
LEGO-FEATURES: EXPORTING MODULAR ENCODER FEATURES
FOR STREAMING AND DELIBERATION ASR

Rami Botros, Rohit Prabhavalkar, Johan Schalkwyk, Ciprian Chelba, Tara N. Sainath, Françoise Beaufays

Google LLC, USA
ramibotros@google.com

ABSTRACT

In end-to-end (E2E) speech recognition models, a representational
tight-coupling inevitably emerges between the encoder and the de-
coder. We build upon recent work that has begun to explore build-
ing encoders with modular encoded representations, such that en-
coders and decoders from different models can be stitched together
in a zero-shot manner without further fine-tuning. While previous
research only addresses full-context speech models, we explore the
problem in a streaming setting as well. Our framework builds on top
of existing encoded representations, converting them to modular fea-
tures, dubbed as Lego-Features, without modifying the pre-trained
model. The features remain interchangeable when the model is re-
trained with distinct initializations. Though sparse, we show that
the Lego-Features are powerful when tested with RNN-T or LAS
decoders, maintaining high-quality downstream performance. They
are also rich enough to represent the first-pass prediction during two-
pass deliberation. In this scenario, they outperform the N-best hy-
potheses, since they do not need to be supplemented with acoustic
features to deliver the best results. Moreover, generating the Lego-
Features does not require beam search or auto-regressive computa-
tion. Overall, they present a modular, powerful and cheap alternative
to the standard encoder output, as well as the N-best hypotheses.

Index Terms— modular, representations, zero-shot stitching

1. INTRODUCTION

E2E speech recognition models, which combine acoustic, pronunci-
ation and language models from conventional systems [1] into one
neural network, have become widely used, especially for on-device
applications [2, 3, 4, 5, 6, 7]. Since they are much smaller than
conventional models, and their inference speed is often much faster
[2, 3, 8, 9], they work well for various streaming applications. They
typically use an encoder-decoder architecture [10]. Like most deep
neural networks, the whole architecture is usually trained end to end.
The encoder implicitly learns to serve the subsequent decoder layers,
and thus conversely, the decoder is thoroughly oriented towards in-
puts coming from the specific encoder that it has been trained with.
Therefore, encoders and decoders from different models or training
runs, are generally not interchangeable without further E2E training.

This tight coupling between both components stands in the way
of a flexible, modular architecture. Speech encoders that have been
trained on high-resource ASR data can serve as foundation models
for other tasks like sentiment analysis [11] or low-resource trans-
lation [12], to name a few. However, this presents a challenge if a
shared encoder representation is used for multiple downstream tasks:
When the ASR encoder is retrained, all downstream models must be
retrained as well. Hence, it would be more practical if each com-
ponent can be developed and updated independently. To that end,

we present a method for building modular speech encoder features,
where different versions of the encoder can be plugged into the de-
coder in a zero-shot stitching manner without fine-tuning.

Our method works by building on top of an existing base en-
coder, which is kept frozen. We adapt the Beam-Convolution scheme
described in [13] to train streaming modular encoded representa-
tions, which we call Lego-Features. To produce them, the orig-
inal (fixed) continuous encoded features pass through a few extra
trainable “Exporter” layers, then through a CTC decoder, which is
trained with an auxiliary CTC loss. Lego-Features are defined as
the sorted top K CTC logit indices at every frame, see Figure 1.
The logits operate over a discrete space (here: wordpiece vocabu-
lary) and are grounded in the transcript text, which is why they tend
to be modular. Overall, the traditional encoder features are forced
through a tight discretizing bottleneck, which protects downstream
models from coupling themselves to fine details in the encoded rep-
resentation. Downstream consumers of Lego-Features need to first
re-embed them, since they come in as sparse indices.

[13, 14] have shown how this tight bottleneck still produces a
powerful representation which is sufficiently informative for down-
stream ASR decoders. They also perform a “modularity test”: The
downstream decoder is kept constant, but gets input with a new ver-
sion of the encoded representation, which is obtained by retraining
the encoder from scratch using a different initialization. The switch
is done in a zero-shot manner without any extra fine-tuning. Tradi-
tional continuous encoded features categorically fail the modularity
test, bringing the downstream performance to nearly 100% WER,
which is what motivates this new type of encoded representation.
We build on the original works with a few novel contributions:

1) We find that training the modular encoder from scratch under
the CTC loss is insufficient for producing the best performance. In-
stead, our recipe pre-trains some base encoder layers with RNN-T
loss and keeps them frozen. Next, we just train the extra Exporter
layers with the auxiliary CTC loss. This solution is also practical
since it enables researchers to cheaply export modular features with-
out having to modify their original system. Thus, the quality, latency
and efficiency of the base model are all maintained.

2) We adapt the design to a streaming setting for the first time. Un-
like the original work [13, 14], our encoder layers attention have lim-
ited left and right context windows, and the produced Lego-Features
are successfully paired with a streaming-friendly RNN-T decoder.
The streaming architecture still exhibits strong downstream ASR
quality and passes the modularity test. By plugging the same fixed
set of Lego-Features into causal as well as non-causal decoders, our
work adds further evidence to their modularity and interoperability.

3) Rather than merely looking at the Lego-Features as an encoded
representation, we also study them as an alternative to the N-best
hypotheses within two-pass systems. We provide new comparisons
against the N-best in terms of speed, accuracy and modularity. To

ar
X

iv
:2

30
4.

00
17

3v
1

 [
cs

.C
L

]
 3

1
M

ar
 2

02
3

Base
Conformer
Encoder

Exporter
Conformer

Layers

CTC
Decoder

Auxiliary
CTC loss

Logits Top K
Indices

Base
RNN-T

Speech

Lego-Features

Fig. 1. Modular Encoder. Lego-Features are exported from frozen
base encoder by training extra layers with an auxiliary CTC loss.

this end, the Lego-Features are used as a first-pass output within the
deliberation framework [15]. This achieves good post-deliberation
WER performance, which is shown to be on-par with a baseline that
performs deliberation on 1st-pass RNN-T N-best hypotheses + audio
features. The Lego-Features demonstrate success in the modularity
test here as well. On the other hand, we find that the N-best hy-
pothesis text does not pass the modularity test, i.e. a new N-best
from a second model would confuse the deliberation decoder from
the first, which is a novel observation. Moreover, the Lego-Features
are cheaper to produce than the N-best, since they require no beam-
search or auto-regressive decoding, but are generated via a simple
projection at every frame.
Other works have attempted to present generic methods for zero-
shot stitching between layers. In [16], this is achieved by learning
representations relative to data-dependent anchors. In contrast, the
method presented here does not need to choose anchor samples and
leverages the existence of ground-truth speech transcripts instead.
Another general approach, presented in [17], uses self-supervised
objectives designed to encourage compatibility of different layer out-
puts. It is an open question whether the cited methods can deal with
long sequences, whereas the CTC loss used here is a natural choice
that works well with ASR and gives interpretable outputs.

Further, some research has already experimented with deliber-
ation on top of CTC outputs to save the cost of first-pass decoding
[18, 19, 20]. This includes the Align-refine approach, which itera-
tively improves on the first-pass output. Those works tend to focus
on optimizing the size and speed of the first-pass model, whereas our
focus is mainly on modularity. Nevertheless, since we build on base
encoder layers that have been pre-trained with the RNN-T loss, we
find our CTC outputs to have high quality, which removes the need
for audio attention that is used in other deliberation models. Hence,
this work also introduces some speed gains to deliberation, without
using the iterative Align-refine approach.

On the whole, with one simple representations, we get a com-
pelling cheap, streaming-friendly, as well as modular, alternative
to both the continuous encoding vector and the N-best hypotheses,
without any loss in quality.

2. MODELING

Our framework is trained in three separate stages described below.

2.1. Base Model

We start off from a pre-trained end-to-end system that follows the
cascade architecture in [21]: The base encoder comprises 3 convolu-
tion layers, then 14 Conformer [22] blocks: 4 causal ones, followed
by 5 blocks that process 180 milliseconds of right-context each, then
5 more causal ones. This base encoder is pre-trained using the RNN-
T loss on the same training set. For the modularization steps below,

Importer
Conformer

Layers

Downstream
Decoder

Downstream Loss

Re-embedLego-Features

Fig. 2. Downstream models embed and process the fixed Lego-
features before passing them to a downstream decoder.

the pre-trained RNN-T decoder layers will be discarded, and the base
encoder is kept frozen. This recipe allows us to keep the existing pre-
trained model unchanged while exporting modular features.

2.2. Exporting Lego-Features

Figure 1 shows how the modular encoder is trained on top of a frozen
base model. The Exporter layers comprise further Conformer blocks
with 180ms look-ahead context. The CTC decoder [23] amounts to
a single projection layer to compute the frame-level posterior over
the output vocabulary. Our work uses wordpiece output tokens, but
further research can explore using phonemes or graphemes instead.
The depicted CTC loss is applied to those logits and is what trains the
Exporter layers. Finally, the Lego-Features are computed by extract-
ing the sorted top-K indices of the CTC logits, giving K integers at
every frame. Note that this is performed on the logit vector directly,
without requiring any actual decoding algorithm like beam-search.

2.3. Downstream Models

Figure 2 illustrates how downstream models generally consume the
Lego-Features, which come in as sparse indices. The downstream
consumer does not receive extra information about how the indices
map to wordpiece tokens, and hence starts by embedding them. An
Importer module, once again consisting of 180ms look-ahead Con-
former blocks, prepares the embeddings for the downstream decoder.
[13, 14] use 1D convolution + multi-headed attention in place of the
Importer, but our early experiments show that Conformer blocks im-
prove over this original stack. Note that the Lego-Features them-
selves are kept constant during downstream training. We experiment
with two types of ASR decoders as examples for downstream tasks,
which are used with the same fixed set of Lego-Features.

2.3.1. Downstream RNN-T Decoder

The first downstream model uses an RNN-T decoder, which tends to
serve real-time applications well, since it processes the input frames
in a streaming fashion as they become available and starts outputting
text tokens after a short delay [3, 24]. We adopt the same RNN-T
decoder layer architecture from the base model (Section 2.1) but use
it as a simulated downstream task, as the decoder in Figure 2, to see if
the bottlenecked Lego-Features are as informative as the continuous
base encoded tensor.

2.3.2. Downstream LAS decoder / Deliberation

As a second downstream ASR decoder in Figure 2, we experiment
with a full-context Listen-Attend-and-Spell (LAS) decoder [25],
which can achieve higher quality by attending to all input frames.

A fitting baseline to this experiment is second-pass delibera-
tion ASR [15]. Typically, a deliberation system generates first-pass

RNN-T
Decoder

Re-embed Importer
Layers

LAS Decoder

Optional audio-feature attention

Base
Encoder

Exporter
Layers

N-best hyps

Fig. 3. Baseline deliberation on N-best RNN-T hyps. The LAS decoder attends to embedded text and optionally to the pre-RNN-T audio
features. Modularity test boundary shown as the dotted line in the middle.

hypotheses using a fast decoder, like RNN-T, then embeds its N-
best hyps and attends to them with a second-pass full-context LAS
decoder. We have therefore constructed a comparable deliberation
baseline model shown in Figure 3. This model is analogous to our
full pipeline, i.e. Figures 1 & 2 put together, and is designed to have
a similar total model size and encoder latency. It starts with the same
frozen base encoder, then trains a first-pass RNN-T decoder to obtain
the N-best hyps, which stands to be compared to the Lego-Features
in terms of informativeness and modularity. Figure 3 also ends with
an LAS decoder, except this one can optionally attend to the con-
tinuous encoder features as well, as is done in previous deliberation
work [15]. Gradients do not flow back through embedded N-best.

3. EXPERIMENTAL SETTINGS

3.1. CTC Logit Evaluation

An interesting aspect of the Lego-Features encoder is that one can
evaluate its quality directly before providing the features to any
downstream tasks. This is done via a preliminary experiment where
we directly decode from the full set of the CTC-trained logits (before
the top-K operation in Figure 1) using beam search or greedy decod-
ing. The decoding algorithm used for this evaluation is tangential to
how the Lego-Features are produced, since those are only extracted
as the top-K logit ranks without decoding actual transcripts. Yet
this direct evaluation can inform us about the general quality of the
CTC-trained logits, from which the Lego-Features are produced.

3.2. WER and Modularity Test

The downstream ASR decoders trained on the Lego-Features (Sec-
tion 2.3) are then evaluated and a modularity test is performed. The
aim of the test is to check if two different versions of the encoded fea-
tures are interchangeable. We test that by keeping the downstream
model fixed, but feeding it with a new version of the encoded fea-
tures, which we get from another training run. The second training is
done from scratch with a new initialization. We compare the WER
performance of the decode before and after the switch, denoted as
“Normal→ Mod. Test WER” in our tables. For the Lego-Features,
we retrain the encoder in Figure 1, where the base frozen encoder
is also replaced with a second version from a retrained base. As a
baseline, we also test the modularity of the base model itself, where
we simply train the base encoder + decoder a second time end-to-end
and get the retrained encoder from there.

3.3. Architectural Details

Our base architecture follows [21]: All Conformer layers [22] are
512-dim, use 8-headed self-attention and a convolution kernel size

of 15. We train on a 128D log-mel feature frontend with a 16-D
one-hot domain-id vector appended to it, see [26].

Our models work with 4,096 word pieces [27]. The RNN-T de-
coder comprises a prediction network and a joint network with a sin-
gle 640-dim FF layer. The embedding prediction network [28], uses
an embedding dimension of 320, and has 9M parameters. For the
deliberation decoder, we use a 2-layer LSTM similar to [15], where
each layer has 1536 hidden units followed by 384-dim projection.
We do not use external LMs.

3.4. Datasets

As discussed in [29], all E2E models are trained on multidomain
audio-text pairs [26]. All datasets obtain their labels in a semi-
supervised fashion, using larger teacher models trained on in-domain
data to provide pseudo labels [30, 31]. Data was handled in accor-
dance to Google AI principles [32]. To further increase data di-
versity, multi-condition training (MTR) [33], random data down-
sampling to 8kHz [34] and SpecAug [35] are also used. Noisy data
is generated at signal-noise-ratio (SNR) from 0 to 30 dB, with an av-
erage SNR of 12 dB, and with T60 times ranging from 0 to 900ms,
averaging 500ms. Noise segments are sampled from YouTube and
daily life noisy environmental recordings. Both 8 kHz and 16 kHz
versions of the data are generated, each with equal probability, to
make the model robust to varying sample rates.

The Voice-Search test set has 10K Voice Search utterances with
an average length of 5.5 seconds. They are anonymized, hand-
transcribed, and are representative of Google’s Voice Search traffic.

4. EXPERIMENTAL RESULTS

4.1. Preliminary CTC Decoder Evaluation

Exporter Properties CTC Test WER

Blocks Size
Right

Greedy
Beam-search

Context (Oracle)

1 10M +180 ms 5.9% 5.8% (2.8%)
3 30M +540 ms 5.5% 5.3% (2.7%)

Table 1. CTC Voice-Search WER for different Exporter setups

As explained in Section 3.1, the CTC decoder in Figure 1 can
be evaluated directly. Table 1 shows two settings for the Exporter
layers and their corresponding CTC WER performance. The right-
context length indicates the extra duration of future context attended
to by the Exporter, noting that the base encoder already sees a future
context of 900ms. In both cases, greedy decoding performs close

Encoder RNN-T WER
Type Size Right-Context Normal→Mod. Test

Base 146M 900 ms 6.4%→ 99%
Modularized 207M 1440 ms 5.6%→ 5.6%

Table 2. Downstream RNN-T Test WER with Modularity Test. The
base encoder is from the original pre-trained model.

to beam search, which tracks 16 hypotheses in its beam. For all
the downstream experiments below, we use the better setup with 3
blocks for the Exporter, and apply the same design to the Importer.

4.2. Base RNN-T vs. Downstream RNN-T

Our first downstream setting works with an RNN-T decoder (Sec-
tion 2.3.1). Table 2 demonstrates how the Lego-Features bottle-
neck still produces a rich encoding that the downstream Importer
and RNN-T use well. We export K = 12 Lego-Features per frame
and the downstream re-embeds each into 32 dimensions. Prelim-
inary experiments, omitted here for brevity, indicate that varying
these values does not affect downstream WER performance signif-
icantly. The Base case in the table is simply the frozen base model
on the left of Figure 1, in which case the modularity test connects
a new base encoder (from another training run) to the same frozen
base RNN-T. The modularity test fails for the base case, yet passes
for the Lego-Features. Both models involve different sizes and laten-
cies, so a direct WER contest between them is not the main concern.
Rather, the goal is to show that the Lego-Features bottleneck does
not degrade performance while enabling modularity.

To test robustness across changing domains, we also supply the
same Lego-Features used above to a downstream RNN-T model that
is trained on Librispeech data instead. The modularity test results are
shown in Table 3 and only cause less than 4% relative WER decline.

4.3. Deliberation on N-Best vs. Lego-Features

Table 4 compares the LAS deliberation scenarios described in Sec-
tion 2.3.2, where the Lego-Features are compared to an N-best as
a first-pass output. Dropping the audio connection significantly de-
grades performance in the N-best case, which is consistent with pre-
vious findings [15]. The Lego-Features seem to preserve more infor-
mation in the encoding, and thus do not need the audio connection.
They are significantly better than N-best text, and are only off by 0.1
in absolute WER from N-best + audio.

The modularity test causes no performance decline for the Lego-
Features, but does not work well in the N-best case; even the text-
only case degrades by 17% relative WER. This somewhat unex-
pected result might be a symptom of label bias, which RNN-T suf-
fers from because of local normalization [36, 37], but the CTC de-
coder avoids with its conditional independence assumption. Hence,
two separately-trained RNN-T first-pass models might exhibit dif-
ferent biases in their N-bests, leading to this result.

Dev-Clean WER Test-Other WER
Normal→Mod. Test Normal→Mod. Test

4.9→ 5.1 10.0→ 10.3

Table 3. Modularity tests if downstream is trained on Librispeech

First Pass
Embedded Attend Downstream WER

Shape Audio Normal→Mod. Test

RNN-T N -best [N · U,E1]
No 5.4%→ 6.3%
Yes 5.0%→ 14.3%

Lego-Features [T,K · E2] No 5.1%→ 5.1%

Table 4. Deliberation WER and Modularity Tests. Embedded
Shapes discussed in Section 4.3.1

4.3.1. Speed Comparison

Table 4 notes a difference in the input shapes to the Importers across
the different types of first-pass models, after re-embedding in Fig-
ure 2 & 3. Here, E1 and E2 are the respective embedding dimen-
sions, n is the RNN-T’s beam width and U is the number of text
tokens produced by it. K is the number of logit indices in the
Lego-Features and T is their sequence length (=number of encoded
frames). Note how the N-best’s embedding expands the output se-
quence length, since it stacks the N hypothesis sequentially while
keeping the sentence structures intact, in order to attend to this or-
der information during second-pass decoding. Since the LegoFea-
tures describe per-frame logit ranks without serializing them into
sentences, we forgo this expansion and concatenate the embeddings
within the depth dimension at each frame instead. This saves on
computational cost, since the #GFLOPs used by LAS is proportional
to the sequence length it is attending to. While U can change from
one utterance to the other, the embedded matrices have to padded
to maximum length when working with hardware accelerators. Our
system uses n = 8, U = 120, E1 = 384, T = 343, K = 12, and
E2 = 32. This makes the depth dimension equal, but LegoFeatures’
sequence length is 64% smaller than the N-best’s.

Another important computational benefit of deliberating on
LegoFeatures is that we can obtain them without performing a
beam-search procedure. It is hence possible to compute them for
long utterances with high parallelization, only limited by the number
of TPU cores available. Generating the N-best, on the other hand,
requires sequential auto-regressive processing. For instance, bench-
marking this sequential path in the RNN-T (using an in-house server
TPU and the above dimensions) gives 1.8 ms per output token, or
216 ms per utterance in the padded worst case, which does become
the bottleneck after the other layers are parallelized.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a simple recipe for exporting streaming-
friendly modular encoded representations and successfully test them
with RNN-T and LAS decoders. Overall, exporting the encoder out-
put as top CTC-trained logits introduces multiple benefits. The en-
coding achieves strong WER performance and interchangability is
demonstrated through the modularity test. If regarded as a represen-
tation for first-pass ASR prediction, the Lego-Features surpass the
N-best in quality, modularity, and generation speed.

To address resource-limited environments like on-device ASR,
and to improve latency, future research can explore using smaller
Exporter and Importer layers. Another avenue is to export CTC log-
its over phoneme/triphone/grapheme vocabularies, or a combination
thereof. Different types of Lego-Features can be tested with vari-
ous downstream tasks, like confidence models, speech translation or
spoken language understanding.

6. REFERENCES

[1] G. Pundak and T. N. Sainath, “Lower frame rate neural net-
work acoustic models,” in Proc. Interspeech, 2016.

[2] B. Li, A. Gulati, J. Yu, et al., “A Better and Faster End-to-End
Model for Streaming ASR,” in Proc. ICASSP, 2021.

[3] Y. He, T. N. Sainath, R. Prabhavalkar, et al., “Streaming End-
to-end Speech Recognition For Mobile Devices,” in Proc.
ICASSP, 2019.

[4] C.-C. Chiu, T. N. Sainath, Y. Wu, et al., “State-of-the-art
Speech Recognition With Sequence-to-Sequence Models,” in
Proc. ICASSP, 2018.

[5] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in
Proc. ICASSP, 2017.

[6] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN trans-
ducer modeling for end-to-end speech recognition,” in Proc.
ASRU, 2019.

[7] A. Zeyer, A. Merboldt, R. Schlüter, and H. Ney, “A new train-
ing pipeline for an improved neural transducer,” in Proc. Inter-
speech, 2020.

[8] T. N. Sainath, Y. He, Narayanan, et al., “An Efficient Stream-
ing Non-Recurrent On-Device End-to-End Model with Im-
provements to Rare-Word Modeling,” in Interspeech, 2021.

[9] Tara N Sainath, Yanzhang He, Bo Li, Arun Narayanan, et al.,
“A streaming on-device end-to-end model surpassing server-
side conventional model quality and latency,” in Proc. ICASSP.
IEEE, 2020, pp. 6059–6063.

[10] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A comparison of sequence-to-sequence models for
speech recognition,” in Proc. Interspeech, 2017.

[11] Zhiyun Lu, Liangliang Cao, Yu Zhang, Chung-Cheng Chiu,
and James Fan, “Speech sentiment analysis via pre-trained
features from end-to-end asr models,” in Proc. ICASSP. IEEE,
2020, pp. 7149–7153.

[12] Sameer Bansal, Herman Kamper, Karen Livescu, Adam
Lopez, and Sharon Goldwater, “Pre-training on high-
resource speech recognition improves low-resource speech-to-
text translation,” arXiv preprint arXiv:1809.01431, 2018.

[13] Siddharth Dalmia, Abdelrahman Mohamed, Mike Lewis, Flo-
rian Metze, and Luke Zettlemoyer, “Enforcing encoder-
decoder modularity in sequence-to-sequence models,” arXiv
preprint arXiv:1911.03782, 2019.

[14] Siddharth Dalmia, Dmytro Okhonko, Mike Lewis, Sergey
Edunov, Shinji Watanabe, Florian Metze, Luke Zettlemoyer,
and Abdelrahman Mohamed, “Legonn: Building modular
encoder-decoder models,” arXiv:2206.03318, 2022.

[15] Ke Hu, Tara N Sainath, Ruoming Pang, and Rohit Prab-
havalkar, “Deliberation model based two-pass end-to-end
speech recognition,” in ICASSP. IEEE, 2020, pp. 7799–7803.

[16] Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio
Norelli, Francesco Locatello, and Emanuele Rodolà, “Relative
representations enable zero-shot latent space communication,”
arXiv preprint arXiv:2209.15430, 2022.

[17] Michael Gygli, Jasper Uijlings, and Vittorio Ferrari, “Towards
reusable network components by learning compatible repre-
sentations,” in Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2021, vol. 35, pp. 7620–7629.

[18] Ethan A Chi, Julian Salazar, and Katrin Kirchhoff, “Align-
refine: Non-autoregressive speech recognition via iterative re-
alignment,” arXiv preprint arXiv:2010.14233, 2020.

[19] Weiran Wang, Ke Hu, and Tara N Sainath, “Deliberation of
streaming rnn-transducer by non-autoregressive decoding,” in
Proc. ICASSP. IEEE, 2022, pp. 7452–7456.

[20] Weiran Wang, Ke Hu, and Tara N Sainath, “Streaming align-
refine for non-autoregressive deliberation,” arXiv preprint
arXiv:2204.07556, 2022.

[21] Tara N Sainath, Yanzhang He, Arun Narayanan, Rami Botros,
et al., “Improving the latency and quality of cascaded en-
coders,” in Proc. ICASSP. IEEE, 2022, pp. 8112–8116.

[22] A. Gulati, J. Qin, C.-C. Chiu, et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proc. In-
terspeech, 2020.

[23] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhu-
ber, “Connectionist Temporal Classification: Labeling Unseg-
mented Sequenece Data with Recurrent Neural Networks,” in
Proc. ICML, 2006.

[24] A. Graves, “Sequence Transduction with Recurrent Neural
Networks,” CoRR, vol. abs/1211.3711, 2012.

[25] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell,” CoRR, vol. abs/1508.01211, 2015.

[26] A. Narayanan, R. Prabhavalkar, C.-C. Chiu, et al., “Recogniz-
ing Long-Form Speech Using Streaming End-to-End Models,”
in Proc. ASRU, 2019.

[27] M. Schuster and K. Nakajima, “Japanese and Korean voice
search,” in Proc. ICASSP, 2012.

[28] R. Botros and T.N. Sainath, “Tied & reduced rnn-t decoder,”
in Proc. Interspeech, 2021.

[29] T. N. Sainath, Y. He, B. Li, et al., “A Streaming On-
Device End-To-End Model Surpassing Server-Side Conven-
tional Model Quality and Latency,” in Proc. ICASSP, 2020.

[30] D. Hwang, K. Sim, Z. Huo, and T. Strohman, “Pseudo Label
Is Better Than Human Label,” in Proc. ICASSP, 2022.

[31] H. Liao, E. McDermott, and A. Senior, “Large Scale Deep
Neural Network Acoustic Modeling with Semi-supervised
Training Data for YouTube Video Transcription,” in Proc.
ASRU, 2013.

[32] “Google ai principles,” https://ai.google/
principles/.

[33] C. Kim, A. Misra, K. Chin, et al., “Generation of Large-Scale
Simulated Utterances in Virtual Rooms to Train Deep-Neural
Networks for Far-Field Speech Recognition in Google Home,”
in Proc. Interspeech, 2017.

[34] J. Li, D. Yu, J. Huang, and Y. Gong, “Improving Wideband
Speech Rcognition using Mixed-bandwidth Training Data in
CD-DNN-HMM,” in Proc. SLT, 2012.

[35] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E.D. Cubuk,
and Q.V. Le, “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition,” in Proc. Inter-
speech, 2019.

[36] Awni Hannun, “The label bias problem,” 2020.
[37] Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham Neu-

big, Florian Metze, Alan W Black, and Shinji Watanabe, “Ctc
alignments improve autoregressive translation,” arXiv preprint
arXiv:2210.05200, 2022.

https://ai.google/principles/
https://ai.google/principles/

	1 Introduction
	2 Modeling
	2.1 Base Model
	2.2 Exporting Lego-Features
	2.3 Downstream Models
	2.3.1 Downstream RNN-T Decoder
	2.3.2 Downstream LAS decoder / Deliberation

	3 Experimental settings
	3.1 CTC Logit Evaluation
	3.2 WER and Modularity Test
	3.3 Architectural Details
	3.4 Datasets

	4 Experimental Results
	4.1 Preliminary CTC Decoder Evaluation
	4.2 Base RNN-T vs. Downstream RNN-T
	4.3 Deliberation on N-Best vs. Lego-Features
	4.3.1 Speed Comparison

	5 Conclusions and Future Work
	6 References

