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ABSTRACT

For semantic-guided cross-view image translation, it is cru-
cial to learn where to sample pixels from the source view
image and where to reallocate them guided by the target
view semantic map, especially when there is little overlap
or drastic view difference between the source and target
images. Hence, one not only needs to encode the long-
range dependencies among pixels in both the source view
image and target view semantic map but also needs to trans-
late these learned dependencies. To this end, we propose
a novel generative adversarial network, PI-Trans, which
mainly consists of a novel Parallel-ConvMLP module and
an Implicit Transformation module at multiple semantic
levels. Extensive experimental results show that PI-Trans
achieves the best qualitative and quantitative performance
by a large margin compared to the state-of-the-art methods
on two challenging datasets. The source code is available
at https://github.com/Amazingren/PI-Trans.

Index Terms— Cross-view Image Translation, GANs,
MLP

1. INTRODUCTION

Semantic-guided cross-view image translation aims at gen-
erating images from a source view to a different target view
given a target view semantic map as the guidance. In particu-
lar, we focus on the cases of translating from the aerial-view
to the ground-view for photo-realistic urban scene synthesis,
which can be beneficial for geo-localization [1–7] or civil en-
gineering design with the semantic map either being extracted
from another modality or being designed [8–11].

However, translating images from two distinct views with
little overlap is a challenging problem, as the area coverage,
the appearances of objects, and their geometrical arrangement
in the ground-view image can be extremely different from
the aerial-view image (see the comparison between the 1st
column and the 3rd column in Fig. 1). Early works usu-
ally adopt the convolutional neural networks (CNN) based
encoder-decoder structure [9, 12] with the generative adver-
sarial networks (GANs) [13,14]. However, such methodology
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Fig. 1: Examples of the cross-view translation with differ-
ent methods. The aerial-view image (column 1) and semantic
map (column 2) serve as the inputs. Direct translation (col-
umn 3) generates the target ground view without the guid-
ance of the semantic map. CrossMLP [15] (column 4) is the
most recent state-of-the-art method, yet its results still contain
some obvious artifacts marked with dotted red boxes. Our PI-
Trans (column 5) generates results that are most similar to the
ground-truth images (column 6).

suffers from satisfactory results when there exists little over-
lap between two views since the CNN-based methods strug-
gle to establish the long-range relation due to the design na-
ture of the convolutional kernels.

Usually, it’s not easy to generate a photo-realistic image
when just following the direct translation setting (the direct
translation means that the generated ground-view image I

′

g is
directly generated from the aerial view image Ia without the
assistance of the semantic map Sg , see the direct translation
branch in Fig. 2). To improve the quality of the cross-view
translation task, previous methods [10,15,16] took the target-
view semantic map into consideration.

Though very insightful explorations had been performed,
we find there are still some limitations that hinder the im-
provement of the quality of the generated images: (i) The
pure CNN based methods (i.e., [10,16]) are difficult to estab-
lish the long-range relation due to its natural physical design
of the convolutional kernels. (ii) The heavy fully-connected
layers relied method [15] is subject to be insufficient for mod-
eling the fine spatial information. (iii) All these three state-
of-the-art methods mentioned above missed utilizing the very
crucial but the easiest to be ignored direct translation infor-
mation (the direct translation branch is shown in Fig. 2).
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Fig. 2: Architecture of our PI-Trans. The proposed parallel-ConvMLP module depicted in blue is assembled in two en-
coder branches for effectively modeling both the long-range relation and the fine spatial information, the proposed implicit-
transformation module that depicted in yellow is used in two decoder branches for transforming the source-view information to
target-view at multiple feature levels. ⊕ denotes the element-wise addition. I

′

g is the output of the direct translation branch, I
′′

g

is the final output of the proposed PI-Trans.

To this end, we propose the Parallel-ConvMLP and
Implicit-Transformation based GAN (PI-Trans), and its struc-
ture is shown in Fig. 2, which is mainly built with two encoder
branches and two decoder branches. In the encoder branches,
we propose the novel parallel-ConvMLP module that can
effectively manage both the latent long-range relation and the
detailed spatial information with its unique spatial-channel
MLP in a novel parallel manner instead of the sequential
order like [15, 17]. Besides, the input feature is uniformly
split into two chunks, and each is fed to its corresponding
MLP. By doing so, we implicitly introduced channel shuf-
fling, thus being beneficial for long-range reasoning. In the
decoder branches, unlike previous methods that just take the
combined feature from the source-view image and the target-
view semantic map for recovering the final target-view image,
we, for the first time, add the direct translation information
(for providing reasonable color distribution) via the proposed
implicit-transformation modules at multiple feature levels.

To summarize, our contributions are listed as follows:
• We propose PI-Trans, which uses the transformation infor-

mation that is directly learned from the source view to the
target-view images to boost the performance.

• For modeling the long-range relation and the fine spatial
information, we propose a novel parallel-ConvMLP module
with an effective combination of CNN and MLP. Besides,
an implicit-transformation module that conducts attention-
based fusion at multiple feature levels is also proposed for
a better translation result.

• Experimental results show that our method generates
photo-realistic target-view ground images, scoring new
state-of-the-art numerical results on two challenging datasets.

2. THE PROPOSED PI-TRANS

The architecture of our PI-Trans is shown in Fig. 2, which
consists of two encoder branches and two decoder branches.

PI-Trans takes as input both the source-view aerial image
Ia∈R3×H×W and the conditional target-view ground seman-
tic map Sg∈R3×H×W at two encoder branches. First Ia and
Sg are processed by two encoders to semantic L1 level with
dimension (CL1, H/2, W/2), where C, H , and W mean the
channel number, height, width, respectively. We then use the
proposed parallel-ConvMLP module (Sec. 2.1) to further en-
code theL1 level feature toL2 (2CL1,H/4,W/4), L3 (4CL1,
H/8, W/8), and L4 (8CL1, H/16, W/16) semantic levels.
Unlike previous methods [15, 16] which generate the final
target-view ground image I

′′

g only based on the combined
feature coming from Ia and Sg at L4 level (i.e., FL4

V ). We
exploit another pathway, the direct translation branch, that di-
rectly produces a ground image I

′

g at the target view from the
source view, without interacting with the conditional seman-
tic map. Then we use this direct transformation information
accompanied with the semantic feature at the lower target
pathway via our proposed implicit-transformation (Sec. 2.2)
at 3 semantic levels (L2, L3, and L4).

2.1. Parallel-ConvMLP Module

Given one pixel, it’s extremely significant for the cross-view
image translation task to understand which other pixels are
related to it, or which object it belongs to. However, CNN
kernels (Fig. 3(a)) are not good at modeling the long-range
relation because of the locality of the fixed kernels. There-
fore, the MLP-based methods MLP-Mixer [17] (Fig. 3(b)),
ConvMLP [18] (Fig. 3(c)), and CrossMLP [15] (Fig. 3(d))
were proposed to ease this problem. However, both MLP-
Mixer and CrossMLP are computationally heavy and are not
subject to modeling the fine spatial patterns. ConvMLP [18]
tackles this problem by combining a depth-wise convolution
between two channel-wise MLPs. Yet, its performance is still
unsatisfactory for the cross-view translation task (See Sec. 3).

To explore the balance between the long-range relation



Fig. 3: Illustrations of four comparison methods i.e., (a)
Basic convolutional layers, (b) MLP-Mixer [17], (c) Con-
vMLP [18], (d) CrossMLP module [15] and (e) our parallel-
ConvMLP. The symbols ⊕ and c© denote the element-wise
addition and channel-wise concatenation.

and the spatial pattern modeling, we propose a parallel-
ConvMLP module, which is shown in Fig. 3(e). Given an in-
put feature Xin in dimension (c, h, w), it firstly goes through
two convolutional layers:

X
′
= Conv(downConv(Xin)), (1)

The first (downConv(·)) is a strided convolutional layer while
the second (Conv(·)) is a normal one. X

′
is the output in

dimension (2c, h/2, w/2). This operation ensures the latent
appearance and the local spatial pattern can be well estab-
lished. Different from previous methods that simultaneously
model the long-range relation and the spatial information in
a sequential way [15, 17], we decouple the problem by divid-
ing X

′
along channel dimension into two parts based on the

parity of the channel index:

Xc = X
′

2i−1, Xs = X
′

2i, for i = 1, 2, 3, · · · , 2c. (2)

After that, we first flatten Xc and Xs from (c, h/2, w/2)
to (n, c) and (c, n), forming Fc and Fs (n=w/2×h/2). Then
two fully-connected MLPs (channel-wise and spatial-wise)
are applied to Fc and Fs. And each MLP block contains two
fully-connected layers and a nonlinear GELU [19] activation
function. These operations are formulated as follows:

F
′

c = W c
2σ(W

c
1 (Fc)∗,i), for i = 1, 2, 3, · · · , c,

F
′

s = W s
2 σ(W

s
1 (Fs)∗,j), for j = 1, 2, 3, · · · , n,

(3)

where W c
1 and W c

2 denote the learnable weights for the
channel-wise MLP, while W s

1 and W s
2 are for the spatial-

wise MLP. σ(·) means the GELU activation function. Then
F

′

c and F
′

s are reshaped back to (c, h, w) and concatenated
together. Finally, a skip-connection is used to add the con-
catenated feature to X

′
:

Xout = X
′
+Cat(Reshape(F

′

c),Reshape(F
′

s)), (4)

where Cat(·) and Reshape(·) denote the concatenate and re-
shape operations.

2.2. Implicit Transformation Module

Since the performance for the direct translation (Ia → I
′

g)
is in a bad condition (see I

′

g in Fig. 2 or the third column

in Fig. 1). Hence, previous methods SelectionGAN [16] and
CrossMLP [15] ignored the direct translation branch and just
used the combined feature FL4

V . Instead, we explore how
this kind of latent information within the direct transforma-
tion branch may impact the overall generation performance
since it provides a reasonable color distribution though bad in
spatial structure. Therefor, we propose the implicit transfor-
mation module (the yellow blocks in Fig. 2), which conducts
the fusion at multiple semantic levels.

There are three implicit transformation modules atL4,L3,
and L2 levels, each of them takes as input three kinds of in-
formation, i.e., the ground semantic map feature FQ, the di-
rectly translated feature FK , and an extra input feature FV .
In Fig. 2, we visualize these three kinds of information flows
in green, red, and black colors, respectively. The main idea
behind the proposed implicit transformation module is to en-
able the transformed feature FK to provide useful latent ap-
pearance or color information for generation. More specifi-
cally, we exploit the semantic map feature FQ and the directly
transformed feature FK to construct an attention map with a
softmax function. This operation uses the target-view seman-
tic feature FQ to select the most important information in the
directly transformed feature FK , which can also be seen as
a learned latent transformation pattern. This attention map is
then used to activate the most relevant feature in FV , achiev-
ing the feature-level implicit transformation guided by the at-
tention map. Finally, we exploit a skip-connection to maintain
the result in the last module. And we take the L3 level mod-
ule for a detailed description. Given three inputs FL3

Q , FL3

K ,
and FL3

V , we first reshape them from (b, c, h, w) to (b, c/4, n),
(b, c/4, n), and (b, c, n). Here n=h×w. Then we adopt the
residual attention mechanism to learn the fused feature:

FL3
out = FL3

V + softmax(FL3

Q (FL3

K )T )FL3

V , (5)

where FL3
out denotes the output. It serves as the value feature

for the implicit translation module at the next semantic level.

2.3. Discriminator and Optimization Objective

Discriminator. Following [10] and [16], the discriminator in
the direct transformation branch takes the real image Ia and
the generated image I

′

g or the ground-truth image Ig as input.
While for the lower decoder branch, it accepts the real image
Ia and the generated image I

′′

g or the real image Ig as input.
Optimization Objective. The full optimization objective is:

min
{G}

max
{D}
L = λ1L1 + λcGANLcGAN + Ltv + λperLper,

(6)
where L1 denotes the pixel-level loss, LcGAN denotes the
adversarial loss, which is used for distinguishing the synthe-
sized images pairs (Ia, I

′′

g ) from the real image pairs (Ia, Ig).
Ltv is the total variation regularization [20] and Lper is the
perception loss which is commonly used for the generative



Table 1: Quantitative results on the Dayton dataset.
Method

Accuracy (%) ↑ Inception Score ↑
KL ↓ LPIPS ↓

Top-1 Top-5 all Top-1 Top-5
Pix2pix [26] 6.80∗ 9.15∗ 23.55∗ 27.00∗ 2.8515∗ 1.9342∗ 2.9083∗ 38.26 ± 1.88∗ -
X-Fork [10] 30.00∗ 48.68∗ 61.57∗ 78.84∗ 3.0720∗ 2.2402∗ 3.0932∗ 6.00 ± 1.28∗ -
X-Seq [10] 30.16∗ 49.85∗ 62.59∗ 80.70 2.7384∗ 2.1304∗ 2.7674∗ 15.93 ± 1.32∗ -

SelectionGAN [16] 42.11 68.12 77.74 92.89 3.0613 2.2707 3.1336 2.7406 ± 0.8613 0.7961
CrossMLP [15] 47.65 78.59 80.04 94.64 3.3466 2.2941 3.3783 2.3301 ± 0.8014 0.3750
PI-Trans (Ours) 49.48 79.98 82.45 96.52 3.6713 2.4918 3.6824 2.0790 ± 0.6509 0.3656

Real Data - - - - 3.8326 2.5781 3.9163 - -

Table 2: Quantitative results on the CVUSA dataset.
Method

Accuracy (%) ↑ Inception Score ↑
KL ↓ LPIPS ↓

Top-1 Top-5 all Top-1 Top-5
Pix2pix [26] 7.33∗ 9.25∗ 25.81∗ 32.67∗ 3.2771∗ 2.2219∗ 3.4312∗ 59.81 ± 2.12∗ -
X-Fork [10] 20.58∗ 31.24∗ 50.51∗ 63.66∗ 3.4432∗ 2.5447∗ 3.5567∗ 11.71 ± 1.55∗ -
X-Seq [10] 15.98∗ 24.14∗ 42.91∗ 54.41 3.8151∗ 2.6738∗ 4.0077∗ 15.52 ± 1.73∗ -

SelectionGAN [16] 41.52 65.61 74.32 89.66 3.8074 2.7181 3.9197 2.9603 ± 0.9714 0.4122
CrossMLP [15] 44.96 69.96 76.98 91.91 3.8392 2.8035 3.9757 2.6903 ± 0.9432 0.3974
PI-Trans (Ours) 47.87 74.57 80.36 94.68 4.1701 2.9878 4.2071 2.2363 ± 0.7759 0.3784

Real Data - - - - 4.8749 3.3053 4.9938 - -

Fig. 4: Qualitative results of different methods on Dayton.

tasks [20,21] to make the produced images look more natural
and smooth. We set λ1, λcGAN , and λper to 100, 5, and 50,
respectively.

3. EXPERIMENTS

Datasets and Evaluation Metrics. We conduct experiments
on two challenging public datasets, i.e., Dayton [22], and
CVUSA [23], following the similar settings as in [10,16]. We
follow a similar evaluation protocol as in [10, 16] to measure
the quality of the generated ground images.
Implementation Details. Encoders are the same for both Ia
and Sg , and each consists of one two-strided down-sampling
convolutional layer (followed by batch normalization and
ReLU activation function) and two one-strided ones (filter
numbers: 16, 32, 32) to generate the L1 level features. Given
an input in dimension (b, 3, 256, 256), the output is in dimen-
sion (b, 32, 128, 128), where b denotes the batch size. Each
Up-sampling block (depicted in purple in Fig. 2 are used in
the decoder branches) consists of one nearest up-sampling
layer, two one-strided convolutional layers (kernel size: 3, 3).
Decoder consists of three one-strided convolutional layers
(kernel size: 3, 3, and padding: 1, 1) and 1 Tanh activation
function.
Training Settings. Following [10] and [16], Adam [24] is
used as the solver with momentum terms β1 = 0.5 and β2 =
0.999. The initial learning rate for is set to 0.0002. In addi-
tion, we train the proposed PI-Trans 35 epochs on the Dayton
dataset and 30 epochs on the CVUSA dataset in an end-to-end
manner. The code is implemented in PyTorch [25].
Experimental Results. PI-Trans is compared with five state-
of-the-art methods, including Pix2pix [26], X-Fork [10],

Fig. 5: Qualitative results of different methods on CVUSA.
Table 3: Ablation results on Dayton-Ablation.

Method
Accuracy (%) ↑ Inception Score ↑

KL ↓ LPIPS ↓
Top-1 Top-5 all Top-1 Top-5

A: Basic Conv 43.61 71.85 76.56 91.55 2.8132 2.1399 2.8036 2.9343 ± 0.9248 0.4392
B: MLP-Mixer 44.36 72.08 77.57 92.44 3.3207 2.2852 3.3282 2.5810 ± 0.8489 0.3926
C: ConvMLP 42.75 69.35 76.49 89.82 3.2442 2.2229 3.2580 2.8470 ± 0.8619 0.4093
D: CrossMLP 43.41 70.73 76.84 91.77 3.3241 2.2580 3.3340 2.7250 ± 0.8703 0.3987
E: P-ConvMLP 45.63 73.04 80.02 92.62 3.2573 2.2742 3.2957 2.4877 ± 0.8014 0.3917
F: PI-Trans 49.90 79.27 82.83 95.20 3.3975 2.3461 3.4111 2.0856 ± 0.7045 0.3828
Real Data - - - - 3.8307 2.5749 3.9159 - -

X-Seq [10], SelectionGAN [16], and CrossMLP [15]. Ta-
ble 1 and Table 2 show the numerical results on Dayton and
CVUSA. PI-Trans achieves the best performance on all the
metrics with a significant improvement. The qualitative re-
sults are shown in Fig. 4 and Fig. 5 for Dayton and CVUSA,
respectively. The target-view ground images generated by
our PI-Trans are more natural and sharper.
Ablation Study. To validate the effectiveness of each pro-
posed module, we select 1/3 samples randomly from the
entire Dayton dataset, forming the Dayton-Ablation dataset.
Six baselines i.e., A (Basic Conv), B (MLP-Mixer), C (Con-
vMLP), D (CrossMLP), E (Parallel-ConvMLP), and F (PI-
Trans) are proposed. For baseline A, we only use the con-
volutional layers, and without the implicit transformation
modules. The output directly comes out from a combination
of the features between source-view image features and the
semantic map features. Baseline B, C, D, and E follow a
similar setting as baseline A, with the only difference in the
encoder branches. F is our full model. The results shown
in Table 3 demonstrate that both our Parallel-ConvMLP (E)
and implicit transformation (F) can boosts the quality of the
generated ground image by a large margin.

4. CONCLUSION

We propose a new PI-Trans for generating realistic cross-
view images. Significantly, the parallel-ConvMLP module is
designed for balancing the relationship between latent long-
range dependency modeling and spatial information mainte-
nance. The implicit transformation module we designed at
multiple semantic levels in this paper carefully takes care of
not only the target-view semantic map feature and the source-
view aerial image feature but also the direct translation infor-
mation that is usually ignored by previous methods. We vali-
date the effectiveness and advances of our proposed modules
over existing methods.
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