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ABSTRACT

Many point cloud classification methods are developed under
the assumption that all point clouds in the dataset are well aligned
with the canonical axes so that the 3D Cartesian point coordinates
can be employed to learn features. When input point clouds are
not aligned, the classification performance drops significantly. In
this work, we focus on a mathematically transparent point cloud
classification method called PointHop, analyze its reason for failure
due to pose variations, and solve the problem by replacing its pose
dependent modules with rotation invariant counterparts. The pro-
posed method is named SO(3)-Invariant PointHop (or S3I-PointHop
in short). We also significantly simplify the PointHop pipeline using
only one single hop along with multiple spatial aggregation tech-
niques. The idea of exploiting more spatial information is novel.
Experiments on the ModelNet40 dataset demonstrate the superiority
of S3I-PointHop over traditional PointHop-like methods.

Index Terms— point cloud classification, rotation invariance,
PointHop

1. INTRODUCTION

Due to numerous applications in autonomous vehicles and robotics
perception, immersive media processing, 3D graphics, etc., 3D Point
Clouds have emerged to be a popular form of representation for 3D
vision tasks. Research and development on point cloud data process-
ing has attracted a lot of attention. Recent trends show a heavy in-
clination towards development of learning-based methods for point
clouds.

One of the primary tasks in point cloud understanding is object
classification. The task is to assign a category label to a 3D point
cloud object scan. The unordered nature of 3D point cloud demands
methods to be invariant to N ! point permutations for a scan of N
points. It was demonstrated in the pioneering work called Point-
Net [1] that permutation invariance can be achieved using a symmet-
ric function such as the maximum value of point feature responses.
Besides permutations, invariance with respect to rotations is desir-
able in many applications such as 3D registration. In particular, point
cloud features are invariant with any 3D transformation in the SO(3)
group; namely, the group of 3× 3 orthogonal matrices representing
rotations in 3D.

Achieving rotation invariance can guarantee that point clouds
expressed in different orientations are regarded the same and,
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thereby, the classification result is unaffected by the pose. State-
of-the-art methods do not account for rotations, and they perform
poorly in classifying different rotated instances of the same object.
In most cases, objects are aligned in a canonical pose before being
fed into a learner. Several approaches have been proposed to deal
with this problem. First is data augmentation, where different ro-
tated instances of the same object are presented to a learner. Then,
the learner implicitly learns to reduce the error metric in classify-
ing similar objects with different poses. This approach leads to an
increase in the computation cost and system complexity. Yet, there
is no guarantee in rotational invariance. A more elegant way is to
design point cloud representations that are invariant to rotations.
Thus, point cloud objects expressed in different orientations are
indistinguishable to classifiers. Another class of methods are based
on SO(3) equivariant networks, where invariance is obtained as a
byproduct of the equivariant point cloud features.

Point cloud classification based on the green learning principle
was first introduced in PointHop [2]. The work is characterized by its
mathematical transparency and lightweight nature. The methodol-
ogy has been successfully applied to point cloud segmentation [3,4]
and registration [5]. For point cloud classification, both PointHop
and its follow-up work PointHop++ [6] assume that the objects are
pre-aligned. Due to this assumption, these methods fail when classi-
fying objects with different poses.

In this work, we propose an SO(3) invariance member for the
PointHop family, and name it S3I-PointHop. This is achieved
through the derivation of invariant representations by leveraging
principal components, rotation invariant local/global features, and
point-based eigen features. Our work has two main contributions.
First, the pose dependent octant partitioning operation in PointHop
is replaced by an ensemble of three rotation invariant representations
to guarantee SO(3) invariance. Second, by exploiting the rich spatial
information, we simplify multi-hop learning in PointHop to one-
hop learning in S3I-PointHop. Specifically, two novel aggregation
schemes (i.e., conical and spherical aggregations in local regions)
are proposed, which makes one-hop learning possible.

The rest of this paper is organized as follows. Related material
is reviewed in Sec. 2. The S3I-PointHop method is proposed in Sec.
3. Experimental results are presented in Sec. 4. Finally, concluding
remarks are given in Sec. 5.

2. RELATED WORK

2.1. Green Point Cloud Learning

Green learning (GL) [7] is a data-driven learning methodology. It
uses training data statistics to derive representations without labels.
The learning process utilizes the Saab transform [8] or the channel-
wise Saab transform [9]. GL is a radical departure from neural

ar
X

iv
:2

30
2.

11
50

6v
1 

 [
cs

.C
V

] 
 2

2 
Fe

b 
20

23



Fig. 1. An overview of the proposed S3I-PointHop method: 1) an input point cloud scan is approximately aligned with the principal axes, 2)
local and global point features are extracted and concatenated followed by the Saab transform, 3) point features are aggregated from different
conical and spherical volumes, 4) discriminant features are selected using DFT and a linear classifier is used to predict the object class.

networks. It has achieved impressive results for point cloud data
processing. For example, PointHop and PointHop++ offer compet-
itive performance in classification of aligned point clouds. They
both have three main modules: 1) hierarchical attribute construction
based on the distribution of neighboring points in the 3D space and
attribute dimensionality reduction using the Saab/channel-wise Saab
transform, 2) feature aggregation, and 3) classification. The capa-
bility of GL has been demonstrated by follow-ups, including point
cloud segmentation [3, 4], registration [5, 10], odometry [11], and
pose estimation [12]. GL-based point cloud processing techniques
are summarized in [13]. Similar to early point cloud classification
methods, PointHop and PointHop++ fail to classify objects of arbi-
trary poses.

2.2. Rotation Invariant Networks

Early pioneering deep networks for point cloud processing tasks
such as PointNet [1], PointNet++ [14], DGCNN [15] and PointCNN
[16] are susceptible to point cloud rotations. Designing rotation
invariant networks has been popular for 3D registration when global
alignment is needed. Methods such as PPFNet [17] and PPF-
FoldNet [18] achieve partial and full invariance to 3D transforma-
tions, respectively. The idea behind any rotation invariant method
is to design a representation that is free from the pose information.
This is done by exploiting properties of 3D transformations such as
preservation of distances, relative angles, and principal components.
Global and local rotation invariant features for classification were
proposed in [19], which form a basis of our method. Ambiguities
associated with global PCA alignment were analyzed and a dis-
ambiguation network was proposed in [20]. Another approach is
the design of equivariant neural networks that achieve invariance
via certain pooling operations. SO(3)- and SE(3)-equivariant con-
volutions make networks equivariant to the 3D rotation and 3D
roto-translation groups, respectively. Exemplary work includes the
Vector Neurons [21] for classification and segmentation, results
in [22, 23] for category-level pose estimation.

3. PROPOSED S3I-POINTHOP METHOD

The S3I-PointHop method assigns a class label to a point cloud scan,
X , whose points are expressed in an arbitrary coordinate system. Its
block diagram is shown in Fig. 1. It comprises of object coarse
alignment, feature extraction, dimensionality reduction, feature ag-
gregation, feature selection and classification steps as detailed below.

3.1. Pose Dependency in PointHop

The first step in PointHop is to construct a 24-dimensional local de-
scriptor for every point based on the distribution of 3D coordinates
of the nearest neighbors of that point. 3D rotations are distance pre-
serving transforms and, hence, the distance between any two points
remains the same before and after rotation. As a consequence, the
nearest neighbors of points are unaffected by the object pose. How-
ever, the use of 3D coordinates makes PointHop sensitive to rota-
tions since the 3D Cartesian coordinates of every point change with
rotation. Furthermore, the 3D space surrounding the current point is
partitioned into 8 octants using the standard coordinate axes. The co-
ordinate axes change under different orientations of the point cloud
scan. We align an object with its three principal axes. The PCA
alignment only offers a coarse alignment, and it comes with several
ambiguities as pointed out in [20]. Furthermore, object asymmetries
may disturb the alignment since PCA does not contain semantic in-
formation. Yet, fine alignment is not demanded. Here, we develop
rotation invariant features based on PCA aligned objects.

3.2. Feature Extraction

Local and global information fusion is effective in feature learning
for point cloud classification [15]. To boost the performance of S3I-
PointHop, three complementary features are ensembled. The first
feature set contains the omni-directional octant features of points in
the 3D space as introduced in PointHop. That is, the 3D space is
partitioned into eight octants centered at each point as the origin.
The mean of 3D coordinates of points in each octant then consti-
tute the 24D octant feature. The second feature set is composed
by eigen features [24] obtained from the covariance analysis of the
neighborhood of a point. They are functions of the three eigen values
derived from the Singular Value Decomposition (SVD) of the local
covariance matrix. The 8 eigen features comprise of linearity, pla-
narity, anisotropy, sphericity, omnivariance, verticality, surface vari-
ation and eigen entropy. They represent the surface information in
the local neighborhood. The third feature set is formed by geometric
features derived from distances and angles in local neighborhoods
as proposed in [19]. For simplicity, we replace the geometric me-
dian in [19] with the mean of the neighboring coordinates. The 12D
feature representation is found using the K nearest neighbors, lead-
ing to a pointwise 12×K matrix. While a small network is trained
in [19] to aggregate these features into a single vector, we perform a
channel-wise max, mean and l2-norm pooling to yield a 36D vector
of local geometric feature. The octant, covariance and geometric fea-
tures are concatenated together to build a 68D (24 + 8 + 36 = 68)



feature vector. After that, the Saab transform is performed for di-
mension reduction.

Fig. 2. Illustration of conical and spherical aggregation. The conven-
tional “global pooling” is shown in (a), where features of all points
are aggregated at once. The proposed “regional pooling” schemes
are depicted in (b)-(d), where points are aggregated only in distinct
spatial regions. Only, the solid red points are aggregated. For better
visual representation, cones/spheres along only one axis are shown.
(b) and (c) use the conical pooling while (d) adopts spherical pooling
in local regions.

3.3. Feature Aggregation

The point features need to be aggregated into a global point cloud
feature for classification. A symmetric aggregation function such as
max or average pooling is a popular choice for feature aggregation.
Four aggregations (the max, mean, l1 norm, and l2 norm) have been
used in PointHop and PointHop++. Instead of aggregating all points
globally at once as shown in Fig. 2 (a), we propose to aggregate
subsets of points from different spatial regions here. We consider
regions of the 3D volume defined by cones and spheres.

For conical aggregation, we consider two types of cones, one
with tip at the origin and the other with tip at a unit distance along
the principal axes. They are illustrated in Figs. 2 (b) and (c), re-
spectively. The latter cone cuts the plane formed by the other two
principal axes in a unit circle and vice versa for the former. For each
principal axis, we get four such cones, two along the positive axis
and two along the negative. Thus, 12 cones are formed for all three
axes in total. For each cone, only the features of points lying in-
side the cone are pooled together. The pooling methods are the max,
mean, variance, l1 norm, and l2 norm. This means for a single point
feature dimension, we get a 5D feature vector from each cone.

For spherical aggregation, we consider four spheres of a quar-
ter radius centered at a distance of positive/negative one and three
quarters from the origin along each principal axis. One example is
illustrated in Fig. 2 (d). This gives 12 spheres in total. Points lying
in each sphere are pooled together in a similar manner as cones. For

instance, points lying in different cones for four point cloud objects
are shaded in Fig. 3.

Unlike max/average pooling, aggregating local feature descrip-
tors into a global shape descriptor such as Bag of Words (BoW) or
Vector of Locally Aggregated Descriptors (VLAD) [25] is common
in traditional literature. On the other hand, the region-based local
spatial aggregation has never been explored before. These resulting
features are powerful in capturing local geometrical characteristics
of objects.

Fig. 3. An example of conical aggregation. For every point cloud
object, points lying in each cone are colored uniquely.

3.4. Discriminant Feature Selection and Classification

In order to select a subset of discriminant features for classification,
we adopt the Discriminant Feature Test (DFT) as proposed in [26].
DFT is a supervised learning method that can rank features in the
feature space based on their discriminant power. Since they are cal-
culated independently of each other, the DFT computation can be
parallelized. Each 1D feature f i of all point clouds are collected and
the interval [f i

min, f
i
max] is partitioned into two subspaces Si

L and
Si
R about an optimal threshold f i

op. Then, the purity of each sub-
space is measured by a weighted entropy loss function. A smaller
loss indicates stronger discriminant power. DFT helps control the
number of features fed to the classifier. As shown in Sec. 4, it im-
proves the classification accuracy significantly and prevents classi-
fier from overfitting. In our experiments, we select top 2700 features.
Finally, we train a linear least squares classifier to predict the object
class.

4. EXPERIMENTS

We evaluate the proposed S3I-PointHop method for the point cloud
classification task on the ModelNet40 dataset [27], which consists
of 40 object classes. Objects in ModelNet40 are pre-aligned. We
rotate them in the train and test sets in the following experiments.
The rotation angles are uniformly sampled in [0, 2π]. We use z to
denote random rotations along the azimuthal axis and SO(3) to in-
dicate rotations about all three orthogonal axes. In Tables 1, 2 and
3, z/SO(3) means that the training set follows the z rotations while
the test set adopts SO(3) rotations, and so on. For all experiments,
we set the numbers of nearest neighbors in calculating geometric,
covariance, and octant features to be 128, 32, and 64, respectively.

4.1. Comparison with PointHop-family Methods

Table 1 compares the performance of S3I-PointHop, PointHop [2],
PointHop++ [6] and R-PointHop [5]. Clearly, S3I-PointHop out-
performs the three benchmarking methods by a huge margin. Al-
though R-PointHop was proposed for point cloud registration and
not classification, we include it here due to its rotation invariant fea-
ture characteristics. Similar to the global aggregation in PointHop
and PointHop++, we aggregate the point features of R-PointHop



and train a Least Squares classifier. We also report the classifica-
tion accuracy with only one hop for these methods. Both PointHop
and PointHop++ perform poor since their features are not invariant
to rotations. Especially, for the z/SO(3) case, there is an imbal-
ance in the train and test sets, the accuracy is worse. R-PointHop
only considers local octant features with respect to a local reference
frame. Although they are invariant to rotations, they are not optimal
for classification.

Table 1. Classification accuracy comparison of PointHop-family
methods.

Method # hops z/z z/SO(3) SO(3)/SO(3)

PointHop [2]
1 70.50 21.35 45.70

4 75.12 22.85 50.48

PointHop++ [6]
1 9.11 7.90 9.09

4 82.49 20.62 57.61

R-PointHop [5]
1 53.44 53.42 53.44

4 64.87 64.86 64.86

S3I-PointHop 1 83.10 83.10 83.10

4.2. Comparison with Deep Learning Networks

We compare the performance of S3I-PointHop with 4 deep-learning-
based point cloud classification networks in Table 2. They are Point-
Net [1], PointNet++ [14], PointCNN [16] and Dynamic Graph CNN
(DGCNN) [15]. Since these methods were originally developed for
aligned point clouds, we retrain them with rotated point clouds and
report the corresponding results. We see from the table that S3I-
PointHop outperforms these benchmarking methods significantly.
These methods offer reasonable accuracy when rotations are re-
stricted about the azimuthal (z) axis. However, they are worse when
rotations are applied about all three axes.

Table 2. Comparison with Deep Learning Networks.
Method z/z z/SO(3) SO(3)/SO(3)

PointNet [1] 70.50 21.35 45.70

PointNet++ [14] 75.12 22.85 50.48

PointCNN [16] 82.11 24.89 51.66

DGCNN [15] 82.49 20.62 57.61

S3I-PointHop 83.10 83.10 83.10

4.3. Ablation Study

It is worthwhile to consider the contributions of different elements
in S3I-PointHop. To do so, we conduct an ablation study and report
the results in Table 3. From the first three rows, it is evident that
the global octant features are most important, and their removal re-
sults in the highest drop in accuracy. The results also reinforce the
fact that locally oriented features such as those in R-PointHop are
not optimal for classification. In rows 4 and 5, we compare the pro-
posed spatial aggregation scheme (termed as local aggregation) with
global pooling as done in PointHop. The accuracy sharply drops by
12% when only the global aggregation is used. Clearly, global ag-
gregation is not appropriate in S3I-PointHop. Finally, we show in

the last row that the accuracy drops to 78.56% without DFT. The is
because, when the feature dimension is too high, the classifier can
overfit easily without DFT.

Table 3. Ablation Study
Feature Aggregation

DFT SO(3)/SO(3)
Geometric Covariance Octant Local Global

X X X X 82.49

X X X X 82.45

X X X X 80.75

X X X X X 83.10
X X X X X 71.02

X X X X 78.56

4.4. Discussion

One advantage of S3I-PointHop is that its rotation invariant features
allow it to handle point cloud data captured from different orienta-
tions. To further support this claim, we retrain PointHop with PCA
coarse alignment as a pre-processing step during the training and the
testing. The test accuracy is 78.16% and 74.10% with four-hop and
one-hop, respectively. This reinforces that only the PCA alignment
is not the reason for the performance gain of S3I-PointHop. While
efforts to learn rotation invariant features were already made in R-
PointHop, we see that the lack of global features in it degrades its
performance. On the other hand, appending the same global feature
to R-PointHop does not help in the registration problem.

An interesting aspect of S3I-PointHop is its use of a single hop
(rather than four hops such as in PointHop). It is generally per-
ceived that deeper networks perform better than shallower counter-
parts. However, the use of multiple spatial aggregations on top of a
single hop, S3I-PointHop can achieve good performance. This leads
to the benefit of reducing the training time and the model size as
explained below.

In any point-cloud processingn method, one of the most costly
operations is the nearest neighbor search. To search the k nearest
neighbors of each of N points, the complexity of an efficient algo-
rithm is O(k logN). PointHop uses the nearest neighbor search in
four hops and three intermediate farthest point downsampling opera-
tions. In contrast, the nearest neighbor search is only conducted once
for each point in S3I-PointHop. Another costly operation is the PCA
in the Saab transform. It is performed only once in S3I-PointHop.
Its model size is 900 kB, where only one-hop Saab filters are stored.

5. CONCLUSION AND FUTURE WORK

A point cloud classification method called S3I-PointHop was pro-
posed. It extends PointHop-like methods for 3D classification of ob-
jects which have arbitrary orientations. S3I-PointHop extracts local
and global point neighborhood information using an ensemble of ge-
ometric, covariance and octant features. Only a single hop is adopted
in S3I-PointHop followed by conical and spherical aggregations of
point features from multiple spatial regions. There are several pos-
sible extensions of this work. It is desired to further improve the
performance of S3I-PointHop and compare it with that of state-of-
the-art rotation invariant and equivariant networks. Furthermore, it
is interesting to examine the application of single-hop rotation in-
variant methods to the registration problem and the pose estimation
problem.
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