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ABSTRACT

Out-of-distribution (OOD) detection has recently received much attention from
the machine learning community due to its importance in deploying machine
learning models in real-world applications. In this paper we propose an uncertainty
quantification approach by modelling the distribution of features. We further
incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct
the batch-ensemble stochastic neural networks (BE-SNNs) and overcome the
feature collapse problem. We compare the performance of the proposed BE-SNNs
with the other state-of-the-art approaches and show that BE-SNNs yield superior
performance on several OOD benchmarks, such as the Two-Moons dataset, the
FashionMNIST vs MNIST dataset, FashionMNIST vs NotMNIST dataset, and the
CIFAR10 vs SVHN dataset.

1 INTRODUCTION

Identifying out-of-distribution (OOD) samples that neural networks have never observed on is a
critical and challenging task for applying deep learning models in real-world scenarios. Various OOD
detection methods have been proposed to enhance the reliability of deep learning models (Wen et al.,
2019; Ren et al., 2019; Zhou et al., 2021; Sun et al., 2021; Liu et al., 2020; van Amersfoort et al.,
2020; Wan et al., 2018; Kim et al., 2021). One main branch of current OOD detection approaches is
the so-called post hoc methods, where some selected statistics of the model outputs are post-processed
after training, in order to differentiate in-distribution samples from OOD samples (Ren et al., 2019;
Zhou et al., 2021; Sun et al., 2021; Liu et al., 2020). In contrast, another line of work resorts to
evaluating the uncertainties of trained models in their predictions to detect OOD samples (Wen et al.,
2019; van Amersfoort et al., 2020; Wan et al., 2018). In this paper, we focus on the latter one, i.e.
detecting OOD samples using uncertainty estimation techniques.

A majority of approaches for estimating uncertainty in deep learning models can be categorized into
two classes. The first class relies on the ensemble of deep neural networks (Lakshminarayanan et al.,
2017; Wen et al., 2019), where the outputs of multiple individually trained models are combined to
estimate the uncertainty. The second family of uncertainty estimation approaches aims to measure
the predictive uncertainty using deterministic single forward pass neural networks (van Amersfoort
et al., 2020; Wan et al., 2018; Mukhoti et al., 2021), where the uncertainty is estimated by modelling
the distribution of features.

Despite their success on benchmark datasets, both deep ensemble methods and deterministic single
forward pass neural networks methods have limitations respectively. An obvious disadvantage of deep
ensemble methods is their computational costs (Durasov et al., 2021; Wen et al., 2019; Dusenberry
et al., 2020). Particularly, ensemble methods are limited in practice since each ensemble member
requires an independent copy of neural network weights and they need to be trained separately.
Therefore, their computational and memory costs increase linearly with the ensemble size in both
training and testing (Wen et al., 2019). In contrast, although single forward-pass methods have shown
to be efficient in modelling uncertainties, they suffered from the so-called feature collapse problem,
which can lead to its failure in estimating uncertainties. Specifically, feature collapse can result in the
mapping of the features of out-of-distribution (OOD) inputs into the same region of in-distribution
sample features (Mukhoti et al., 2021).
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To take the best from both worlds, we propose the batch-ensemble stochastic neural networks (BE-
SNNs), an OOD detection method consisting of a novel single forward-pass approach proposed
in this paper and an efficient ensembling mechanism inspired by (Wen et al., 2019). We assume
that different ensemble members of deterministic neural networks can converge to different local
minima, thus they will capture different modes of data. Therefore, we can rely on the disagreement
between ensemble members to prevent feature collapse by taking predictions given by all members
into account.

Our main contributions are as follows:
(i) The proposed BE-SNNs can overcome the undesirable feature collapse in single forward-pass
methods while also maintaining their low computational cost. We achieve this by constructing an
ensemble of single forward pass models with the efficient batch-ensemble mechanism (Wen et al.,
2019).
(ii) The novel single forward pass model used in BE-SNNs provides a flexible way to capture the
distribution of data features, by representing the distribution of class features with a set of feature
vectors produced by a class-dependent feature generator. Within this framework, the empirical distri-
bution may be of more complex structure than simple distributions such as Gaussian with diagonal
covariance matrices.
(iii) We demonstrate the effectiveness of the BE-SNNs on several OOD detection benchmarks, includ-
ing the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionMNIST vs NotMNIST,and
the CIFAR-10 vs SVHN dataset.

2 PRELIMINARIES

In this section, we first describe the problem of out-of-distribution (OOD) detection for classification
tasks. We then provide a brief introduction to the batch-ensemble mechanism (Wen et al., 2019).

2.1 PROBLEM STATEMENT

Denote by X the input space of a classifier f : X → RC , where C is the number of classes and the
output f(x) of the classifier predicts the probability of an input sample x ∈ X belonging to each class.
Let the classifier f(·) be a neural network trained on a dataset drawn from Din defined on the input
space X , and we denote by Din the in-distribution of the classifier f(·). In OOD detection problems,
the input sample x during testing time can be drawn from a mixture distribution Dmix consisting of
the in-distribution Din and an out-distribution Dout, which is also defined on the input space X . The
out-distribution Dout is supposed to be a data distribution distinct from the in-distribution Din.

Within this setup, given an input sample x ∼ Dmix drawn from the mixture distribution, the goal of
the OOD detection task is to decide whether the input x is an in-distribution sample xin ∼ Din or an
out-distribution sample xout ∼ Dout. In other words, OOD detectors aim to find a decision function
S(x) such that:

S(x) =

{
0 if x ∼ Dout

1 if x ∼ Din
, (1)

where x is an input sample drawn from the mixture distribution Dmix.

To achieve the above goal, one common solution is to compute a specified OOD score of a given input
x, and classify x as in-distribution if its OOD score is within a given threshold or as an OOD sample
otherwise. It is also worth noting that OOD scores can be considered as examples of score functions
in conformal outlier detection introduced in Section 6.3 of (Angelopoulos and Bates, 2021), where
the OOD (conformal) threshold is determined by calculating a quantile of inliers’ conformal score.
However, to comprehensively assess OOD detectors’ ability to identify OOD samples, it is required
to evaluate their overall performance by taking all different levels of OOD (conformal) thresholds into
account. In this work, we compute the OOD score through the proposed batch-ensemble stochastic
neural network framework, and evaluate the performance of the proposed method using commonly
adopted evaluation metrics such as FPR, AUROC, AUPRC following (Liu et al., 2020; Sun et al.,
2021; van Amersfoort et al., 2020; Ren et al., 2019).
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2.2 BATCH-ENSEMBLE

Inspired by the fact that deep neural networks trained from random initialization can converge to
different local optima and thus may not make the same error given the same input, (Lakshminarayanan
et al., 2017) proposed deep ensembles. By utilizing a collection of predictions given by different
ensemble members, deep ensemble was shown to achieve better performance than an individual
neural network and give reliable predictive uncertainty estimates. However, running multiple copies
of neural networks both in training and testing hinders further applications of deep ensembles due to
high computational costs.

As an alternative, (Wen et al., 2019) proposed batch-ensemble (BE), which is a parameter efficient
variant of deep ensemble that construct ensembles over a rank-1 subspace of networks’ weights.
Denote by W ∈ Rm×n the weight matrix of a neural network layer, where m is the input dimension
and n the output dimension. Each ensemble member is assigned with a pair of trainable vectors
rne ∈ Rm and sne ∈ Rn, where ne ∈ {1, · · · , Ne} and Ne is the ensemble size. The weights Wne
of ensemble members are then obtained by calculating:

Wne = W ◦ Fne , (2)

where ◦ refers to the element-wise product, W is shared across ensemble members, and Fne =
rnes

>
ne ∈ Rm×n is a rank-one matrix which generates the weight matrix for the ne-th ensemble

member. Given a batch-ensemble layer with input x, the output y of the layer can be computed by:

y = φ
(
W
>
nex
)

= φ
((
W ◦ rnes>ne

)>
x
)

(3)

= φ
((
W> (x ◦ rne)

)
◦ sne

)
, (4)

where φ denotes the activation function. More generally, given a mini-batch X ∈ RB×m with B
samples, Equation (4) can be vectorized as:

Y = φ(((X ◦R)W ) ◦ S) , (5)

where Y and X are mini-batch output and input, respectively, and R ∈ RB×m and S ∈ RB×n are
matrices whose rows consist of vectors rne and sne .

With the rank-1 ensemble mechanism described above, the batch-ensemble brings almost no ad-
ditional computational cost as the only memory overhead is the set of vectors {r1, r2, · · · , rNe}
and {s1, s2, · · · , sNe}, which are much cheaper compared to the full weight matrices. Notably,
it is reported in (Wen et al., 2019) that batch-ensemble of ResNet-32 of size 4 incurs 10% more
parameters, while the vanilla ensemble method incurs 300% more parameters.

3 BATCH-ENSEMBLE STOCHASTIC NEURAL NETWORKS

We present in this section the details of the proposed batch-ensemble stochastic neural networks
(BE-SNNs) within a multi-class classification problem. In the following contents. we use BE-SNN-1
to denote a single ensemble member of BE-SNNs.

Framework of BE-SNNs. For simplicity and without loss of generality, we first introduce how
an individual realisation of BE-SNNs, i.e., BE-SNN-1, works. The BE-SNN-1 consists of a data
feature extractor Φθ : X → Rd mapping the input sample x ∈ X to a feature space, and a class
feature generator Ψθ(·) outputting the distribution of feature representations of each class. The
distribution of class features in the BE-SNN-1, as well as BE-SNNs in general, is represented by a set
of feature vectors for each class. This construction enables BE-SNNs to approximate more complex
distributions than pre-defined simple distributions such as diagonal Gaussian distributions.

In particular, the class feature generator Ψθ : RC+dε → Rd takes a one-hot class label hc ∈ RC and
a random vector εm ∈ Rdε as its input, then outputs d-dimensional class-dependent feature vectors
ec,m:

ec,m = Ψθ(hc, εm) for ∀m ∈ {1, · · · ,M}; ∀c ∈ {1, · · · , C} , (6)

where εm∼N (0, Idε), M is the number of feature vectors for each class, and the distribution of the
c-th class in the feature space is represented by a collection of feature vectors Ec := {ec,m}Mm=1.
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The BE-SNN-1 classifies a given input sample x based on the distance from extracted input features
Φθ(x) to the feature representation Ec of each class. Here, we adopt the average squared Euclidean
distance d̄c(x) = 1

M

∑M
m=1 ||Φθ(x) − ec,m||22 as the distance metric, where || · ||2 denotes the

L2-norm. Each time BE-SNN-1 makes a prediction, the class feature extractor will generate a set
of feature vectors Ec := {ec,m}Mm=1 by drawing M random samples {εm}Mm=1 from the standard
Gaussian distribution N (0, Idε), and classify the input x as the class with the minimum distance to
the feature vector of the input, which is equivalent to the class with the maximum kernel value:

argmax
c

(exp(−d̄c(x))) = argmax
c

{
exp(− 1

M

M∑
m=1

||Φθ(x)− ec,m||22)
}
. (7)

However, as discussed in Section 1, evaluating the uncertainty by modelling the distribution of
data features may suffer from feature collapse. Therefore, we now discuss how to utilize the batch-
ensemble mechanism to avoid feature collapse and introduce the proposed batch-ensemble stochastic
neural networks (BE-SNNs).

Firstly, we build an ensemble of BE-SNN-1s by using batch-ensemble layers introduced in Section 2.2,
thus each batch-ensemble layer has their own trainable vectors {rl,ne}

Ne
ne=1 and {sl,ne}

Ne
ne=1, where

l is the layer index, and Ne is the ensemble size. Since the weights defined in Equation (2) are
dependent on the trainable vectors {rl,ne}

Ne
ne=1 and {sl,ne}

Ne
ne=1, the output layer of BE-SNNs has

Ne different outputs. As a result, the data feature extractors {Φθne (·)}Nene=1 in BE-SNNs produce Ne
different feature vectors for a given input x. And the class feature generators {Ψθne

(·)}Nene=1 produce
Ne ×M feature vectors for each class.

To make a prediction for a given input x, the BE-SNNs classify x as the class with the maximum
average kernel value:

argmax
c

{ 1

Ne

Ne∑
ne=1

exp(− 1

M

M∑
m=1

||Φθne (x)− ene,c,m||22)
}
. (8)

Loss functions of BE-SNNs. We first introduce the loss function for an individual ensemble member
of BE-SNNs. The loss function of BE-SNN-1 consists of two parts, a classification loss and regular-
ization terms. For the classification loss, we use the cross entropy loss between the exponentiated
negative distance ỹc = exp(−d̄c(x)) and the one-hot ground-truth class label y:

Lcls(ỹ, y) = −
C∑
c=1

yc log(ỹc) + (1− yc) log(1− ỹc) , (9)

where yc indicates the c-th element of the one-hot ground-truth label y.

Entropy-based Regularization. To prevent class feature vectors Ec := {ec,m}Mm=1 from degenerat-
ing to single point estimates, i.e. feature vectors ec,m converging to almost the same value for all
m ∈ {1, · · · ,M}, we add a regularization term Rc(·) into the loss function. Particularly, we design
the regularization term Rc(·) to encourage the entropy of the c-th class feature to be proportional to
that of the data sample feature belonging to the c-th class. To achieve this, we first approximate the
entropy Ĥ({Φθ(x)|yc = 1}) of the data sample feature for all c ∈ {1, · · · , C} using the k-nearest
neighbour entropy estimator proposed in (Lombardi and Pant, 2016). The class-dependent entropy
Ĥ({Φθ(x)|yc = 1}) is then used as a threshold to penalise class features whose entropy is smaller
than this threshold. The described regularization term can be computed as follows:

Rc(Ec) = Rc({ec,m}Mm=1) (10)

= max

(
0, Ĥ({Φθ(x)|yc = 1})− Ĥ({ec,m}Mm=1)

)
. (11)

In addition, the loss function of BE-SNN-1 also includes a gradient penalty term Lgp(ỹ) to encourage
sensitivity of the classifier as in (van Amersfoort et al., 2020):

Lgp(ỹ) =

∥∥∥∥∥∇x
∑
c

ỹc

∥∥∥∥∥
2

2

− 1

2

, (12)
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where∇x
∑
c ỹc is the derivative of

∑
c ỹc w.r.t to the input x. The overall loss function for the ne-th

ensemble member of the BE-SNN model is as follows:

Lne = Lcls(ỹ, y) + λ1

C∑
c=1

Rc(Ec) + λ2Lgp(ỹ) . (13)

To train BE-SNNs, we minimize the average loss functions across all ensemble members, the loss
function of BE-SNNs is:

LBE-SNNs =
1

Ne

Ne∑
ne=1

Lne . (14)

OOD detection score. Since softmax activations can produce arbitrarily high confidence even for
OOD samples (Liu et al., 2020), we propose to adopt an adaptively tempered variant of softmax
activation in the BE-SNNs for detecting OOD samples. Notably, this modified version of softmax is
only used for OOD detection, but not for training and making predictions for in-distribution samples.

Given a BE-SNN-1, denote by d̄(x) = [d̄1(x), · · · d̄C(x)] the distance vector for each class, we
compute a categorical distribution by using the tempered negative distance

ξ(x) =
−d̄(x)

exp(min
c

(d̄c(x)))
(15)

as the input of a standard softmax function σ(·), where min
c

(d̄c(x)) is the smallest distance between

class features and input features. It is worth mentioning that σ(ξ(x)) can be seen as a tempered
softmax prediction as in (Guo et al., 2017), whereas the tempering constant exp(min

c
(d̄c(x))) is

data-adaptive.

An intuitive interpretation of the above modification is that the further an input feature is from class
features, the more uniform the categorical distribution should be. This is realized by the introduction
of the adaptive tempering constant exp(min

c
(d̄c(x))) to avoid producing arbitrarily high confidence

on OOD samples.

We propose to use the entropy of the tempered softmax prediction H[ζ(x)] = −
∑
c ω̄c log ω̄c as the

OOD score, where

ζ(x) = [ω̄1, · · · , ω̄C ] , (16)

ω̄c =
1

Ne

Ne∑
ne=1

σc(ξne(x)) , (17)

and ξne(x) is the tempered negative distance of the ne-th ensemble member computed in Equa-
tion (15). The decision function in the BE-SNNs is as follows:

S(x) =

{
out-of-distribution if H[ζ(x)] ≥ τ
in-distribution if H[ζ(x)] < τ

, (18)

where τ is a user-specified threshold.

4 EXPERIMENTS

In this section, we evaluate the performance of BE-SNNs on several OOD benchmarks adopted by
previous works (van Amersfoort et al., 2020; Wan et al., 2018), including the Two-Moons dataset, the
FashionMNIST vs MNIST dataset, the FashionMNIST vs NotMNIST dataset, and the CIFAR10 vs
SVHN dataset. In all the experiments, we set the regularization coefficient λ1 in Equation (13) to be
1.0, and set λ2 to be 0.5. Details on network architectures employed in the experiment can be found
in Appendix A.
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(a) Deep ensemble (b) DUQ (c) BE-SNN-1

Figure 1: Visualized experimental results of deep ensemble, DUQ, and BE-SNN-1 on the Two-Moons dataset.
The confidence of models in their predictions is indicated by different colours, where blue corresponds to low
confidence, and yellow shows high confidence. Left plot shows that deep ensemble only has low confidence on
regions around its decision boundary. In contrast, BE-SNN-1 only produce high confidence predictions on the
regions where the model was trained on, and show gradually decreasing confidence on the other areas far away
from the training data. DUQ produces slightly more mismatch between the high confidence regions and the
samples which the model was trained with compared to the BE-SNN-1.

4.1 TWO MOONS DATASET

Following the setup in (van Amersfoort et al., 2020), we first visualize the performance of the
BE-SNN-1 on the Two-Moons dataset and compare it with the DUQ and a deep ensemble of softmax
networks with ensemble size of 4. As shown in Figure 1, the Two-Moons dataset is a 2-dimensional
classification dataset. In this experiment, while the evaluated dataset is a toy dataset, we do not only
focus on the classification accuracy since both models can achieve 100% accuracy, but also how well
the tested models can assign proper confidence scores to their predictions. Notably, for the DUQ and
BE-SNN-1, we consider the exponentiated distance to the closet centroid as the confidence of the
prediction, and the confidence of deep ensemble methods is evaluated by the maximum value of the
averaged softmax prediction.

The experiment results presented in Figure 1 indicate that, even with deep ensembles of softmax
network, it can still produce overconfident predictions on OOD samples. A possible reason is that
the Two-Moons dataset is too simple for the networks to converge to different local optima, thus all
ensemble members are almost the same after training. As a comparison, both the BE-SNN-1 and
the DUQ are able to assign proper confidence to their predictions, since it can be observed from
Figure 1 that they only produce high confidence predictions on the in-distribution, and show gradually
decreasing confidence on the other areas far away from the in-distribution.

In-Distibution Model OOD Accuracy↑ FPR95↓ AUROC↑ AUPRC↑

FashionMNIST

BE-SNNs MNIST 92.4%±0.1% 0.169±.016 0.961±.016 0.989±.002
NotMNIST 0.182±.057 0.970±.018 0.988±.005

DUQ MNIST 92.1%±0.1% 0.244±0.043 0.944±0.013 0.975±.004
NotMNIST 0.231±0.047 0.953±0.009 0.989±.007

Gaussian MNIST 92.0%±0.1% 0.274±0.041 0.932±0.014 0.980±.008
NotMNIST 0.281±0.061 0.940±0.012 0.982±.003

Softmax MNIST 92.3%±0.2% 0.564±0.051 0.889±0.034 0.930±.015
NotMNIST 0.531±0.121 0.910±0.013 0.941±.009

CIFAR-10
BE-SNNs SVHN 93.5%± 0.1% 0.359±.031 0.940±0.017 0.982±.007

DUQ SVHN 93.7%± 0.2% 0.452±.035 0.921±0.013 0.970±.006
Gaussian SVHN 93.1%± 0.1% 0.492±.045 0.919±0.009 0.975±.003
Softmax SVHN 93.9%± 0.1% 0.680±.032 0.872±0.024 0.924±.011

Table 1: Experiments results on FashionMNIST vs MNIST, FashionMNIST vs NotMNIST, and CIFAR-10 vs
SVHN datasets. Compared baselines are the DUQ (van Amersfoort et al., 2020), and the Gaussian classifier (Wan
et al., 2018). The lower the FPR95, the higher the AUROC and the AUPRC, the better the performance on the
OOD detection task. The mean and standard deviation are calculated over 5 random seeds.
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4.2 IMAGE CLASSIFICATION DATASETS

In this section, we evaluate the BE-SNNs’ ability to detect OOD samples on several image OOD
detection datasets, including the FashionMNIST vs MNIST dataset, the FashionMNIST vs NotMNIST
dataset, and the CIFAR10 vs SVHN dataset. Three baselines are compared with the BE-SNNs,
including a vanilla softmax neural network, the DUQ (van Amersfoort et al., 2020), and the Gaussian
classifier (Wan et al., 2018). While the DUQ and the Gaussian classifier adopt the negative likelihood
of the predicted class as the OOD score, the predictive entropy is used in the softmax neural network.

As for the evaluation metrics, we report following three OOD detection metrics in the experiment
results as in previous works (Liu et al., 2020; Kim et al., 2021; Sun et al., 2021): (i) FPR95, the false
positive rate of classifying OOD examples when the true positive rate (recall) of in-distribution is
95%; (ii) the area under the ROC curve (AUROC); (iii) the area under the precision-recall curve
(AUPRC). Lower FPR95, higher AUROC and AUPRC indicate better performance in OOD detection
tasks.

FashionMNIST vs MNIST & NotMNIST dataset. In this experiment, we train evaluated models
on the FashionMNIST dataset, and expect the models to be able to distinguish FashionMNIST (in-
distribution) samples from MNIST and NotMNIST (out-of-distribution) samples based on their OOD
scores. The feature extractors of DUQ, Gaussian classifier, and softmax networks are a convolutional
network consisting of three convolutional layers followed by a fully-connected output layer, and the
BE-SNNs are constructed by the batch-ensemble variants of the same convolutional network. The
class feature generator of BE-SNNs is simply a two layer fully-connected batch-ensemble network,
and the softmax network uses a fully-connected layer with softmax activation function to classify the
output of the feature extractor. The experiment results of BE-SNNs shown in Table 1 are achieved by
using Ne = 4 ensemble members. To draw a fair comparison, we design the network architectures of
evaluated methods to have similar number of parameters to be optimized as shown in Table 2.

It can be observed from Table 1 that all the evaluated methods produced similar classification
accuracy, while the evaluated OOD detection metrics varied among different methods. The softmax
network leads to the worst OOD detection metrics on both MNIST and NotMNIST datasets. The
BE-SNNs achieved comparable or even better OOD detection performance in most settings than the
evaluated baselines in terms of the FPR95, AUROC, and AUPRC. Regarding the runtime, the softmax
network is the most efficient approach as expected. The DUQ and the Gaussian classifier have similar
computational costs, while the BE-SNNs with 4 ensemble members require about 50% more time
to complete a forward propagation for a mini-batch containing 500 image samples. The relatively
high computational costs in single-forward pass methods are mainly caused by the computation of
distance matrices of input features and class features, which is more time-consuming than a simple
fully-connected layer in softmax networks.

We also compared the performance of BE-SNNs with different number of ensemble members in
Table 3. The experiment results in Table 3 demonstrate that as the ensemble size Ne increases, the
BE-SNNs produce better performance considering the classification accuracy and OOD detection
metrics. However, the improvement from Ne = 4 to Ne = 8 is only marginal, this is possibly due
to training method of batch-ensemble layers. Particularly, when training BE-SNNs, we repeat a
mini-batch with B samples Ne times so that each ensemble member receives the whole batch of
samples. We then keep the productB×Ne a constant as we changeNe, which implies that increasing
Ne will lead to a smaller batch size. This provides one plausible reason that the decreasing batch
size for Ne = 8 did not lead to better performance than Ne = 4 that require further investigation.
In addition, we also conducted ablation studies to investigate the effect of the adaptively tempered
softmax, and the gradient penalty regularization on the performance of BE-SNNs. Details of ablation
studies can be found in Appendix B.

CIFAR-10 vs SVHN dataset. We have also evaluated the performance of BE-SNNs on the CIFAR-
10 dataset, with the SVHN dataset as OOD dataset. In this experiment, ResNet-18 (He et al., 2016)
followed by an additional fully-connected output layer is used as the feature extractor. From Table 1,
we observe that the BE-SNNs present comparable classification accuracy to the other two baselines.
Notably, the BE-SNNs have significantly lower FPR95, higher AUROC and AUPRC than the DUQ
and the Gaussian classifier, indicating that the BE-SNNs have better performance on the OOD
detection task than the two baselines.
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Methods # Parameters Runtime per batch
BE-SNNs 1136878 5.9 ×10−3/s

DUQ 1009408 3.9 ×10−3/s
Gaussian 1080320 3.7 ×10−3/s
Softmax 1152778 1.4 ×10−3/s

Table 2: Number of parameters and runtime of the evaluated methods. The runtime refers to the computational
time of one forward propagation for a mini-batch containing 500 samples, and is calculated based on a computer
with an Intel(R) Core(TM) i9 @2.50GHz, 2496MHz 8 core processor, and a RTX 3090 graphic card with 64GB
RAM and 24GB GPU memory.

In-Distibution BE-SNNs OOD Accuracy↑ FPR95↓ AUROC↑ AUPRC↑

FashionMNIST

Ne = 1
MNIST 92.2%±0.1% 0.246±0.031 0.945±0.006 0.983±.004

NotMNIST 0.197±0.048 0.963±0.006 0.987±.007

Ne = 2
MNIST 92.2%±0.1% 0.204±0.052 0.956±0.011 0.985±.005

NotMNIST 0.211±0.042 0.955±0.013 0.984±.006

Ne = 4
MNIST 92.4%±0.1% 0.169±.016 0.961±.016 0.989±.002

NotMNIST 0.182±.057 0.970±.018 0.988±.005

Ne = 8
MNIST 92.4%±0.2% 0.174±0.032 0.972±0.011 0.990±.004

NotMNIST 0.181±0.047 0.969±0.010 0.987±.004

Table 3: Experiments results of BE-SNNs with different ensemble sizes Ne ∈ {2, 4, 8} on the FashionMNIST
vs MNIST and FashionMNIST vs NotMNIST datasets. Increasing the ensemble size Ne will ideally leads to
improved performance, we suspect that the decreasing batch size is the reason for the similar performances of
Ne = 4 and Ne = 8. The mean and standard deviation are calculated over 5 random seeds.

5 CONCLUSION

In this work, we proposed the batch-ensemble stochastic neural networks (BE-SNNs), an OOD
detection approach that incorporates the batch-ensemble mechanism with a novel single forward pass
uncertainty quantification framework. By aggregating the predictions given by different ensemble
members, BE-SNNs are algorithmically designed to overcome the feature collapse problem with
deterministic single-forward pass models. Besides, BE-SNNs are memory efficient and has low
computational cost. We also evaluated the performance of BE-SNNs on several OOD detection
benchmarks and compared BE-SNNs with other state-of-the-art OOD detection approaches. Exper-
iment results showed that BE-SNNs have superior performance on both toy and real-world image
datasets over the other evaluated methods.

REFERENCES

A. N. Angelopoulos and S. Bates. A gentle introduction to conformal prediction and distribution-free
uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

N. Durasov, T. Bagautdinov, P. Baque, and P. Fua. Masksembles for uncertainty estimation. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 13539–13548,
2021.

M. Dusenberry et al. Efficient and scalable Bayesian neural nets with rank-1 factors. In Proc.
International Conference on Machine Learning (ICML), pages 2782–2792, 2020.

C. Guo et al. On calibration of modern neural networks. In Proc. International Conference on
Machine Learning (ICML), pages 1321–1330, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE
conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

K. Kim, J. Shin, and H. Kim. Locally most powerful Bayesian test for out-of-distribution detec-
tion using deep generative models. Proc. Advances in Neural Information Processing Systems
(NeurIPS), 34, 2021.

8



Accepted to the ICML 2022 workshop on Distribution-Free Uncertainty Quantification (DFUQ)

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), volume 30, 2017.

W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. Proc. Advances in
Neural Information Processing Systems (NeurIPS), 33:21464–21475, 2020.

D. Lombardi and S. Pant. Nonparametric k-nearest-neighbor entropy estimator. Physical Review E,
93(1):013310, 2016.

J. Mukhoti, J. van Amersfoort, P. H. Torr, and Y. Gal. Deep deterministic uncertainty for semantic
segmentation. arXiv preprint arXiv:2111.00079, 2021.

J. Ren et al. Likelihood ratios for out-of-distribution detection. Proc. Advances in Neural Information
Processing Systems (NeurIPS), 32, 2019.

Y. Sun, C. Guo, and Y. Li. React: Out-of-distribution detection with rectified activations. Proc.
Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

J. van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal. Uncertainty estimation using a single deep
deterministic neural network. In Proc. International Conference on Machine Learning (ICML),
pages 9690–9700, 2020.

W. Wan, Y. Zhong, T. Li, and J. Chen. Rethinking feature distribution for loss functions in image
classification. In Proc. IEEE conference on Computer Vision and Pattern Recognition (CVPR),
pages 9117–9126, 2018.

Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble and lifelong
learning. In Proc. International Conference on Learning Representations (ICLR), 2019.

Z. Zhou et al. Step: Out-of-distribution detection in the presence of limited in-distribution labeled
data. Proc. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

9



Accepted to the ICML 2022 workshop on Distribution-Free Uncertainty Quantification (DFUQ)

APPENDIX A NETWORK ARCHITECTURES

In this section, we provide the network architectures employed in the experiment section. We denote
a convolutional layer whose kernel size is s with K kernels by ConvK(s× s), and a fully-connected
layer whose input and output layer have s1 and s2 neurons by FC(s1×s2). Correspondingly, the batch-
ensemble variants of convolutional layer and fully-connected layer are denoted by BE-ConvC(s× s)
and BE-FC(s1 × s2), respectively. A max pooling layer with kernel size s × s is denoted by
MaxPooling(s× s).

A.1 NETWORK ARCHITECTURE IN THE TWO MOONS EXPERIMENT

The network structure of the BE-SNN-1 in the Two-Moons experiment is as follows:

Feature extractor Φθ :

BE-FC(2× 32)→ ReLU→ BE-FC(32× 32)→ ReLU→ BE-FC(32× 32)

Class feature generator Ψθ :

BE-FC((2 + 8)× 32)→ ReLU→ BE-FC(32× 32)

The input dimension of feature extractor Φθ equals 2 because the Two-Moons dataset is a 2-
dimensional dataset, and the input dimension of class feature generator Ψθ is 10, which equals
the number of classes C = 2 in the Two-Moons dataset plus the noise dimension dε = 8. The outputs
of both networks are 32-dimensional feature vectors.

A.2 NETWORK ARCHITECTURE IN THE IMAGE CLASSIFICATION EXPERIMENT

The network structure of the BE-SNNs in the FashionMNIST vs MNIST & NotMNIST experiment
is as follows:

Feature extractor Φθ :

BE-Conv64(3× 3)→ BatchNorm→ ReLU→ MaxPooling(2× 2)→
BE-Conv128(3× 3)→ BatchNorm→ ReLU→ MaxPooling(2× 2)→
BE-Conv128(3× 3)→ BatchNorm→ ReLU→ MaxPooling(2× 2)→
Flatten→ BE-FC(512× 256)→ ReLU→ BE-FC(256× 256)

Class feature generator Ψθ :

BE-FC((10 + 512)× 512)→ ReLU→ BE-FC(512× 256)

The input dimension of class feature generator Ψθ is 522, which equals the number of classes C = 10
in the FashionMNIST vs MNIST & NotMNIST dataset plus the noise dimension dε = 512. The
outputs of both networks are 256-dimensional feature vectors.

For the CIFAR-10 vs SVHN dataset, we use the batch-ensemble variant of the ResNet-18 (He et al.,
2016) as the backbone of the feature extractor:

Feature extractor Φθ :

BE-ResNet-18→ BE-FC(512× 512)

Class feature generator Ψθ :

BE-FC((10 + 512)× 512)→ ReLU→ BE-FC(512× 512)

Note that the other evaluated methods employ similar neural network architectures described above,
except that the network width and kernel size are modified to match their number of parameters.

APPENDIX B ABLATION STUDY

In this section we use the FashionMNIST vs MNIST dataset as an example to investigate the effect
of the adaptively tempered softmax, the entropy-based regularization, and the gradient penalty
regularization on the performance of BE-SNNs.
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Adaptively tempered softmax: We first evaluate the impact of adaptively tempered softmax by
comparing the performance of BE-SNNs with and without the tempered softmax. From Figure 2,
we can observe that the BE-SNNs equipped with the adaptively tempered softmax consistently
outperforms the BE-SNNs using normal softmax (labelled as BE-SNN-w/o in the figure), implying
that the proposed adaptively tempered softmax can indeed improve the OOD detection performance
of BE-SNNs.
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Figure 2: Comparisons of the OOD detection performance between BE-SNNs with and without
adaptively tempered softmax. We use “BE-SNN-w/o” to label the BE-SNNs without adaptively
tempered softmax. Horizontal axis is the number of ensemble members in BE-SNNs, and the
vertical axis is OOD detection metric. Lower FPR95, higher AUROC and AUPRC indicate better
performance.

Gradient penalty: We present in Figure 3 the performance of BE-SNNs (Ne = 4) with different
values of gradient penalty coefficient λ2 in Equation (13). In particular, the regularization coefficient
λ2 is selected from the set {0.0, 0.1, 0.5, 1.0}. We found that the best performance of BE-SNNs
occurs when λ2 = 0.5, it can be observed from Figure 3 that the performance of BE-SNNs is not
sensitive to the value of λ2 in the set. In addition, we found in general the gradient penalty can
enhance the ability of BE-SNNs to detect OOD samples, since all positive values of λ2 result in better
performance of BE-SNNs than λ2 = 0.0.

0.0 0.1 0.5 1.0
Gradient Penalty Coefficient 2

0.1
0.15

0.2
0.25

FP
R9

5

0.0 0.1 0.5 1.0
Gradient Penalty Coefficient 2

0.925

0.950

0.975

AU
RO

C

0.0 0.1 0.5 1.0
Gradient Penalty Coefficient 2

0.97

0.98

0.99

AU
PR

C

(a) FPR95 (b) AUROC (c) AUPRC

Figure 3: Comparisons of the OOD detection performance between BE-SNNs with different values
of gradient penalty coefficient λ2 in Equation (13). Horizontal axis is the value of the coefficient λ2,
and the vertical axis is OOD detection metric. Lower FPR95, higher AUROC and AUPRC indicate
better performance.
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