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ABSTRACT

We propose a framework to jointly determine the deforma-
tion parameters and reconstruct the unknown volume in elec-
tron cryotomography (CryoET). CryoET aims to reconstruct
three-dimensional biological samples from two-dimensional
projections. A major challenge is that we can only acquire
projections for a limited range of tilts, and that each pro-
jection undergoes an unknown deformation during acquisi-
tion. Not accounting for these deformations results in poor
reconstruction. The existing CryoET software packages at-
tempt to align the projections, often in a workflow which uses
manual feedback. Our proposed method sidesteps this in-
convenience by automatically computing a set of undeformed
projections while simultaneously reconstructing the unknown
volume. We achieve this by learning a continuous represen-
tation of the undeformed measurements and deformation pa-
rameters. We show that our approach enables the recovery of
high-frequency details that are destroyed without accounting
for deformations.

Index Terms— CryoET imaging, unknown deformations,
registration, implicit neural networks, neural fields.

1. INTRODUCTION

Tomographic imaging plays a central role in science, medicine,
and engineering. An emerging representative in biologi-
cal imaging is electron cryotomography (CryoET). Unlike
single-particle cryoelectron microscopy, CryoET can im-
age entire cells under cryogenic conditions. The three-
dimensional volume is tilted around an axis relative to a
probing electron beam. A sensor array then collects a series
of two-dimensional projections—a tilt-series—at a discrete
set of tilt angles.

More formally, we measure M projection images of reso-
lution N ×N of an unknown volume ρ ∈ RN×N×N ,

ym = D(φ?m)PR(θm)ρ + ηm, m = 1, . . . ,M. (1)
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In (1) R(θm) denotes the rotation (tilt) by an angle θm and
P denotes a projection from RN×N×N to RN×N which is
a simple summation over the last coordinate. Due to the
mechanical stage drift and beam-induced sample motion, the
CryoET projections are affected by deformations such as
shifts, shears, and rotations [1]. We model the deformations
by the operator D(φ?m), with φ?m the deformation parameters
for the mth projection. The noise ηm is iid Gaussian. We
aim at recovering ρ from {ym}Mm=1. However, we face two
challenges: 1) the tilt θm can only vary between -70 and +70
degrees resulting in a missing wedge of measurements, and
2) the deformation parameters, φ?m, are unknown.

If we ignore the deformation operator, the reconstructed
volume (tomogram) can be obtained by filtered-back projec-
tion (FBP) [2]. In order to account for the unknown defor-
mations, many popular CryoET reconstruction packages first
perform a tilt series alignment in order to invert the degra-
dation caused by D(φ?m) [3, 4, 5]. These packages show
that deformation estimation is vital for accurate reconstruc-
tion, but they are often based on geometric heuristics which
do not guarantee an optimal reconstruction. This motivates
our work: we build a framework to jointly recover the defor-
mation parameters and the unknown volume which minimize
a data consistency loss. We adapt the recent framework of
Gupta et al. [6] to leverage neural fields (or implicit neural
representations) [7] with their key property that they enable
automatic differentiation with respect to input coordinates.
The coordinate-based framework allows us to effectively pa-
rameterize various classes of deformations.

1.1. Related work

Existing CryoET software such as IMOD [3, 5], TomoAlign
[4], and Warp [5] handles deformation using fiducial markers
in the specimen. Some recent software such as AreTomo es-
timates the deformation parameters without fiducial markers
[8], by leveraging the geometry of structured misalignments
and by tracking patches from tilt to tilt. While this leads to an
automated reconstruction pipeline, it is still based on heuris-
tics. What is more, we could not find a precise mathemati-
cal description of the method and there exists no open source
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code 1 A recent work by Liu et al. [9] that appeared during
preparation of this manuscript similarly proposes to jointly
estimate the unknown object and the deformation parameters
in optical tomography. In this paper, we represent the defor-
mation parameters and the projection images by a continuous
neural field which allows us to optimize over them using stan-
dard optimizers (without alternating between the deformation
and the volume), while being able to plug-and-play almost
arbitrary deformations.

Neural fields (or implicit neural networks) represent con-
tinuous signals as maps from coordinates to function values
[7]. Their use cases include fitting 3D radiance maps to 2D
images [10] and solving partial differential equations [11].
Sun et al. applied implicit networks to interpolate and upsam-
ple measurements in 2D computed tomograph [12]. Rather
than to obtain denser measurements, we use automatic differ-
entiation with respect to coordinates to optimize over param-
eters in the measurement space and thus fit the unobserved
measurements.

2. LEARNING DEFORMATIONS

We represent the measurements {ym}Mm=1 in (1) by an im-
plicit neural network [10]. These networks parameterize a
continuous representation of the observed measurements.
Automatic differentiation, available in all major deep learn-
ing libraries, then allows us to compute the gradients of
this continuous representation with respect to the measure-
ment coordinates—a three-dimensional coordinate compris-
ing a tilt angle and a location on the two-dimensional sensor
array. In this work, we train an implicit neural network,
fγ : [−π, π) × R2 → R, parameterized by γ ∈ Γ, where Γ
is the space of feasible parameters. For each tilt angle θm we
denote by X a uniform sampling of the sensor array. We train
the network to reproduce the undeformed measurements, that
is, for each point x ∈ X of the sensor array grid we want

fγ(θm,x) ≈ (PR(θm)ρ)(x). (2)

Importantly, since the non-deformed projections PR(θm)ρ
cannot be observed, we also learn the unknown deformation
parameters (φ?m) jointly with the implicit neural network.
This is the crux of the proposed method: since the deforma-
tion parameters are functions of the measurements coordi-
nates (tilt and position within a projection), we can directly
use automatic differentiation to optimize over them, simul-
taneously with optimizing the weights γ of the neural field
network. The objective we minimize has two components.
The first one is simply the usual interpolation (fitting) loss
subject to unknown deformations,

Ldata(φ,γ)
def.
=

M∑
m=1

‖D(φm)fγ(θm, · )− ym‖2`2(X). (3)

1At the time of writing, this seems to hold more generally: there are no
open source CryoET packages that handle deformations.

Here φ denotes all deformation parameters, φ1, . . . ,φM , and
‖ · ‖2`2(X) is the usual 2-norm computed with fγ sampled on
X.

Minimizing Ldata(φ,γ) alone is clearly insufficient to
learn correct deformations. We thus restrict the class of im-
plicit network with parameters γ so that the deformation
parameters can be estimated within a physically meaningful
range,

Lop(γ)
def.
= ‖fγ −A(θ)A†(θ)fγ‖2`2(X), (4)

where A(θ)
def.
= [a(θ1), . . . , a(θM )] with a(θm)

def.
= PR(θm)

and A†(θ) denotes the filtered backprojection.
This method is inspired by recent work on implicit rep-

resentations for correcting operator error [6] and extends the
framework to handle random deformations seen in practice in
CryoET. Since CryoET operates at very low SNRs we use an
additional total variation norm regularizer,

Lreg(γ)
def.
= λθ‖∇θfγ‖`1(X) + λx‖∇xfγ‖`1(X), (5)

where ∇θfγ and ∇xfγ refer respectively to the gradient of
θ 7→ fγ(θ, · ) and x 7→ fγ( · ,x). We empirically verify that
this term helps obtain accurate reconstructions. The regular-
ization of the implicit network along the coordinate modeling
the tilt angle is important to correctly estimate the parameters
φ. It ensures that two estimates of consecutive undeformed
observations do not differ drastically. Our experiments sug-
gest that a small value of λx and λθ suffices to stabilize the
joint measurement representation and deformation parameter
learning (cf. Section 3).

Summarizing, we compute (γ̂, φ̂) that solve

min
γ∈Γ,φ∈Φ

λ1Ldata(φ,γ) + λ2Lop(γ) + Lreg(γ), (6)

where Φ is the space of admissible deformations and λ1, λ2 ≥
0 and empirically chosen. We use the Adam algorithm to min-
imize (6). The final tomogram is given by

ρ̂
def.
= A†(θ)fγ̂ . (7)

One advantage of our approach is that we do not need
to explicitly invert the deformation operator: a potentially
problematic task for nonlinear or non-invertible deformations.
Furthermore, our framework allows us flexibility in budget-
ing computation. For example, if repeatedly applying the for-
ward operator to a high-resolution volume is computationally
expensive, we can initially set λ2 = 0 to obtain a coarse mea-
surement representation and then refine it with λ2 > 0.

3. EXPERIMENTS

3.1. Influence of noise on individual cells

We use the volume density of a native M. pneumoniae cell
treated with chloramphenicol [13] (dataset DOI on EMPIAR
10.6019/EMPIAR-10499); see Fig. 1a.



3.1.1. Experimental parameters

We simulate CryoET acquisition using 60 projections at an-
gles between−70 and +70 degrees and using the deformation
and noise model (1) at various signal-to-noise ratios (SNRs),

SNR(y0,η) = 10 log10

(
Var(y0)

Var(η)

)
.

We experiment with (post-deformation) SNRs of −10 dB, 0
dB, and 10 dB. The observed projections with the volume side
length N = 64 are displayed in Fig. 1c. The deformations
comprise shifts between±10 pixels, shears between±10% of
the sensor array, and rotation between ±10 degrees. We run
1500 iterations of Adam to solve (6) with λ1 = 10, λ2 = 1,
λθ = 10−5 and λx = 10−5.

3.1.2. Results

In Fig. 1b, we report the Fourier Shell Correlation (FSC), a
common metric to assess the quality of CryoET reconstruc-
tion [2]. The FSC measures the correlation between the fre-
quencies of the estimated volume and the original volume.
We see that our method provides a significant gain compared
to directly applying the FBP reconstruction algorithm on the
raw observation. Even with large measurement noise we suc-
cessfully recover projections close to the non-deformed ones.

In Table 1 we report the average error over the M projec-
tions between the true and the estimated deformation param-
eters given by solving (6). The initialization for the deforma-
tion parameters is φ = 0, that is to say, no deformation. This
quantitative inspection confirms the ability of the proposed
approach to identify the deformation parameters. We display
the reconstructed volume in Fig. 1a. While the overall struc-
ture is well-retrieved at reasonable SNRs, we observe a severe
loss of fine details at SNR -10 dB. However, at SNR 0 dB and
10 dB, as indicated by the FSC scores, the smallest details are
correctly reconstructed; see insets in Fig. 1a.

3.2. Volume density from a real CryoET acquisition

Finally, we experiment on a volume obtained using in a real
CryoET acquisition. We use the cryo-electron tomogram of
mouse hippocampal neurons [14] (dataset DOI on EMPIAR
10.6019/EMPIAR-10923) display in Fig. 2a.

Table 1: Average error on deformation of the volume in Fig. 1a.

shift [px] shear [%] rotation [deg]

Init 3.36 5.1 5.3
−10 dB 0.86 5.8 4.0

0 dB 0.56 3.7 2.2
10 dB 0.36 2.9 1.4

3.2.1. Experimental parameters

We simulate CryoET acquisition (1) by collecting 50 projec-
tions from angles between −70 to 70 degrees. The measure-
ment SNR, after adding noise to the deformed projections, is
10 dB. Note that this SNR is comparatively more severe for
this experiment than in the previous experiments because the
volume is much less sparse. The volume density is of size
128×128×90 and the projections are of size 128×128. The
deformations comprise shifts between ±5 pixels, shear be-
tween ±5% and rotation between ±5 degrees. We run 2000
iterations of Adam to solve the optimization problem (6) with
λ1 = 100, λ2 = 10−2, λθ = 10−6 and λx = 10−5.

3.2.2. Results

We display several slices of the true and the estimated volume
in Fig 2a. The FSC in Fig. 2b shows that both the coarse
structure and fine details are reconstructed well. We obtain
accurate estimates of the deformation as shown in Table 2.

4. CONCLUSIONS

We demonstrated how coordinate-based neural representa-
tions can be made into an effective tool for joint projection
alignment and calibration in CryoET. The fact that we can
seamlessly build diverse deformation models as coordinate
transformations in neural fields and then automatically dif-
ferentiate with respect to their parameters gives us a simple
and powerful framework. Ongoing work includes exten-
sions of deformation classes to model the full complexity
of those encountered in CryoET (although the three we use
are known to be the most important ones). In order to keep
complexity under control it may be helpful to borrow the
parametric classes used to model spatially-varying blur in
light microscopy [15, 16]. Here we again benefit from the
flexibility of the introduced framework.

Table 2: Average error on deformation of the volume in Fig. 2a.

shift [px] shear [%] rotation [deg]

Initialization 1.7 2.5 2.7
Estimate 0.2 1.9 1.1
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Fig. 1: a) 3D density estimation at different SNR. b) FSC of the proposed approach compared to FBP reconstruction when measurements are
perturbed or not by deformations. c) Three projections corresponding to consecutive viewing directions.
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Fig. 2: a) Reconstruction of CryoET volume [14] (second row) at different depths (z), compared with the original volume (first row). b) FSC
for the neuron volume of Fig. 2a for the proposed approach compared to FBP reconstruction when measurements are perturbed or not by
deformations.
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