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ABSTRACT

Vocal entrainment is a social adaptation mechanism in human
interaction, knowledge of which can offer useful insights
to an individual’s cognitive-behavioral characteristics. We
propose a context-aware approach for measuring vocal en-
trainment in dyadic conversations. We use conformers (a
combination of convolutional network and transformer) for
capturing both short-term and long-term conversational con-
text to model entrainment patterns in interactions across
different domains. Specifically we use cross-subject atten-
tion layers to learn intra- as well as interpersonal signals
from dyadic conversations. We first validate the proposed
method based on classification experiments to distinguish
between real (consistent) and fake (inconsistent/shuffled)
conversations. Experimental results on interactions involv-
ing individuals with Autism Spectrum Disorder also show
evidence of a statistically-significant association between the
introduced entrainment measure and clinical scores relevant
to symptoms, including across gender and age groups.

Index Terms— entrainment, context, transformers, con-
volution

1. INTRODUCTION

Interpersonal human interactions, notably dyadic interac-
tions (interactions involving two people), are widely studied
by social science and human-centered computing researchers
alike [1, 2]. Such interactions are characterized by rich
information exchange across multiple modalities including
speech, language, and visual cues. Over the years, a signif-
icant amount of effort has been invested in developing tools
for both conversational data collection and in understanding
and modeling the signals extracted from these interactions.

A phenomenon called entrainment [3, 4] has been de-
scribed as one of the major driving forces of an interaction
[5]. While entrainment can be exhibited within and across dif-
ferent modalities, vocal entrainment [6] or acoustic-prosodic
entrainment [7, 4, 8] is defined as an interlocutor’s tendency
to accommodate or adapt to the vocal patterns of the other
interlocutor over the course of the interaction. Understand-

ing entrainment [9] can provide meaningful insights to ana-
lyze behavioral characteristics of the individual interlocutors
and the interaction participants. For example, a higher degree
of entrainment is associated with positive behavioral markers
like social desirability, smoother interactions, higher rapport
content etc.[10, 11]. Entrainment can also serve as a valuable
instrument to characterize behaviors in the study and practice
of psychiatry and developmental studies involving distressed
couples, children with autism spectrum disorder, addiction,
etc [6, 9].

Due to the complex nature of entrainment and a scarcity
of appropriately labeled speech corpora, quantifying entrain-
ment is a challenging task. Most of the early works have
relied on empirical and knowledge-driven tools like correla-
tion, recurrence analysis, time-series analysis, spectral meth-
ods to measure how much a speaker is entraining to the other
speaker [12]. This body of work often relied on the assump-
tion of a linear relationship between the extracted entrain-
ment representations and vocal features, which may not al-
ways hold. On the other hand, although context during a con-
versation plays an important part in interpersonal interactions,
it has not been incorporated in existing approaches for mea-
suring entrainment. While the recent line of works [6] employ
a more direct data-driven strategy to extract entrainment re-
lated information from raw speech features, such are formu-
lated in a way that they inherently only consider short-term
context while overlooking more long-term context. Recently
context-aware deep learning architectures such as transform-
ers [13] have been proposed to capture richer contexts by ex-
plicitly modeling the temporal dimension and found many ap-
plications in natural language processing, speech and vision.
In light of their success in modeling rich temporal context, we
investigate if transformers can help capture meaningful infor-
mation for quantifying entrainment.

In this work, we develop a context-aware model for com-
puting entrainment, addressing the need for both short and
long-range temporal context modeling. For the scope of this
work, the proposed framework incorporates ‘context’ by aim-
ing to train the model to learn the influence of the speakers
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Fig. 1: Architecture for CED extraction.

on each other. We follow the established strategy of using a
distance-based measure between consecutive turn-pairs in the
projected embedding space and introduce the Contextual En-
trainment Distance (CED) metric. The main contributions
of this work are two fold: first, we use a combination of
self-attention and convolution to extract both short-term and
long-term contextual information related to entrainment; and
second, we propose a transformer-based cross-subject frame-
work for joint modeling of the interacting speakers to learn
the pattern of entrainment. We experimentally evaluate the
validity and efficacy of CED in dyadic conversations involv-
ing children and study its association with respect to different
clinically-significant behavioral ratings where the role of en-
trainment has been previously implicated [9].

2. COMPUTING CONTEXT-AWARE
ENTRAINMENT MEASURE

2.1. Unsupervised model training and CED computation

Prior literature in this domain have relied on computing a dis-
tance measure directly between the turn-level speech features
X1 and X2 from speaker 1 and speaker 2 respectively [4].
However, these features also capture additional information
such as speaker characteristics and ambient acoustic informa-
tion which do not contribute towards learning the target en-
trainment patterns. The objective is to learn the inverse map-
ping between the embedding space (Z1,Z2) and the feature
space (X1,X2) such that the model should learn to recognize
turn pairs with high and low levels of entrainment.

Here, we formulate the problem by training the network
to classify between interactions having consecutive turn seg-
ments (true samples) and interactions having random/shuffled
turn segments (fake samples). We temporally partition the
conversational audio sequence into speaker specific chunks
and feed these chunks to the model to predict whether the fed
audio chunks are part of real conversation or a fake one.

After the training phase, we use the trained network
weights to extract the cross-encoder layer outputs for both
speakers. Next, we calculate CED as the smooth L1 dis-
tance [6] between the embeddings obtained in the previous
step.

2.2. Model architecture

As shown in Fig. 1, we use two main modules to build the
model to compute entrainment, first, the self-attention en-
coder that is used to enhance the extracted features by attend-
ing to themselves and then, a cross-attention encoder which
allows the features to attend to a different source.

We use conformer [14] layers for the self-attention mod-
ule to model both short-term and long-term dependencies
within an audio sequence in a parameter-efficient way by in-
corporating a convolutional module in the transformer layer.
The self-attention layer obtains meaningful representation
from the long-term interaction and the convolution layer is
used to learn the local relation amongst the interaction based
features.

To extract meaningful information related to entrainment,
previous works have mostly relied on individual modeling of
interlocutors involved in a conversation. However, entrain-
ment being an interpersonal phenomenon, the need for jointly
modeling interlocutors becomes heightened in such scenarios.
We address this issue by using a transformer layer for cross-
subject attention, allowing the features extracted per subject
to access each other to capture crossed influence over the in-
teraction.

3. EXPERIMENTS
3.1. Datasets

We use the following two datasets for our experiments.
The Fisher Corpus English Part 1 (LDC2004S13) [15]

consists of spontaneous telephonic conversations between
two native English speaking subjects. There are 5850 conver-
sations of approximately 10 minutes duration. The dataset is
accompanied with transcripts along with timestamps marking
speaker duration boundaries. We use 60% of this dataset for
training and 5% for testing.

The ADOSmod3 corpus consists of recorded conversa-
tions from autism diagnostic sessions between a child and
a clinician who is trained to observe the behavioral traits
of the child related to Autism Spectrum Disorder (ASD). A
typical interactive session following the Autism Diagnostic
Observation Schedule (ADOS)-2 instrument lasts about 40-
60 minutes, and these sessions are composed of a variety of
subtasks to evoke spontaneous response from the children
under different social and communicative circumstances. In
this work, we consider the administration of Module 3 meant
for verbally fluent children and adolescents. Moreover, we
focus on Emotions and Social difficulties and annoyance sub-
tasks as these are expected to extract significant spontaneous
speech and reaction from the child while answering questions



Table 1: Demographic details of ADOSMod3 dataset

Category Statistics
Age(years) Range: 3.58-13.17 (mean,std):(8.61,2.49)

Gender 123 male, 42 female
Non-verbal IQ Range: 47-141 (mean,std):(96.01,18.79)

Clinical
Diagnosis

86 ASD,42 ADHD
14 mood/anxiety disorder

12 language disorder
10 intellectual disability, 1 no diagnosis

Age
distribution

Cincinnati: ≤5yrs 7, 5-10 yrs 52, ≥10yrs 25
Michigan: ≤5yrs 11, 5-10 yrs 42, ≥10yrs 28

(a) Cross-encoder 1 (b) Cross-encoder 2

Fig. 2: Attention activations

Table 2: Classification experiment for real vs fake sessions

Measure Classification accuracy(%)
Fisher Corpus ADOSMod3 Corpus

Baseline 1 80.52 82.22
Baseline 2 76.33 70.64
Baseline 3 82.91 85.73

CED 92.13 95.66

about different emotions and social difficulties. The corpus
consists of recordings from 165 children collected across 2
different clinical sites. We use this corpus for evaluation pur-
pose, the demographic details of the dataset are reported in
Table 1.

3.2. Experimental setup

3.2.1. Feature extraction

In this work, to compute CED the speech segments of interest
are conversational turns from both speakers. We compute the
speaker turn boundaries from the time information available
in the transcripts, excluding the intra-turn pauses to avoid in-
cluding noisy and redundant signals. For every speaker turn,
we extract self-supervised TERA embeddings [16] to obtain
a 768 dimensional feature vector. We choose TERA embed-
dings as it employs a combination of auxiliary tasks to learn
the embedding instead of relying on a single task, so it is ex-
pected to learn enhanced features from raw speech signals.

AG1 AG2 AG3

CE
D

AG1 = Age Group 1 (<= 5yrs)
AG2 = Age Group 2 (> 5yrs & < 10yrs)
AG3 = Age Group 3 (>= 10yrs)

CED-PC-female
CED-CP-female
CED-PC-male
CED-CP-male

Fig. 3: Absolute values of CED across age and gender from
ADOSMod3

3.2.2. Parameters and implementation details

We use 352 and 64 attention units for the conformer and trans-
former layers, respectively, while 4 attention heads are em-
ployed for both. The full architecture obtained by using a
conformer layer followed by a transformer layer results into
2.1M parameters. The model is trained with a binary cross
entropy with logits loss function and Adam optimizer with
the initial learning rate of 1e−5. There is a provision of early
stopping after 10 epochs if no improvement is seen in valida-
tion loss, a dropout rate of 0.2 is used for every dropout layer
used in the model.

3.3. Experimental validation of CED

We carry out an ad-hoc real/fake classification experiment to
validate CED as a metric for measuring entrainment. For ev-
ery real sample session we synthesize a fake sample session
by shuffling the speaker turn while maintaining the dyadic
conversation sequence. The hypothesis is more entrainment
is expected to be observed in real sessions as compared fake
sessions resulting in the real sessions having lesser CED. The
classification accuracies are reported in Table 2. The classifi-
cation experiment steps are as follows:

• We calculate CED measure for every consecutive turn pair
for the real and fake sample session.

• We compare the average CED distance from all the turn
pairs for the real and fake session, the sample sessions are
correctly classified if CED of real session is lesser than
fake session.

• The experiment is repeated 30 times to eliminate any bias
introduced while randomly shuffling the speaker turns.

As baselines, we use three distance measures computed
between the extracted turn-level pretrained embeddings:
smooth L1 distance [6] (Baseline 1) and two measures in-
troduced in [9], namely, DTWD (Baseline 2), and SCDC
(Baseline 3).



Table 3: Correlation experiment between CED and clinical
scores relevant to ASD (bold figures imply statistical

significance, p < 0.05 )
(CP: child to psychologist, PC: psychologist to child)

Clinical scores
Pearson’s correlation

CED-PC CED-CP
ρ p-value ρ p-value

VINELAND ABC -0.061 0.237 0.012 0.827
VINELAND Social -0.021 0.345 0.071 0.073

VINELAND Communication -0.158 0.003 0.043 0.428
CSS 0.222 0.004 0.023 0.672

CSS-SA 0.231 0.012 0.03 0.472
CSS-RRB 0.158 0.055 0.091 0.262

3.4. Experimental evaluation

In this experiment, we calculate the correlation between the
proposed CED measure and the clinical scores relevant to
ASD in Table 3. Since CED is directional in nature, we
compute the correlation metric in both the directions child to
psychologist and psychologist to child. We report the Pear-
son’s correlation coefficient (ρ) and also the corresponding
p-value, to test the null hypothesis that there exists no linear
association between the proposed measure and the clinical
scores. Amongst the clinical scores, VINELAND scores are
designed to measure adaptive behaviour of individuals, while
VINELAND ABC stands for Adaptive Behaviour Compos-
ite score, VINELAND social and VINELAND communication
are adaptive behavior scores for specific skills of socialization
and communication. CSS stands for Calibrated Severity Score
which reflects the severity of ASD symptoms in individuals.
CSS-SA and CSS-RRB reflects ASD symptoms severity along
2 domains of Social Affect and Restrictive and Repetitive
Behaviours. The details of the clinical scores related to ASD
are described in [17, 18, 19].

We also report the absolute values of the proposed CED
measure (both directions) for different gender and different
age-groups. We partition the dataset across 3 age groups of
Group 1: ≤ 5yrs, Group 2: > 5yrs & ≤ 10yrs, Group3: >
10yrs and for each of the age groups we report the directional
CED measure for male and female subgroups in Fig. 3.

4. RESULTS AND DISCUSSION

The results reported in Table 2 reveal that achieves better per-
formance in identifying real and fake sessions with respect to
the baseline methods in both Fisher and ADOSmod3 corpus
in terms of classification accuracy, which validates the use of
CED as a proxy metric for measuring entrainment.

Results in Table 3 show that VINELAND communica-
tion score is negatively correlated with psychologist→child
CED with significant statistic, which stands consistent with
the definition of CED, since higher CED signifies lower
entrainment. CSS and CSS-SA scores are reported to be
positively correlated with CED. It is interesting to note that
while psychologist→child CED is capturing signals with

meaningful interpretations, no such evidence is reported from
child→psychologist CED measures. A possible explanation
can be since the model is trained with dyadic conversations
from adults in Fisher corpus, the model is unable to capture
the nuances of interactions involving children which is re-
flected in these results. It is also worth mentioning while
there exists a significant correlation between CSS, CSS-SA
and psychologist→child CED, CSS-RRB also shows weak
evidence of positive correlation with psychologist→child
CED.

In Table 3, the distributions for absolute values of CED
are reported across gender and age-groups. Both directional
CED are always seen to have lesser mean values in females
as compared to males, which reiterates the claim reported in
[20] that women are better at disguising autism symptoms
than men. Across age-groups,the experimental results donot
show any discernable observation from CED in both direc-
tions in male children, however female psychologist→child
CED is shown to decrease with an increase in age, which also
supports the claim presented in [20].

We also investigate the weights of the activations from the
cross-encoder attention layer to understand which parts of the
speaker turns are emphasized by the attention heads to ex-
tract meaningful signals. Attention activation heatmaps from
cross-encoder 1 and 2 reported in Fig. 2 show attention lay-
ers attend to initial few timeframes from the second speaker
turn which supports the claim mentioned in [6] and domain
theory that initial and final interpausal units from second and
first speaker respectively are a rich source of signals related
to entrainment.

5. CONCLUSION

In this work we introduce a novel context-aware approach
(CED) to measure vocal entrainment in dyadic conversations.
We use a combination of convolutional neural networks and
transformers to capture both short-term and long-term con-
text, and also employ a cross-subject attention module to learn
interpersonal entrainment related information from the other
subject in a dyadic conversation. We validate the use of CED
as a proxy metric for measuring entrainment by conducting
a classification experiment to distinguish between real (con-
sistent) and fake (inconsistent) interaction sessions. We also
study the association between CED and clinically relevant
scores related to ASD symptoms by computing the correla-
tion metric. We also report the mean absolute value of direc-
tional CED across gender and different age-groups to under-
stand if the entrainment pattern of the children varies across
gender or age-group or not. In this work, we use a self-
supervised embedding for feature extraction, it will be inter-
esting to see if other context-based pre-trained embeddings
yeild similar performance in capturing entrainment. We also
face difficulties in deploying entrainment embeddings learnt
on Fisher for ADOSMod3 dataset and thus we plan to in-
vestigate domain-specific entrainment embeddings for under-
standing behavioral traits.
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