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ABSTRACT

Deep neural network based speech enhancement approaches
aim to learn a noisy-to-clean transformation using a su-
pervised learning paradigm. However, such a trained-well
transformation is vulnerable to unseen noises that are not
included in training set. In this work, we focus on the unsu-
pervised noise adaptation problem in speech enhancement,
where the ground truth of target domain data is completely
unavailable. Specifically, we propose a generative adversarial
network based method to efficiently learn a converse clean-
to-noisy transformation using a few minutes of unpaired
target domain data. Then this transformation is utilized to
generate sufficient simulated data for domain adaptation of
the enhancement model. Experimental results show that our
method effectively mitigates the domain mismatch between
training and test sets, and surpasses the best baseline by a
large margin.

Index Terms— Speech enhancement, generative adver-
sarial network, unsupervised domain adaptation

1. INTRODUCTION

Recent advances of deep learning have brought remarkable
progress to speech enhancement technique [1–3]. Gener-
ally, diverse deep neural networks are designed to convert
the noisy speech input to enhanced signal, where the parallel
clean speech is served as ground truth to provide supervised
information [4, 5]. However, such a data-driven learning
paradigm suffers from the mismatch between training and
test data distributions: we usually prepare various types of
noise in the training set for generalization of enhancement,
while the noise types in test set are not always included in the
training set [6]. These unseen noises are not applicable for the
trained model that only learns the noisy-to-clean transforma-
tion from training data, thus resulting in limited enhancement
performance [7].

This training-testing difference is generally called domain
mismatch in speech enhancement. To address this issue, un-
supervised domain adaptation techniques have been widely
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introduced to adjust the SE model to unseen noise distribu-
tion [8]. It is noted that the “unsupervised” denotes that labels
of target domain data are completely unavailable. Mainstream
unsupervised noise adaptation methods are summarized into
2 categories: learning the alignment of domain-invariant fea-
tures [9,10] and adversarial training [11,12], where a discrim-
inator is employed as a domain classifier. Despite of effec-
tiveness, we argue that such methods are limited in exploring
more general representations while failing to efficiently uti-
lize the relationship between source and target domain.

In this paper, we propose a data simulation-based method
(UNA-GAN) to handle unsupervised noise adaptation. Dif-
ferent from typical adversarial training, the UNA-GAN aims
to learn a clean-to-noisy transformation that directly converts
clean speech to noisy speech in target domain. Since clean
signal has negligible domain shift [6], it precisely serves as
ground-truth signal to supervise the generated noisy speech
with a similar distribution of target domain speech. When
such a transformation is trained well, a large amount of sim-
ulated parallel dataset is available to finetune the SE model,
which adapts it to target domain data.

The main superiority of UNA-GAN is summarized as fol-
lows: (1) High data efficiency. Only several minutes of un-
labeled target domain noisy data is required to learn noise
distribution in spectrogram, which is simply implemented in
practical conditions. (2) Unpaired training examples. The
clean-to-noisy transformation can be acquired by the train-
ing pairs with mismatched utterances, as the target noise is
viewed as primary simulation objective. The intensive exper-
iments demonstrate that the proposed UNA-GAN is able to
simulate near-authentic noisy speech and achieves effective
noise adaptation to target domain. Furthermore, UNA-GAN
surpasses other unsupervised domain adaptation baselines by
a large margin in terms of evaluation metrics, even in face of
large domain mismatch and low SNR conditions.

2. UNA-GAN METHOD

In this section, we first illustrate the research problem of
unsupervised noise adaptation and context notations. Then
we introduce the proposed UNA-GAN method that consists
of a data simulation part and a model adaptation part. The
overview structure of UNA-GAN is shown in Fig. 1.
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Fig. 1: The overview of UNA-GAN. The module with a dashed box is trainable, while that with a solid box is fixed.

2.1. Problem Setting

Consider a source domain S with paired noisy-clean data
(XS , Y S) = {(xSi , ySi )}

NS
i=1, where xsi and ysi respectively

denote the noisy speech from source domain and its cor-
responding ground-truth clean speech. Unsupervised noise
adaptation assumes that some noisy data XT = {xTi }

NT
i=1

from another target domain T is unlabeled. Our goal is to
find a noisy-to-clean transformation FT

se for target domain
data that predict the clean speech label {yi}NT

i=1, based on the
knowledge FS

se learned from source domain.
We denote the amount of source domain and target do-

main as NS and NT . In practice, NS is much larger than NT ,
and the speech examples of two domains are unpaired. Due
to domain mismatch, the performance of learned FT

se would
dramatically degrade when predicting Y T from XT .

2.2. Data Simulation for Target Domain

Given noisy speech XT from target domain, the objective of
data simulation is to learn a domain transformation FS∼T

gen that
mimics the distribution of XT from clean speech Y S . To this
end, we employ a GAN-based structure, as shown in Fig 1,
where the training examples {Y S

i , XT
i }

NT
i=1 are limited and

not required to be paired.
Generator and Discriminator. Generator G is designed to
map the clean magnitude to simulated noisy magnitude. As
shown in Fig. 1, it contains symmetrical 2-D convolutional
layers with kernel 3×3 for down-sampling and up-sampling,
respectively. Among them, we repeat an ResNet block [13]
for n times to learn deep representations, and each block
consists of two convolutional layers with the kernel size of
3×3 followed by one dropout layer. Then we repeat a self-
attention layer [14] for k times, which is designed to catch
global information of utterance. In general, that simulator
aims to integrate target noisy features into clean magnitude
without any change in shape.

Discriminator D is employed to distinguish where the in-
put magnitude come from (i.e., simulated or real). We re-
peat five 2-D convolutional layers with the kernel size of 4×4
followed by the LeakyReLU activation function. For down-

sampling, the stride takes 2×2 for the first three convolutional
layers and 1×1 for the last two convolutional layers. During
training, the adversarial loss [15] is defined as:

Lgan(G,D,X, Y ) = Ex∼XT logD(x)+Ey∼Y S log(1−D(G(y)))
(1)

By minimizing this loss, simulated noisy magnitude learns
to be visually like the real noisy magnitude of target domain.
In this imitation process, the human speech is viewed as in-
valid information, as the discriminator mainly distinguishes
magnitudes in terms of the distribution of background noises.
Contrastive learning. In order to confuse the discrimina-
tor, the generator is diligently learned to incorporate similar
noise into clean magnitude. However, it might result in over-
simulation that overwrites too much useful content. To ad-
dress it, we employ contrastive learning to maximize the mu-
tual information [16] between clean magnitude and simulated
noisy magnitude as they are paired.

As shown in Fig. 1, we first sample 256 patches {ẑi}256i=1 in
simulated noisy magnitude as query and select its correspond-
ing patches z in clean magnitude. The corresponding pair
of patches in the same places are viewed as positive exam-
ples (ẑi, zi), while other mismatch pairs (ẑi, zj) are viewed
as negative examples. Such selected patches are reshaped via
two linear layers with 256 units followed by the ReLU acti-
vation [17]. Finally, we calculate the cross-entropy loss using
the positive and negative training examples as follows:

Lcl(G,Y ) =

I∑
i=1

− log

[
e(ẑ

i·zi/τ)

e(ẑi·zi/τ) +
∑J
j=1 e

(ẑi·zj/τ)

]
(2)

Besides the input magnitude, we repeat the patch-sampling
operation in feature layers for contrastive learning. To this
end, the generator is reused that takes simulated noisy magni-
tude as input. We select further 4 layers in generator, which
are the two down-sampling convolutional layers, and the first
and the medium residual block. Consequently, the total loss
function Luna can be formulated as:

Luna = Lgan(G,D,X, Y ) + αLcl(G,Y ) + βLcl(G,X) (3)

where Lcl(G,X) calculates the same contrastive loss based
on noisy data of target domain, which is incorporated to pre-
vent the generator from making unnecessary changes [18].



2.3. Model Adaptation

We now introduce the mask-based SE model and adaptation
strategy using UNA-GAN.
Model structure. As shown in Fig. 1, the SE model first
employ a 1-D convolutional layer as encoder, which covert
time domain signal to hidden features. Then we employ TCN
blocks with same structure of Conv-TasNet [19], which con-
sists of dilatation convolutional layer [14] and two 1-D con-
volutional layers. In order to expand the receptive field, we
repeat the TCN blocks for m times with increasing dilation
factors 2m−1. The output of final TCN blocks serves as mask
that multiplies the output of encoder, which is expected to
remove the noise to obtain enhanced feature. Finally, the en-
hanced feature is converted back to time domain signal by a
1-D convolutional decoder.
Adaptation strategy. We first train a baseline SE model
FS
se with dataset from source domain {XS

i , Y
S
i }

NS
i=1. To this

end, a multi-scale scale invariant signal-to-distortion ratio (SI-
SDR) [19] loss is calculated as following:

Lse = 10 log10(
‖ 〈ŝ,s〉〈s,s〉s‖

2

‖ 〈ŝ,s〉〈s,s〉s− ŝ‖2
) (4)

where the ŝ and s respectively stand for enhanced time do-
main signal and clean ground-truth.

Given limited {XT
i }

NT
i=1 from target domain, the same

amount of clean speech {Y S
i }

NT
i=1 are randomly sampled

from {Y S
i }

NS
i=1. Then we train the UNA-GAN with unpaired

dataset {Y S
i , XT

i }
NT
i=1 using Luna in Eq. (3). After train-

ing, the trained-well generator is utilized as domain converter
FS∼T
gen from Y S toXT . Since the data amount of clean speech
NS is usually abundant, a large dataset can be simulated with
paired {XTsim

i , Y S
i }

NS
i=1. It is noted that the domain shift

of clean speech is negligible, therefore, {XTsim
i , Y S

i }
NS
i=1

can be approximately viewed as {XTsim
i , Y T

i }
NS
i=1, which is

subsequently utilized to finetune SE model using Lse.

3. EXPERIMENT

3.1. Dataset

We evaluate our method on two datasets: Voice Bank-
DEMAND [4] and TIMIT [20]. Our approach does not
rely on additional data information such as domain labels.
VoiceBank The training set (source domain) contains NS =
11572 noisy utterances from 28 speakers and is mixed by 10
different types with four SNR levels (0, 5, 10, and 15 dB) at a
sampling rate of 16 kHz, as well as their corresponding clean
utterances. The test set (target domain) contains NT = 824
noisy utterances with 5 types of unseen noise in SNR levels
(2.5, 7.5, 12.5, and 17.5 dB).
TIMIT. To evaluate the proposed method in serious domain
mismatch and low SNR conditions, we use clean utterances

from TIMIT to customize the source and target samples. The
training set contains 576 utterances, contributed by 48 male
and 24 female speakers from 8 dialect regions. These clean
utterances are mixed with 5 stationary noise types (car, en-
gine, pink, wind, and cabin) at 4 SNR levels (-6, 0, 6, and 12
dB), amounting to 11520 noisy utterances, to be the paired
data from source domain {XS

i , Y
S
i }

NS
i=1 with NS = 11520.

For the target domain, we employ the 192 clean utterances
from test set, which were subsequently mingled with one of
the 2 non-stationary noise types (helicopter, baby-cry) under
5 SNRs (-6, -3, 0, 3 and 6 dB) as target input {xTi }

Nt
i=1 with

NT = 576. The choice of noise types for the source and
target domain was to let the learning algorithms adapt from
distinguished environments in the real world.

3.2. Training and Evaluation

Configuration. For UNA-GAN, the magnitudes are all cut
into segments with the dimension of 129 × 128. The ResNet
block is repeated for 9 times, so the first and fifth blocks are
selected for contrastive learning. The self-attention layers are
repeated 3 times. In Eq. (3), α and β are all set as 1. For SE
model, the TCN blocks are stacked 4 times. The initial learn-
ing rates for UNA-GAN and SE model are respectively 0.002
and 0.001, and both networks are optimized by the Adam al-
gorithm [21].

Metric. We employ perceptual evaluation of speech qual-
ity (PESQ) [22] as main metric to evaluate the performance
of SE model. Furthermore, we report prediction of the sig-
nal distortion (CSIG), prediction of the background intrusive-
ness (CBAK), and prediction of the overall speech quality
(COVL) [23] for comparison with other works. For all met-
rics, higher scores mean better performance.

3.3. Reference Baseline

To evaluate the effectiveness of the proposed UNA-GAN, we
built 4 baselines for comparison. It is worthy noted that NAT-
SE and DAT require the domain label of noise during training,
thus is considered as weakly supervised method.

Vanilla-SE trains the SE model (right of Fig. 1) only using
source domain data without any adaptation.

NAT-SE [7] learns disentangled features by a further discrim-
inator module, which is trained on the VoiceBank dataset.

DAT [12] introduces the domain adversarial training that uti-
lizes a domain classifier on TIMIT dataset.

Upper-bound trains the SE model using source domain and
then adapts it using labeled target domain data, which can be
viewed as upper-bound performance for noise adaptation.



Table 1: PESQ results of UNA-GAN with different amounts
of target domain utterances Nt.

ID System Nt
Noise type

Cafe Living Office Psquare Bus

1 Unprocessed - 1.49 1.61 2.53 1.74 2.48

2 Vanilla-SE 0 2.29 2.56 3.01 2.56 3.11

3
UNA-GAN

40 2.34 2.65 3.13 2.61 3.22
4 80 2.38 2.71 3.18 2.65 3.30
5 160 2.40 2.73 3.22 2.69 3.31

Table 2: Result on Voicebank-DEMAND. “D.L.” denotes
whether system requires domain labels during training.

ID System D.L. PESQ CSIG CBAK COVL

1 Unprocessed - 1.97 3.35 2.44 2.63

2 Vanilla-SE 7 2.67 3.93 3.29 3.30
3 NAT-SE 3 2.72 3.99 3.47 3.36
4 UNA-GAN 7 2.91 4.05 3.54 3.43

5 Upper-bound 7 2.95 4.11 3.59 3.52

4. RESULT AND ANALYSIS

4.1. Data requirement of target domain

To demonstrate the data efficiency of UNA-GAN, we first
evaluate the performance on Voicebank-DEMAND with dif-
ferent data amounts of target domain, which is often limited in
practical conditions. The main results for each unseen noise
category are shown in Table 2, where Nt denotes the num-
ber of utterances from target domain that randomly selected
from {xi}NT

t=1. The maximum of Nt is 160 (6.8 minutes).
We observe that UNA-GAN method achieves the noise adap-
tation when only 1.7 minutes of target domain data is avail-
able, which demonstrates the data efficiency. Furthermore,
the PESQ performance obviously benefits from the increase
in data amount for all noise types.

4.2. Result on Voicebank-DEMAND

We then report the results on Voicebank-DEMAND dataset
that adapt to 5 unseen noises using single SE model. System
3∼5 employs the same TCN-based SE model, while NAT-SE
requires domain labels of noises for adversarial training. We
observe that the proposed UNA-GAN surpasses other base-
lines by a large margin in terms of all metrics and achieves
comparable performance with the upper-bound system that is
finetuned by labeled test set.

4.3. Result on TIMIT

In the last experiment, we explore the effect of UNA-GAN in
face of larger domain mismatch and lower SNR levels. The

Table 3: PESQ results on TIMIT dataset with different SNRs.
“Avg” denotes the average of all SNR levels.

ID System D.L. Noise level, SNR =
-6 -3 0 3 6 Avg.

Noise type: Helicopter
1 Unprocessed 7 1.05 1.07 1.10 1.16 1.26 1.13 +0%
2 Vanilla-SE 7 1.06 1.09 1.18 1.28 1.44 1.21 +7.07%
3 DAT 3 1.15 1.20 1.27 1.52 1.78 1.38 +22.1%
4 UNA-GAN 7 1.21 1.32 1.55 1.78 2.08 1.59 +40.7%

Noise type: Baby-cry
5 Unprocessed 7 1.06 1.09 1.13 1.18 1.27 1.15 +0%
6 Vanilla-SE 7 1.07 1.09 1.15 1.22 1.41 1.19 +3.48%
7 DAT 3 1.31 1.50 1.62 1.80 2.13 1.67 +45.2%
8 UNA-GAN 7 1.40 1.57 1.74 1.96 2.21 1.78 +54.8%

PESQ results are shown in Table 3. It is noted that the UNA-
GAN only leverages 0dB target domain data (Nt=192) for
adaptation and testing in all SNR levels.

We observe that the Vanilla-SE losses effectiveness of
enhancement when directly test on unseen noises, especially
in low-SNR settings. Despite only simulating 0 dB data, the
PESQ performance of UNA-GAN increases obviously in all
SNR conditions. Furthermore, it respectively surpasses DAT
baseline by 15.2% and 6.6% for helicopter and baby-cry
noises on average.

To visualize the effect of UNA-GAN, we sample and draw
the clean, simulated, and real magnitudes in Fig 2. It is ob-
served that the simulated magnitude has learned the similar
distribution of helicopter noise in target domain. Specifically,
the simulated helicopter magnitude appears same horizontal
stripe (red box) and vertical bands with real magnitude from
target domain. Meanwhile, we also observe that some invalid
speech information of speaker has been retrained in simulated
magnitude (purple boxes), which is contributed by the multi-
layer contrastive learning.

(c) Real(b) Sim(a) Clean

Fig. 2: The magnitude of a sample (SI1039.wav). (a) is the
clean magnitude, (b) is the simulated magnitude by UNA-
GAN, and (c) is the noisy magnitude from target domain
(ground-truth), which is a 0 dB helicopter noisy utterance.

5. CONCLUSION

We address the unsupervised noise adaptation issue in speech
enhancement. The proposed UNA-GAN method learns a
clean-to-noisy transformation by several minutes of unpaired
data and then adapts SE model to target noise by simulated
data. Experimental results show that UNA-GAN effectively
increase SE performance in terms of evaluation metrics, even
in face of large domain mismatch and low-SNR conditions.
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