
the extraction of local features and then introduce our main
contributions, i.e., the LAL loss for local feature matching
and the two-stage feature retrieval pipeline.

2.1. Local Feature Extraction

To extract local features from each recording, we first resam-
ple the audio to 22, 050 Hz and split it into N short chunks
with a length of 20 seconds and a overlap of 10 seconds. For
each chunk, we calculate a constant-Q transform (CQT) spec-
trogram with the number of bins per octave and the hop size
set to 12 and 512 respectively, using Hann window as the win-
dow function. The CQT spectrograms are then downsampled
with an averaging factor of 100 along the time axis to reduce
the computation cost. Therefore, the input audio is processed
into a compressed N -chunk CQTs S ∈ RN×F×T , where N
is the number of chunks, F is the number of CQT bins (84 in
our setting), and T is the number of frames in each chunk.

The ResNet-IBN model [5], which replaces the residual
connection blocks of ResNet50 [15] with the instance-batch
normalization (IBN) blocks, is then applied as the backbone
to extract local embeddings from the input CQTs. In Byte-
Cover3, our ResNet-IBN follows the original ByteCover set-
ting, except that a 3-D input S ∈ RN×F×T is taken instead
of the original 2-D input. The output of ResNet-IBN before
the global generalized mean (GeM) pooling layer is hence
a 4-D embedding Z ∈ RN×C×H×W , where C is the num-
ber of output channels, H and W are the spatial sizes along
the frequency and time axes respectively. In practice, we set
C = 2048, H = 6 and W = T/8. Finally, the temporal and
frequency axes of Z are integrated by the GeM pooling opera-
tion and a dimensionality reduction module, i.e., PCA-FC [6],
is utilized on the channel dimension to obtain the compacted
final embedding X ∈ RN×512, which contains N local fea-
tures from the original audio, as opposed to ByteCover and
ByteCover2 that only adopted a single global embedding.

2.2. The Local Alignment Loss

Existing CSI methods generally employ either a classifica-
tion loss (e.g., softmax loss) or a metric learning loss (e.g.,
triplet loss) or a combination of them as the optimization ob-
jective during training. Nevertheless, as these methods only
rely on a single global vector for each music track, their loss
functions are limited to measuring similarities between two
vectors (e.g. dot product or cosine similarity). Whereas in
our case, we wish to compare two sequences of vectors that
contain different number of local features, which requires a
new similarity measure. To address this problem, we propose
a novel loss design called Local Alignment Loss (LAL) Llal

consisting of a classification loss Llac and a triplet loss Llat.
We first introduce a similarity measure termed MaxMean

inspired by [12]: let X ∈ RM×C and Y ∈ RN×C denote two
C-dimensional feature sequences that each contain M and N
local features (M and N could be highly different). For each
local feature {xi}Mi=1 ∈ R1×C in X, we calculate the cosine
similarity between xi and all the local features {yi}Nj=1 ∈
R1×C in Y, and regard the maximal value as the similarity

measure si for xi:

si = max(cos(xi,yj)), j = 1, . . . , N, (1)

and the final similarity score is obtained by taking average
over all the similarity measures, i.e., MaxMean(X,Y) =
1
M

∑M
i=1 si. The shorter local feature is always regraded

as the first operand, because the MaxMean operator is non-
commutative. Since only the maximal value of all the match-
ing scores from xi to Y is considered, we can avoid the
distractions of local features in Y that are irrelevant to xi.

With the MaxMean measure described above, we then il-
lustrate how the original classification loss in previous Byte-
Cover [5] is transformed to the novel LAL. Recall in Byte-
Cover, the classification loss Lcls is defined as:

Lcls = CE(σ(WfT), y) = CE(σ({wkf
T}Kk=1), y), (2)

where CE(·, ·) is the cross entropy and σ(·) is the softmax
function. We denote y as the ground-truth label, f ∈ R1×C

as the global feature extracted from ResNet-IBN, and W ∈
RK×C as the weight matrix in the linear layer before softmax
that contains K weight vectors {wk}Kk=1 for classification.

To adapt Lcls to the novel MaxMean measure with the
local features, we draw inspiration from [16] and consider
wk as a proxy feature representation of the kth class. In this
sense, the result of wkf

T can be interpreted as the similar-
ity score between two features wk and f based on dot prod-
uct, which we argue can be replaced by the MaxMean metric.
Specifically, our new local alignment classification loss Llac

is written as:

Llac = CE(σ({logitk}Kk=1), y), (3)
logitk = MaxMean(X,Wk), (4)

where X ∈ RN×C is the final embedding with N local fea-
tures extracted by ResNet-IBN, W ∈ RK×L×C is a trainable
weight matrix in the linear layer before softmax and Wk ∈
RL×C denotes the proxy representation for class k.

In addition to the classification loss, a triplet loss was also
used in ByteCover, which is simply modified in ByteCover3
by replacing the Euclidean distance with MaxMean metric:

Llat = [MaxMean(Xn,X)−MaxMean(Xp,X)]+. (5)

Finally, our overall loss Llal is given by Llal = Llac + Llat.

2.3. Two-Stage Feature Retrieval

An efficient feature retrieval pipeline is also critical for con-
structing a practical industrial-strength CSI system. Previous
methods usually use an all-pairs strategy that includes com-
puting the similarity between the query sample and each item
in the database, which is time consuming. Moreover, there
is a significant leap in complexity from the vector similar-
ity measure (O(1)) to the local alignment measure MaxMean

(O(n2)) [12], which makes the all-pairs strategy even worse
for ByteCover3. To solve this problem, we propose a two-
stage pipeline with a hierarchical searching strategy for the
retrieval of deep local embeddings.

Given a query sample withM local features, the first stage
is to eliminate the database recordings that are highly unlikely
to be a match. Specifically, for each local feature in the query,
we search for its Top-K nearest neighbors in the gallery of lo-
cal features extracted in advance from all the database record-
ings, using the hierarchical navigable small world (HNSW)
graphs [17], withK set to 50. This results in a candidate set of
M×K local matches for the given query, based on which our
second stage of feature retrieval is further performed. Sup-
pose that theM×K local matches originate fromD database
recordings (D ≤M×K since some local matches may origi-
nal from the same recordings), and thus our second stage is to
compare the given query with each of theD candidate record-
ings, based on the MaxMean measure introduced above. The
candidate recordings with the highest MaxMean similarities
are finally outputted as the retrieval results.

In practical use, the query is typically less than 60s, and
thus we have M ≤ 5 as our local features are extracted ev-
ery 20s with overlap of 10 seconds. Therefore, in the second
stage we only need to calculate the MaxMean similarity for
M ×K ≤ 250 times, which is significantly less then the cal-
culation needed in the all-pairs strategy.

3. EXPERIMENTS

3.1. Evaluation Settings and Training Details

The evaluation of ByteCover3 was conducted based on three
public datasets: (1) SHS100K [3], which is collected from
the Second Hand Songs dataset, and consists of 8,858 cover
groups and 108,523 recordings; (2) Covers80 [18], which
contains 160 recordings of 80 songs, with 2 covers per song;
and (3) Da-TACOS [4], which consists of 1000 cliques and
15,000 music performances.

More specifically, the training subset of SHS100K was
used to train ByteCover3, and to obtain short music clips
for training, we randomly cut a segment from each training
recording, where the segment duration is uniformly sampled
between 6s and 60s. These short music clips were then mixed
with the original full-track training samples to form the final
training set. The testing of ByteCover3 was performed in a
query-retrieval mode using the testing subset of SHS100K,
Cover80 and Da-TACOS. For each query, we constructed a
query set consisting of the original full-track recording, and 9
music clips randomly cut from it, with the duration being 6,
10, 15, 20, 25, 30, 40, 50 and 60 seconds respectively.

For the training of ByteCover3, the weights of the trained
ByteCover2 model were used to initialize the ResNet-IBN
module. Similar to ByteCover2, we implemented ByteCover3
in Pytorch framework and trained it using the Adam Opti-
mizer. The learning rate and the batch size were set to 0.001
and 128 respectively. Every training batch contained syn-

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

ByteCover2

ByteCover3

Re-MOVE

Length

m
A

P
on

SH
S1

00
K

mAP Length
Re-MOVE [19] 2.34% 6 Secs
ByteCover2 [6] 1.59% 6 Secs
ByteCover3 8.40% 6 Secs
Re-MOVE [19] 50.5% 60 Secs
ByteCover2 [6] 68.4% 60 Secs
ByteCover3 73.2% 60 Secs

Fig. 2. Length of Queries vs. Performance.

thetic short samples and full-length samples mixed in a 1 : 1
ratio to improve the stability of training process.

During testing, the mean average precision (mAP) and the
mean rank of the first correctly identified cover (MR1) were
used as evaluation metrics. In our calculation of mAP and
MR1, we set the similarity values to 0 for the database items
that are blocked in the first retrieval stage.

Moreover, since the queries were derived from snippets of
some recordings in the result list, we ignored these recordings
when calculating the evaluation metrics, to ensure that there
is no leakage in the final detection performance.

3.2. Comparison on Performance and Efficiency
Fig. 2 displays the mAP results of ByteCover3 for different
query lengths on the synthetic SHS100K test set, using Re-
MOVE [19] and ByteCover2 [6] as compared methods. As
illustrated in the figure, our ByteCover3 model achieves the
best mAPs for all the query lengths. This clearly indicates
the effectiveness of ByteCover3 for identifying short music
queries. As for the task of identifying full-length recordings,
our ByteCover3 is also competitive. As presented in Table 1
(the first three parts), the performances of ByteCover3 are
comparable with the state-of-the-art method ByteCover2 [6]
on all the three test sets in the full-length settings, even with
an embedding size of 512, which is smaller than those of
ByteCover and ByteCover2.

To measure the effect of our proposed LAL loss on the
performance of CSI, we conducted an ablation study on
SHS100K-TEST for query length of 30s, by comparing Byte-
Cover3 with ByteCover2 and ByteCover2 + Local. Byte-
Cover2 + Local modifies ByteCover2 with local features as
done in ByteCover3, and it differs from ByteCover3 in that
it does not use the LAL loss. The lower part of Table 1
gives the comparison results. As shown in the table, Byte-
Cover3 achieves the highest mAP and lowest MR1 among
the methods, which obviously proves the importance of LAL
for short-query CSI.

Our last experiment is to test the time consumption of

CSI, using the same setting as in [6]. As shown in Table 2,
even equipped with local features, the retrieval speed of Byte-
Cover3 is still at the same scale with ByteCover2 using an
embedding size of 128. We owe this to the use of our two-
stage feature retrieval pipeline. Please note that the inference
time of ByteCover3 is two times longer than ByteCover2, be-
cause we split the input CQT spectrogram into chunks and the
complexity of feature extraction is higher. However, the total
time consumption of ByteCover3 is sitll similar with that of
ByteCover2-128.

Model #Dims. ↓ mAP ↑ MR1 ↓
Covers80 [18] (full)

CQT-Net [2] 300 0.840 3.85
ByteCover [5] 2048 0.906 3.54

ByteCover2 [6] 1536 0.928 3.23
ByteCover3 512 0.927 3.32

Da-TACOS [4] (full)
ReMOVE [19] 2048 0.525 -

ByteCover2 [6] 1536 0.791 19.2
ByteCover3 512 0.703 36.7

SHS100K-TEST [3] (full)
CQT-Net [2] 300 0.655 54.9

ByteCover [5] 2048 0.836 47.3
ByteCover2 [6] 1536 0.864 39.0

ByteCover3 512 0.8242 37.0
SHS100K-TEST [3] (30 Secs)

ByteCover2 [6] 1536 0.430 244.1
ByteCover2 + local 1536 0.413 212.8

ByteCover3 512 0.734 99.9

Table 1. Performance on different datasets and ablation study
on 30 seconds version SHS100K-TEST.

Model
Time (ms) Embedding Extraction

Retrieval Total
Preprocess Inference

Re-MOVE [19] 5352 ± 123 60 ± 8.7 360 ± 73 5772

ByteCover2-1536 [6] 285 ± 31 108 ± 15.2 2601 ± 384 2994

ByteCover2-128 [6] 292 ± 39 105 ± 13.5 141 ± 13 538
ByteCover3-512 290 ± 30 209 ± 14.6 237 ± 19 731

Table 2. Time consumption of different models in data pre-
processing, model inference and retrieval phases respectively.

4. CONCLUSION

In this paper, we propose to combine local feature matching
and two-stage feature retrieval for efficient CSI of short music
queries. A new loss termed LAL is designed to optimize the
similarity measurement between songs with different length.
Experimental results show that ByteCover3 outperforms all
benchmark models on three synthetic datasets for short-query
CSI, while being highly efficient in local embedding extrac-
tion and hierarchical retrieval. For future work, we are cur-
rently studying to apply ByteCover3 to other real-world ap-
plications such as set list identification, music matching with
accurate timestamp and humming recognition.

5. REFERENCES

[1] Zhesong Yu, Xiaoshuo Xu, Xiaoou Chen, and Deshun
Yang, “Temporal pyramid pooling convolutional neural
network for cover song identification,” in Proceedings
of the 28th International Joint Conference on Artificial
Intelligence, 2019, pp. 4846–4852.

[2] Z. Yu, X. Xu, X. Chen, and D. Yang, “Learning a rep-
resentation for cover song identification using convo-
lutional neural network,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 541–545.

[3] Xiaoshuo Xu, Xiaoou Chen, and Deshun Yang, “Key-
invariant convolutional neural network toward efficient
cover song identification,” in IEEE International Con-
ference on Multimedia and Expo, 2018, pp. 1–6.

[4] F. Yesiler, J. Serrà, and E. Gómez, “Accurate and scal-
able version identification using musically-motivated
embeddings,” in Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), 2020, pp.
21–25.

[5] Xingjian Du, Zhesong Yu, Bilei Zhu, Xiaoou Chen, and
Zejun Ma, “Bytecover: Cover song identification via
multi-loss training,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 551–555.

[6] Xingjian Du, Ke Chen, Zijie Wang, Bilei Zhu, and Zejun
Ma, “Bytecover2: Towards dimensionality reduction of
latent embedding for efficient cover song identification,”
in ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 616–620.

[7] Shichao Hu, Bin Zhang, Jinhong Lu, Yiliang Jiang,
Wucheng Wang, Lingcheng Kong, Weifeng Zhao, and
Tao Jiang, “Wideresnet with joint representation learn-
ing and data augmentation for cover song identifica-
tion,” 2022.

[8] Meinard Müller, Frank Kurth, and Michael Clausen,
“Audio matching via chroma-based statistical features.,”
in International Society for Music Information Retrieval
Conference, 2005.

[9] Michael Casey, Christophe Rhodes, and Malcolm
Slaney, “Analysis of minimum distances in high-
dimensional musical spaces,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 16, no. 5,
pp. 1015–1028, 2008.

[10] Peter Grosche and Meinard Müller, “Toward charac-
teristic audio shingles for efficient cross-version mu-
sic retrieval,” in 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2012, pp. 473–476.

[11] Zafar Rafii, Bob Coover, and Jinyu Han, “An audio fin-
gerprinting system for live version identification using
image processing techniques,” in 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2014, pp. 644–648.

[12] Kang Cai, Deshun Yang, and Xiaoou Chen, “Two-layer
large-scale cover song identification system based on
music structure segmentation,” in 2016 IEEE 18th In-
ternational Workshop on Multimedia Signal Processing
(MMSP). IEEE, 2016, pp. 1–6.

[13] Frank Zalkow, Julian Brandner, and Meinard Müller,
“Efficient retrieval of music recordings using graph-
based index structures,” Signals, vol. 2, no. 2, pp. 336–
352, 2021.

[14] Guillaume Doras and Geoffroy Peeters, “Cover detec-
tion using dominant melody embeddings,” in Proceed-
ings of the 20th International Society for Music Informa-
tion Retrieval Conference, ISMIR 2019, 2019, pp. 107–
114.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. 2016, pp. 770–778, IEEE Com-
puter Society.

[16] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei, “Cir-
cle loss: A unified perspective of pair similarity opti-
mization,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp.
6398–6407.

[17] Yu A Malkov and Dmitry A Yashunin, “Efficient and
robust approximate nearest neighbor search using hier-
archical navigable small world graphs,” IEEE transac-
tions on pattern analysis and machine intelligence, vol.
42, no. 4, pp. 824–836, 2018.

[18] D. P. W. Ellis and G. E. Poliner, “Identifying ‘cover
songs’ with chroma features and dynamic programming
beat tracking,” in Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), 2007,
vol. IV, pp. 1429–1432.

[19] Furkan Yesiler, Joan Serrà, and Emilia Gómez, “Less
is more: Faster and better music version identification
with embedding distillation,” in Proc. of the Int. Soc.
for Music Information Retrieval Conf. (ISMIR), 2020.

	1 Introduction
	2 ByteCover3
	2.1 Local Feature Extraction
	2.2 The Local Alignment Loss
	2.3 Two-Stage Feature Retrieval

	3 Experiments
	3.1 Evaluation Settings and Training Details
	3.2 Comparison on Performance and Efficiency

	4 Conclusion
	5 References

