
ar
X

iv
:2

30
2.

12
30

5v
1

 [
cs

.I
T

]
 2

3
Fe

b
20

23

CODED MATRIX COMPUTATIONS FOR D2D-ENABLED

LINEARIZED FEDERATED LEARNING

Anindya Bijoy Das† Aditya Ramamoorthy⋆ David J. Love† Christopher G. Brinton†

†School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
⋆Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA

ABSTRACT

Federated learning (FL) is a popular technique for training a

global model on data distributed across client devices. Like

other distributed training techniques, FL is susceptible to

straggler (slower or failed) clients. Recent work has proposed

to address this through device-to-device (D2D) offloading,

which introduces privacy concerns. In this paper, we propose

a novel straggler-optimal approach for coded matrix computa-

tions which can significantly reduce the communication delay

and privacy issues introduced from D2D data transmissions in

FL. Moreover, our proposed approach leads to a considerable

improvement of the local computation speed when the gener-

ated data matrix is sparse. Numerical evaluations confirm the

superiority of our proposed method over baseline approaches.

Index Terms— Distributed Computing, Federated Learn-

ing, Stragglers, Heterogeneous Edge Computing, Privacy.

1. INTRODUCTION

Contemporary computing platforms are hard-pressed to sup-

port the growing demands for AI/ML model training at the

network edge. While advances in hardware serve as part of

the solution, the increasing complexity of data tasks and vol-

umes of data will continue impeding scalability. In this re-

gard, federated learning (FL) has become a popular technique

for training machine learning models in a distributed man-

ner [1–3]. In FL, the edge devices carry out the local com-

putations, and the server collects, aggregates and updates the

global model.

Recent approaches have looked at linearizing the training

operations in FL [1, 4]. This is advantageous as it opens the

possibility for coded matrix computing techniques that can

improve operating efficiency. Specifically, in distributed set-

tings like FL, the overall job execution time is often domi-

nated by slower (or failed) worker nodes, which are referred

to as stragglers. Recently, a number of coding theory tech-

niques [5–14] have been proposed to mitigate stragglers in

distributed matrix multiplications. A toy example [5] of such

a technique for computing ATx across three clients is to par-

tition A as A = [A0 | A1], and to assign them the job of

computing AT
0 x, AT

1 x and (A0 +A1)
T
x, respectively. In a

linearized FL setting, A ∈ R
t×r is the data matrix and x ∈ R

t

is the model parameter vector. While each client has half of

the total computational load, the server can recover ATx if

any two clients return their results, i.e., the system is resilient

to one straggler. If each of n clients computes 1/kA fraction

of the whole job of computing ATx, the number of strag-

glers that the system can be resilient to is upper bounded by

n− kA [7].

In contemporary edge computing systems, task offloading

via device-to-device (D2D) communications has also been

proposed for straggler mitigation. D2D-enabled FL has re-

cently been studied [2, 15, 16], but can add considerable com-

munication overhead as well as compromise data privacy. In

this work, we exploit matrix coding in linearized FL to mit-

igate these challenges. Our straggler-optimal matrix compu-

tation scheme reduces the communication delay significantly

compared to the techniques in [7, 9, 12]. Moreover, unlike

[7, 9, 12, 13, 17], our scheme allows a client to access a lim-

ited fraction of matrix A, and provides a considerable protec-

tion against information leakage. In addition, our scheme is

specifically suited to sparse matrices with a significant gain in

computation speed.

2. NETWORK AND LEARNING ARCHITECTURE

We consider a D2D-enabled FL architecture consisting of n =
kA + s clients, denoted as Wi for i = 0, 1, . . . , n − 1. The

first kA of them are active clients (responsible for both data

generation and local computation) and the next s < kA are

passive clients (responsible for local computation only).

Assume that the i-th device has local data (Di,yi), where

Di and yi are the block-rows of full system dataset (D,y).
Under a linear regression-based ML model, the global loss

function is quadratic, i.e., f(βℓ) = ||Dβℓ − y||2, where the

model parameter after iteration ℓ is obtained through gradient

methods as βℓ = βℓ−1 − µℓ∇βf(βℓ−1) and µℓ is the step-

size. Based on the form of ∇βf(βℓ), the FL local model up-

date at each device includes multiplying the local data matrix

Di with parameter βℓ. For this reason, recent work has also

investigated linearizing non-linear models for FL by lever-

aging kernel embedding techniques [1]. Thus, our aim is

to compute ATx – an arbitrary matrix operation during FL

training – in a distributed fashion such that the system is re-

http://arxiv.org/abs/2302.12305v1

Algorithm 1: Proposed scheme for distributed

matrix-vector multiplication

Input :Matrix Ai generated in active client i for

i = 0, 1, . . . , kA − 1, vector x, total n
clients including s < kA passive clients.

1 Set weight ωA = s+ 1 ;

2 Denote client i as Wi, for i = 0, 1, . . . , n− 1;

3 for i← 0 to kA − 1 do

4 Define Ti = {i+ 1, . . . , i+ ωA − 1} (mod kA);

5 Send Aj , where j ∈ Ti, from Wj to Wi;

6 Client Wi creates a random vector r of length kA,

computes Ãi =
∑

q∈Ti
rqAq and ÃT

i x;

7 end

8 for i← 0 to s− 1 do

9 Wi creates random vector r̃ of size kA, computes

ÃkA+i =
∑

q∈Ti
r̃qAq and sends to WkA+i;

10 Client WkA+i computes ÃT
kA+ix;

11 end

Output :The server recovers ATx from the returned

results by the fastest kA clients.

silient to s stragglers. Our assumption is that any active client

Wi generates a block-column of matrix A, denoted as Ai,

i = 0, 1, . . . , kA − 1, such that

A =
[

A0 A1 . . . AkA−1

]

. (1)

In our approach, every client is responsible to compute the

product of a coded submatrix (linear combinations of some

block-columns of A) and the vector x. Stragglers will arise

in practice from computing speed variations or failures expe-

rienced by the clients at particular times [8,17,18]. Now, simi-

lar to [15,16,19], we assume that there is a set of trusted neigh-

bor clients for every device to transmit its data via D2D com-

munications. The passive clients receive coded submatrices

only from active clients. Unlike the approaches in [1,3,4,20],

we assume that the server cannot access to any uncoded/coded

local data generated in the edge devices and is only responsi-

ble for transmission of vector x and for decoding ATx once

the fastest clients return the computed submatrix-vector prod-

ucts.

3. HOMOGENEOUS EDGE COMPUTING

Here we assume that each active client generates equal num-

ber of columns of A (i.e. all Ai’s have the same size in (1))

and all the clients are rated with the same computation speed.

In this scenario, we propose a distributed matrix-vector mul-

tiplication scheme in Alg. 1 which is resilient to any s strag-

glers.

The main idea is that any active client Wj generates Aj ,

for 0 ≤ j ≤ kA − 1 and sends it to another active client Wi,

if j = i+1, i+2, . . . , i+ωA− 1 (modulo kA). Here we set

ωA = s+1, thus, any data matrix Aj needs to be sent to only

ωA − 1 = s other clients. Then, active client Wj computes a

linear combination of Ai,Ai+1, . . . ,Ai+ωA−1 (indices mod-

ulo kA) where the coefficients are chosen randomly from a

continuous distribution. Next, active client Wi sends another

random linear combination of the same submatrices to Wi+kA

(a passive client), when i = 0, 1, . . . , s − 1. Note that all n
clients receive the vector x from the server. Now the job of

each client is to compute the product of their respective coded

submatrix and the vector x. Once the fastest kA clients finish

and send their computation results to the server, it decodes

ATx using the corresponding random coefficients. The fol-

lowing theorem establishes the resiliency of Alg. 1 to strag-

glers.

Theorem 1. Assume that a system has n clients including kA
active and s passive clients. If we assign the jobs according

to Alg. 1, we achieve resilience to any s = n− kA stragglers.

Proof. In order to recover ATx, according to (1), we need to

decode all kA vector unknowns, AT
0 x,A

T
1 x, . . . ,A

T
kA−1x;

we denote the set of these unknowns as B. Now we choose

an arbitrary set of kA clients each of which corresponds to an

equation in terms of ωA of those kA unknowns. Denoting the

set of kA equations as C, we have |B| = |C| = kA.

Now we consider a bipartite graph G = C ∪ B, where

any vertex (equation) in C is connected to some vertices (un-

knowns) in B which have participated in the corresponding

equation. Thus, each vertex in C has a neighborhood of cardi-

nality ωA in B. Our goal is to show that there exists a perfect

matching among the vertices of C and B. We argue this ac-

cording to Hall’s marriage theorem [21] for which we need to

show that for any C̄ ⊆ C, the cardinality of the neighbourhood

of C̄, denoted as N (C̄) ⊆ B, is at least as large as |C̄|. Thus,

for |C̄| = m ≤ kA, we need to show that |N (C̄)| ≥ m.

Case 1: First we consider the case that m ≤ 2s. We

assume that m = 2p, 2p − 1 where 1 ≤ p ≤ s. Now ac-

cording to Alg. 1, the participating unknowns are shifted in

a cyclic manner among the equations. If we choose any δ
clients out of the first kA clients (W0,W1,W2, . . . ,WkA−1),
according to the proof of cyclic scheme in Appendix C in

[8], the minimum number of total participating unknowns is

min(ωA + δ − 1, kA), where ωA = s+ 1. Now according to

Alg. 1, same unknowns participate in two different equations

corresponding to two different clients, Wj and WkA+j , where

j = 0, 1, . . . , s−1. Thus, for any |C̄| = m = 2p, 2p−1 ≤ 2s,

we have

|N (C̄)| ≥ min (ωA + ⌈m/2⌉ − 1, kA)

= min (ωA + p− 1, kA) = min (s+ p, kA) ≥ m.

Case 2: Now we consider the case where m = 2s + q,

1 ≤ q ≤ kA − 2s. We need to find the minimum number of

unknowns which participate in any set of m equations. Now,

the same unknowns participate in two different equations cor-

responding to two different clients, Wj and WkA+j , where

j = 0, 1, . . . , s − 1. Thus, the additional q equations corre-

spond to at least q additional unknowns until the total number

of participating unknowns is kA. Therefore, in this case

W0 W1 W2 W8 W9

A0 A1 A2 A8 A9

.

(a): Data generation among the active clients.

W0 W9 W10 W11

{A0,A1,A2} {A9,A0,A1}

.

{A0,A1,A2} {A1,A2,A3}

(b): Coded submatrix allocation among all the clients.

Fig. 1: (a) Data generation and (b) submatrix allocation for n = 12

clients according to Alg. 1 including kA = 10 active and s = 2 pas-

sive clients. Any {Aj ,Ak,Aℓ} indicates a random linear combina-

tion of the corresponding submatrices. Any Wi obtains a random lin-

ear combination of Ai,Ai+1 and Ai+2 (indices reduced mod 10).

|N (C̄)| ≥ min (ωA + ⌈2s/2⌉+ q − 1, kA)

= min (ωA + s+ q − 1, kA) = min (2s+ q, kA) ≥ m.

Thus, for any m ≤ kA (where |C̄| = m), we have shown that

|N (C̄)| ≥ |C̄|. So, there exists a perfect matching among the

vertices of C and B according to Hall’s marriage theorem.

Now we consider the largest matching where vertex ci ∈
C is matched to vertex bj ∈ B, which indicates that bj partic-

ipates in the equation corresponding to ci. Let us consider

a kA × kA system matrix where row i corresponds to the

equation associated to ci. Now we replace this row i by ej
which is a unit row-vector of length kA with j-th entry being

1, and 0 otherwise. Thus we have a kA × kA matrix where

each row has only one non-zero entry which is 1. Since we

have a perfect matching, this kA × kA matrix has only one

non-zero entry in every column. This is a permutation of the

identity matrix, and thus, is full rank. Since the matrix is full

rank for a choice of definite values, according to Schwartz-

Zippel lemma [22], it will be full rank for random choices

of non-zero entries. Thus, the server can recover all kA un-

knowns from any kA clients, hence the system is resilient to

any s = n− kA stragglers. �

Example 1. Consider a homogeneous system of kA = 10 ac-

tive clients and s = 2 passive clients. According to Alg. 1,

ωA = s+1 = 3, and client Wi (0 ≤ i ≤ 11) has a random lin-

ear combination of Ai,Ai+1 and Ai+2 (indices modulo10)
as shown in Fig. 1. Thus, according to Theorem 1, this sys-

tem is resilient to s = 2 stragglers. Note that our scheme

requires any active client to send its local data matrix to only

up to s + 1 = 3 other clients, thus involves a significantly

lower communication cost in comparison to the approaches

in [7, 9].

Remark 1. In comparison to [7,9,13], our proposed approach

is specifically suited to sparse data matrices, i.e., most of the

entries of A are zero. The approaches in [7, 9, 13] assign

dense linear combinations of the submatrices which can de-

stroy the inherent sparsity of A, leading to slower computa-

tion speed for the clients. On the other hand, our approach

assigns linear combinations of limited number of submatrices

which preserve the sparsity up to certain level that leads to

faster computation.

4. HETEROGENEOUS EDGE COMPUTING

In this section, we extend our approach in Alg. 1 to heteroge-

nous system where the clients may have different data gen-

eration capability and different computation speeds. We as-

sume that we have λ different types of devices in the system,

with client type j = 0, 1, . . . , λ − 1. Moreover, we assume

that any active client Wi generates αi = cijα columns of

data matrix A and any client Wi has a computation speed

βi = cijβ, where Wi is of client type j and cij ≥ 1 is an

integer. Thus, a higher cij indicates a “stronger” type client

Wi which can process at a cij times higher computation speed

than the “weakest” type device, where α is the number of the

assigned columns and β is the number of processed columns

per unit time in the “weakest” type device. Note that λ = 1
and all cij = 1 lead us to the homogeneous system discussed

in Sec. 3 where 0 ≤ i ≤ n− 1 and j = 0.

Now, we have n = kA+ s clients including kA active and

s passive clients in the heterogeneous system. Aligned to the

homogeneous system, we assume that the number of passive

clients of any type j is less than the number of active clients

of the same type. Next, without loss of generality, we sort

the indices of active clients in such a way so that, cij ≥ ckj
if i ≤ k, for 0 ≤ i, k ≤ kA − 1. We do the similar sorting

for the passive clients too so that cij ≥ ckj if i ≤ k, for

kA ≤ i, k ≤ n − 1. Now if a client Wi is of client type j,

it requires the same time to process cij ≥ 1 block-columns

(each consisting of α columns) of A as the “weakest” device

to process cij = 1 such block-column. Moreover, if it is an

active client, it also generates αi = cijα columns of data

matrix A. Thus, client Wi can be thought as a collection

of cij homogeneous clients of “weakest” types where each

of the active “weakest” clients generates equally α columns

of A and each of the “weakest” clients processes equally α
columns.

Theorem 2. (a) A heterogeneous system of kA active and

s passive clients of different types can be considered as a

homogeneous system of k̄A =
∑kA−1

i=0
cij active and s̄ =

∑n−1

i=kA
cij passive clients of the “weakest” type. Next (b)

if the jobs are assigned according to Alg. 1 in the modified

homogeneous system of n̄ = k̄A + s̄ “weakest” clients, the

system can be resilient to s̄ such clients.

Proof. Each Ak (generated in Wk) in (1) is a block-column

consisting of ckjα columns of A when client Wk is of client

type j. Thus, for any k = 0, 1, . . . , kA − 1, we can parti-

tion Ak as Ak =
[

Ām Ām+1 . . . Ām+ckj−1

]

, where

m =
∑k−1

i=0
cij and each Āℓ is a block-column consisting

of α columns of A, m ≤ ℓ ≤ m + ckj − 1. Thus using

(1), we can write A =
[

A0 A1 . . . Ak̄A−1

]

, where

W2
W1W0

W3 W4

Ā4 Ā5 Ā6

Ā2

Ā3

Ā0

Ā1

(a): Data generation among the active clients.

W2
W1W0

W3

W4 W5 W6

{Ā4, Ā5, Ā6} {Ā5, Ā6, Ā0}

{Ā6, Ā0, Ā1}

{Ā2, Ā3, Ā4}

{Ā3, Ā4, Ā5}

{Ā0, Ā1, Ā2}

{Ā1, Ā2, Ā3}

{Ā0, Ā1, Ā2} {Ā1, Ā2, Ā3}

(b): Coded submatrix allocation among all the clients.

Fig. 2: A heterogeneous system of n = 7 clients where kA = 5

and s = 2. (a) Each of W0 and W1 generates 2α columns and

each of W2,W3 and W4 generates α columns of A ∈ R
t×r, where

α = r/7. (b) Once the jobs are assigned, the system is resilient to

stragglers.

k̄A =
∑kA−1

i=0
cij . Now from the matrix generation perspec-

tive, kA active clients in a heterogeneous system generating

k̄A block-columns can be considered as the same as k̄A ac-

tive clients in a homogeneous system generating one block-

column each.

Similarly, any client Wi of type j can process cijα
columns in the same time when the “weakest” type device

can process α columns. Thus, from the computation speed

perspective, kA active clients and s passive clients in the het-

erogeneous system can be thought as k̄A =
∑kA−1

i=0
cij active

clients and s̄ =
∑n−1

i=kA
cij passive clients, respectively, in a

homogeneous system by assigning α coded block-columns

to each client. Hence, we are done with the proof of part

(a). Moreover, part (b) of the proof is straight-forward from

Theorem 1 when we have k̄A active and s̄ passive clients. �

Remark 2. The heterogeneous system is resilient to s̄ block-

column processing. The number of straggler clients that the

system is resilient to can vary depending on the client types.

Example 2. Consider the example in Fig. 2 consisting of n =
7 clients. There are kA = 5 active clients which are responsi-

ble for data matrix generation. Let us assume, W0 and W1 are

of type 1 clients which generate twice as many columns of A

than W2,W3 and W4 which are of type 0 clients. The jobs

are assigned to all clients (including s = 2 passive clients)

according to Fig. 2(b). It can be verified that this scheme is

resilient to two type 0 clients or one type 1 client.

5. NUMERICAL EVALUATION

In this section, we compare the performance of our proposed

approach against different competing methods [7, 9, 13] in

Table 1: Comparison among different approaches in terms of com-

munication delay for a system with n = 20, kA = 18 and s = 2.

POLY ORTHO- RKRP CONV. PROP.

CODE [7] POLY [9] CODE [13] CODE [17] SCH.

14.13 s 14.02 s 2.49 s 2.56 s 2.21 s

terms of different metrics for distributed matrix computations

from the federated learning aspect. Note that the approaches

in [1, 4] require the edge devices to transmit some coded

columns of matrix A to the server which is not aligned with

our assumptions. In addition, the approaches in [8] and [11]

do not follow the same network learning architecture as ours.

Therefore, we did not include them in our comparison.

Communication Delay: We consider a homogeneous

system of n = 20 clients each of which is a t2.small ma-

chine in AWS (Amazon Web Services) Cluster. Here, each of

kA = 18 active clients generates Ai of size 12000 × 1000,

thus the size of A is 12000 × 18000. The server sends the

parameter vector x of length 12000 to all 20 clients including

s = 2 passive clients. Once the preprocessing and computa-

tions are carried out according to Alg. 1, the server recovers

ATx as soon as it receives results from the fastest kA = 18
clients, thus the system is resilient to any s = 2 stragglers.

Table 1 shows the comparison of the corresponding com-

munication delays (caused by data matrix transmission)

among different approaches. The approaches in [7, 9] re-

quire all active clients to transmit their generated submatrices

to all other edge devices. Thus, they lead to much more com-

munication delay than our proposed method which needs an

edge device to transmit data to only up to s + 1 = 3 other

devices. Note that the methods in [13, 17] involve similar

amounts of communication delay as ours, however, they have

other limitations in terms of privacy and computation time as

discussed next.

Privacy: Information leakage is introduced in FL when

we consider the transmission of local data matrices to other

edge devices. To protect against privacy leakage, any particu-

lar client should have access to a limited portion of the whole

data matrix. Consider the heterogeneous system in example

2 where the clients are honest but curious. In this scenario,

the approaches in [7, 9, 13, 17] would allow clients to access

the whole matrix A. In our approach, as shown in Fig. 2,

clients W0 and W1 only have access to 4/7-th fraction of A

and clients W2, W3 and W4 have access to 3/7-th fraction of

A. This provides significant protection against privacy leak-

age.

Product Computation Time for Sparse Matrices: Con-

sider a system with n = 30 clients where kA = 28 and

s = 2. We assume that A is sparse, where each active client

generates a sparse submatrix of size 40000 × 1125. We con-

sider three different scenarios with three different sparsity lev-

els for A where randomly chosen 95%, 98% and 99% en-

tries of A are zero. Now we compare our proposed Alg. 1

Table 2: Per client product computation time where n = 30, kA =

28, s = 2 and ζ = 95%, 98% or 99% entries of A are zero.

METHODS
PRODUCT COMP. TIME (IN MS)

ζ = 99% ζ = 98% ζ = 95%

POLY CODE [7] 54.7 55.2 53.7
ORTHO-POLY [9] 54.3 54.8 55.2
RKRP CODE [13] 55.1 53.4 53.7
CONV. CODE [17] 56.2 55.8 56.8
PROP. SCHEME 14.9 21.1 29.6

against different methods in terms of per client product com-

putation time (the required time for a client to compute its

assigned submatrix-vector product) in Table 2. The methods

in [7, 9, 13, 17] assign linear combinations of kA = 28 sub-

matrices to the clients. Hence, the inherent sparsity of A is

destroyed in the encoded submatrices. On the other hand, our

approach combines only s+ 1 = 3 submatrices to obtain the

coded submatrices. Thus, the clients require a significantly

less amount of time to finish the respective tasks in compari-

son to [7, 9, 13, 17].

6. REFERENCES

[1] Saurav Prakash, Sagar Dhakal, Mustafa Riza Akdeniz,

Yair Yona, Shilpa Talwar, Salman Avestimehr, and

Nageen Himayat, “Coded computing for low-latency

federated learning over wireless edge networks,” IEEE

Jour. on Sel. Areas in Comm., vol. 39, no. 1, pp. 233–

250, 2020.

[2] Su Wang, Seyyedali Hosseinalipour, Maria Gorlatova,

Christopher G Brinton, and Mung Chiang, “Uav-

assisted online machine learning over multi-tiered net-

works: A hierarchical nested personalized federated

learning approach,” IEEE Trans. on Net. and Serv.

Manag., 2022.

[3] Jer Shyuan Ng, Wei Yang Bryan Lim, Zehui Xiong, Xi-

anbin Cao, Dusit Niyato, Cyril Leung, and Dong In Kim,

“A hierarchical incentive design toward motivating par-

ticipation in coded federated learning,” IEEE J. Sel. Ar-

eas Commun., vol. 40, no. 1, pp. 359–375, 2022.

[4] Sagar Dhakal, Saurav Prakash, Yair Yona, Shilpa Tal-

war, and Nageen Himayat, “Coded federated learning,”

in IEEE Globecom Workshop, 2019, pp. 1–6.

[5] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani,

Dimitris Papailiopoulos, and Kannan Ramchandran,

“Speeding up distributed machine learning using codes,”

IEEE Trans. on Info. Th., vol. 64, no. 3, pp. 1514–1529,

2018.

[6] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover,

“Short-dot: Computing large linear transforms distribut-

edly using coded short dot products,” in Proc. of Adv. in

Neur. Inf. Proc. Syst., 2016, pp. 2100–2108.

[7] Qian Yu, Mohammad Maddah-Ali, and Salman Aves-

timehr, “Polynomial codes: an optimal design for high-

dimensional coded matrix multiplication,” in Proc. of

Adv. in Neur. Inf. Proc. Syst., 2017, pp. 4403–4413.

[8] Anindya Bijoy Das and Aditya Ramamoorthy, “Coded

sparse matrix computation schemes that leverage partial

stragglers,” IEEE Trans. on Info. Th., vol. 68, no. 6, pp.

4156–4181, 2022.

[9] M. Fahim and V. R. Cadambe, “Numerically stable poly-

nomially coded computing,” IEEE Trans. on Info. Th.,

vol. 67, no. 5, pp. 2758–2785, 2021.

[10] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and

Nikos Karampatziakis, “Gradient coding: Avoiding

stragglers in distributed learning,” in Proc. of Intl. Conf.

on Mach. Learn., 2017, pp. 3368–3376.

[11] Anindya Bijoy Das and Aditya Ramamoorthy, “A uni-

fied treatment of partial stragglers and sparse matrices

in coded matrix computation,” IEEE Jour. on Sel. Area.

in Info. Th., vol. 3, no. 2, pp. 241–256, 2022.

[12] Sanghamitra Dutta, Mohammad Fahim, Farzin Had-

dadpour, Haewon Jeong, Viveck Cadambe, and Pulkit

Grover, “On the optimal recovery threshold of coded

matrix multiplication,” IEEE Trans. on Info. Th., vol.

66, no. 1, pp. 278–301, 2020.

[13] A. M. Subramaniam, A. Heidarzadeh, and K. R.

Narayanan, “Random Khatri-Rao-product codes for

numerically-stable distributed matrix multiplication,” in

Proc. of Annual Conf. on Comm., Control, and Comput-

ing (Allerton), Sep. 2019, pp. 253–259.

[14] Lev Tauz and Lara Dolecek, “Variable coded batch ma-

trix multiplication,” IEEE Jour. on Sel. Area. in Info. Th.,

vol. 3, no. 2, pp. 306–320, 2022.

[15] Su Wang, Mengyuan Lee, Seyyedali Hosseinalipour,

Roberto Morabito, Mung Chiang, and Christopher G

Brinton, “Device sampling for heterogeneous federated

learning: Theory, algorithms, and implementation,” in

Proc. of Intl. Conf. on Comp. Comm., 2021, pp. 1–10.

[16] Yuwei Tu, Yichen Ruan, Satyavrat Wagle, Christo-

pher G Brinton, and Carlee Joe-Wong, “Network-aware

optimization of distributed learning for fog computing,”

in Proc. of Intl. Conf. on Comp. Comm., 2020, pp. 2509–

2518.

[17] Anindya Bijoy Das, Aditya Ramamoorthy, and Namrata

Vaswani, “Efficient and robust distributed matrix com-

putations via convolutional coding,” IEEE Trans. on

Info. Th., vol. 67, no. 9, pp. 6266–6282, 2021.

[18] Seyyedali Hosseinalipour, Christopher G Brinton, Va-

neet Aggarwal, Huaiyu Dai, and Mung Chiang, “From

federated to fog learning: Distributed machine learning

over heterogeneous wireless networks,” IEEE Comm.

Mag., vol. 58, no. 12, pp. 41–47, 2020.

[19] Satyavrat Wagle, Seyyedali Hosseinalipour, Naji Khos-

ravan, Mung Chiang, and Christopher G Brinton, “Em-

bedding alignment for unsupervised federated learning

via smart data exchange,” in Proc. of IEEE Glob. Comm.

Conf. IEEE, 2022, pp. 1–6.

[20] Naoya Yoshida, Takayuki Nishio, Masahiro Morikura,

Koji Yamamoto, and Ryo Yonetani, “Hybrid-fl for wire-

less networks: Cooperative learning mechanism using

non-iid data,” in Proc. of IEEE Intl. Conf. Comm. IEEE,

2020, pp. 1–7.

[21] JR Marshall. Hall, Combinatorial theory, Wiley, 1986.

[22] Jacob T Schwartz, “Fast probabilistic algorithms for

verification of polynomial identities,” Jour. of the ACM

(JACM), vol. 27, no. 4, pp. 701–717, 1980.

	1 Introduction
	2 Network and Learning Architecture
	3 Homogeneous Edge Computing
	4 Heterogeneous Edge Computing
	5 Numerical Evaluation
	6 References

