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ABSTRACT

Federated edge learning is a promising technology to de-
ploy intelligence at the edge of wireless networks in a privacy-
preserving manner. Under such a setting, multiple clients col-
laboratively train a global generic model under the coordi-
nation of an edge server. But the training efficiency is of-
ten throttled by challenges arising from limited communica-
tion and data heterogeneity. This paper presents a distributed
training paradigm that employs analog over-the-air computa-
tion to address the communication bottleneck. Additionally,
we leverage a bi-level optimization framework to personal-
ize the federated learning model so as to cope with the data
heterogeneity issue. As a result, it enhances the generaliza-
tion and robustness of each client’s local model. We elabo-
rate on the model training procedure and its advantages over
conventional frameworks. We provide a convergence analy-
sis that theoretically demonstrates the training efficiency. We
also conduct extensive experiments to validate the efficacy of
the proposed framework.

Index Terms— Federated learning, personalization,
wireless edge network, over-the-air computation, robustness.

1. INTRODUCTION

With the increasing concerns on data privacy as well as the
rapid growing capability of edge devices, deploying the fed-
erated learning (FL) [1] at the edge of wireless network, com-
monly coined as federated edge learning (FEEL), is attracting
arising attentions [2, 3], where the computation tasks could
be decoupled from the cloud to the edge of the network in a
privacy-preserving paradigm.

However, in real-world implementations of the FEEL
system, a typical training process of a generic global model
requires hundreds of communication rounds among the mas-
sively distributed clients. The iterative gradient exchange
would bring hefty communication overhead [1, 4]. Hence,
for a digital communication based-FEEL system run over
the resource-constrained network, the limited communica-
tion bandwidth would inevitably constrain the scalability,
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since every selected client in each round requires an assigned
orthogonal sub-channel to perform the update [5, 6].

To combat the communication bottleneck, an array of
recent studies [6–11] suggest incorporate analog over-the-air
(A-OTA) computations into the design of FEEL systems, ex-
ploiting the superposition property of the multi-access chan-
nels for fast and scalable model aggregations. The adoption
of the A-OTA computations with FEEL, termed as A-OTA-
FEEL, have been demonstrated to have high spectral effi-
ciency, low access latency, enhanced privacy protection, and
reduced communication costs [5, 6, 12], all benefiting from
the automatic “one-shot” gradient aggregation for model up-
date [7, 13]. Nevertheless, A-OTA computations inevitably
introduce the random channel fading and interference into the
aggregated gradients, leading to performance degradations
such as the slower convergence and instability [5,10]. Hence,
robust training techniques could be adopted to enhance the
performance with channel imperfections.

In addition to the inherent channel fading and interfer-
ence, current approaches for A-OTA-FEEL system design
have not addressed the existing discrepancies in both local
data statistics and qualities (i.e., data heterogeneity and la-
bel noise) due to the diverse preferences, bias, and hardware
capabilities of different clients [11, 14]. Such discrepancies
in clients’ datasets can significantly degrade the FL per-
formance. More crucially, these discrepancies would even
make the single generic global model fail to achieve good
generalization and robustness performance on diverse local
data [15–17]. On the other hand, the future intelligent net-
work is envisioned to be able to provide customized services
to the clients [18, 19]. It is necessary to address the individu-
ality of the clients in the design of the A-OTA-FEEL system
with personalized intelligent services.

In view of the above challenges, we propose a personal-
ized training framework in the context of the A-OTA-FEEL.
The proposed framework provides personalized model train-
ing services while still enjoying the benefits of analog over-
the-air computations, in which each client would maintain
two models (i.e., generic and personalized models) at the local
via two different global and local objectives. We also provide
a convergence analysis of the proposed personalized A-OTA-
FEEL framework. Both the theoretical and numerical results
validate the gain from the personalization design.
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2. SYSTEM MODEL

We consider a wireless system consisting of one edge server
that is attached to an access point andK clients, where the i-th
device has a local dataset Di. In this system, communications
between the clients and the server are taken place over the
spectrum. Each client’s goal is to (a) learn a statistical model
based on its own dataset and (b) exploit information from
the dataset of other clients and, aided by the orchestration of
the server, attain an improvement toward its locally learned
model while preserving privacy. Such tasks can be achieved
via a bi-level optimization based PFL framework. More pre-
cisely, every client k aims to find a local model vk ∈ Rd that
solves the following personal objective funciton

min
vk

fk (vk;w∗) = Fk (vk) +
λ

2
‖vk −w∗‖2 (1)

s.t. w∗ ∈ arg min
w

1

K

K∑
i=1

Fi (w) (2)

in which Fi(·) : Rd → R denotes the loss function of client
i, w ∈ Rd is a globally trained generic model, and λ is a
hyper-parameter that controls the level of personalization of
the clients’ locally trained personal models. We use ηl to de-
note the learning rate in the optimization of personal objec-
tive. Notably, a large value of λ indicates that the clients’ lo-
cal models {vi}Ki=1 need to well align with the global model
w∗, promoting commonality across the local models. In con-
trast, a small λ improves personalization. Moreover, benefit-
ing from such a bi-level optimization design, the personalized
local models {vi}Ki=1 would have better generalization and
robustness performance on the limited local data.

To solve the above optimization problem, the clients need
to not just train their local models through (1), but more im-
portantly, jointly minimize a global objective function as per
(2). Due to privacy concerns, the clients will carry out the
minimization problem (2) without sharing data in an FL man-
ner. The following section presents a model training approach
that capitalizes on the properties of analog transmissions for
low-latency and high-privacy federated computing.

3. MODEL TRAINING PROCEDURE

This section details the PFL model training process based on
over-the-air computing schemes. (See Fig. 1 for an overview.)
More precisely, we employ A-OTA computations for fast (and
highly scalable) gradient aggregation that significantly im-
proves the training efficiency of the global model. The de-
tailed training procedure is elaborated on below.

1) Local Model Training: Without loss of generality, we
assume the system has progressed to the t-th round of global
training, where the clients just received the global model pa-
rameters wt from the edge server. 1 Then, each client k up-

1Because of the high transmit power of the access point, we assume the
global model can be successfully received by all the clients.
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Fig. 1. An overview of personalized analog over-the-air fed-
erated edge learning, in which each client maintains a com-
mon global model and local personalized model.

dates its personalized local model vtk by optimizing the local
personal objective function fk(vk;wt). (For simplicity, we
use vk to denote personal model.) Each client k also com-
putes its local gradient∇Fk(wt) for global model update.

2) Analog Gradient Aggregation: We consider the clients
adopt analog transmissions to upload their locally trained pa-
rameters. Specifically, once ∇Fk(wt) is computed, client k
modulates it entry-by-entry onto the magnitudes of a com-
mon set of orthogonal baseband waveforms [5], forming the
following analog signal

xk(s) = 〈u(s),∇Fk(wt)〉 (3)

where 〈·, ·〉 denotes the inner product between two vectors and
u(s) = (u1(s), ..., ud(s)), s ∈ [0, τ ] has its entries satisfying

∫ τ

0

u2
i (s)ds = 1, i = 1, 2, ..., d (4)∫ τ

0

ui(s)uj(s)ds = 0, i 6= j. (5)

τ represents the total time of signal duration. Once the ana-
log waveforms {xk(s)}Kk=1 are available, the clients transmit
them concurrently to the access point. Owing to the superpo-
sition property of electromagnetic waves, the signal received
at the radio front end of the access point can be expressed as:

y(s) =

K∑
k=1

hk,tPkxk(s) + ξ(s), (6)

where hk,t is the channel fading experienced by client k,
Pk the corresponding transmit power, and ξ(s) denotes the
additive noise. In this work, we assume the channel fading
is i.i.d. across clients, with mean µh and variance σ2

h. Be-
sides, the transmit power of each client is set to compensate
for the large-scale path loss and we use P to denote the aver-
age power for all clients. This received signal will be passed
through a bank of match filters, with each branch tuning to



Algorithm 1 Personalized A-OTA FEEL framework
Input: Initial global model w0, initial personal local models
{vi}Kk=1, T , λ,ηg

Output: Global model wT , personal model {vi}Ki=1

1: for t = 0, 1, 2 to T − 1 do
2: for k = 1, 2, to K in parallel do

# global generic model update
3: ∇Fi(wt)← CLIENTUPDATE(k,wt)

# local personalized model update
4: Update vk via solving fk (vk;wt)
5: Transmit local gradient∇Fi(wt) to edge server

# Noisy aggregation via analog OTA computations
6: gt = 1

K

∑K
k=1 hk,t∇Fk (wt) + ξt

7: wt+1 ← wt − ηggt # Global model update
8: return wT , {vi}Kk=1

ui(s), i = 1, 2, .., d. On the output side, the server obtains:

gt =
1

K

K∑
k=1

hk,t∇Fk
(
wt
)

+ ξt, (7)

in which ξt is a d-dimensional random vector with each entry
being i.i.d. and follows a zero-mean Gaussian distribution
with variance σ2. It is noteworthy that the vector given in (7)
is a distorted version of the globally aggregated gradient.

3) Global Generic Model Update: Using gt, the server
updates the global model as follows:

wt+1 ← wt − ηggt, (8)

where ηg is the learning rate for generic global model udpate.
After this, the server broadcasts thewt+1 to all clients for the
next round local computing. Such a process will be iterated
through multiple rounds until the global model converges.

Notably, the bi-level optimization in the personal model
mitigates impacts from the random channel fading and noise
introduced by analog over-the-air computations to the glob-
ally aggregated gradient, thus improving the robustness of the
analog over-the-air federated edge learning system. Conse-
quently, personalization enhances both the generalization and
robustness of the FL system in the presence of data hetero-
geneity and noisy model aggregation. 2

We summarize the proposed framework in Algorithm 1.
It is worthwhile to highlight several advantages of the pre-
sented framework, including high scalability, low access la-
tency, enhanced privacy, better generalization as well as ro-
bustness, brought together by analog over-the-air computa-
tions and personalized training. We would also like to ad-
dress that we make no assumption about the generic model

2This paper does not consider the architecture-based PFL methods in
which each client maintains a personal model with unique architecture via
techniques such as sparsification or model weight decoupling [15]. It would
increase the cost of the synchronizations for signal transmission to achieve
automatic signal aggregations in the context of A-OTA computations.

training, as well as the OTA communication, which indicates
that the performance could be further enhanced by advanced
federated optimization [4] and OTA techniques [8, 12].

4. CONVERGENCE ANALYSIS

This section provides the convergence analysis of our pro-
posed framework from the perspective of both the global
model and the local personalized model.

To facilitate the analysis, we assume that each client’s
loss function is µ-strongly convex and the local gradient
∇Fk(wt) is Lipschitz continuous with constant Lk > 0.
We use L̄ to denote the maximal constant among all clients
and L is the Lipschitz gradient constant of global objec-
tive. δ is the diameter of the compact convex parame-
ter set that all model parameters lie in. We consider that
if the global model converges, its convergence rate is de-
noted by g (t), i.e., there exists g (t) that lim

t→∞
g (t) = 0 and

E
[
||wt −w∗||2

]
≤ g (t). In this work, we denote by v∗k and

z∗k as v∗k = arg minvfk (v;w∗) and z∗k = arg minzFk (z),
respectively. We assume the l2 distance between the optimal
local and global model is bounded, i.e., for any k ∈ [K],
‖z∗k −w∗‖ ≤M .

We now present the main theoretical finding of this paper.
First of all, the following theorem provides the convergence
rate of the global generic model.

Theorem 4.1. Under the considered A-OTA FEEL system,
let r2

0 ,
∥∥w0 −w∗

∥∥2
be the squared distance between the

initial estimate w0 and w∗. If the learning rate ηg satisfies

0 < ηg < min

{
2

µh(µ+ L)
,

2µhµLK

σ2
hL̄

2(1 + 2δ)(µ+ L)

}
, (9)

then the error of wt can be bounded as:

E
[
||wt −w∗||2

]
≤ ctr2

0 +
η2g

(1−c)

(
σ2
hδL̄

2(2+δ)
K + dσ2

P 2K2

)
(10)

where 0 < c , 1− 2ηgµhµL
µ+L +

η2gσ
2
hL̄

2(1+2δ)

K < 1.

Proof. Please refer to [10] for a detailed proof.

Next, we employ the following lemma to characterize the
convergence rate of the local personalized models.

Lemma 4.2. Under the considered system, let local learn-
ing rate satisfy condition (9), then the local model of client k
converges as:

E
[
||vt+1

k − v∗k||2
]
≤ (1− µηl)E

[
||vtk − v∗k||2

]
+ η2

l λ
2M2

+ η2
l λ

2E
[
||wt −w∗||2

]
+ 2η2

l λ
2M
√
E [||wt −w∗||2]

+ 2ηlλ
√
E [||vtk − v∗k||2]E [||wt −w∗||2]. (11)



Proof. Please refer to [16] for detailed proof.

Aided by the above result, we obtain the convergence rate
of the global model as the following.

Theorem 4.3. Under the considered A-OTA FEEL system,
if there exists a variable A satisfying g(t+1)

g(t) ≥ 1 − g(t)
A ,

then, there is a constant C < ∞ such that for any client k,
E
[
‖vtk − v∗k‖

2
]
≤ Cg(t) with a local learning rate given by

ηl = 2g(t)
Aµ .

Proof. We omit the proof due to the space limit.

To this end, we can see that via A-OTA computing, both
the global and local personalized models attain linear conver-
gence rates, while addressing the non-ideal gradient updates.

5. NUMERICAL RESULTS

This section evaluates the performance of our proposed
framework. Particularly, we examine the performance of
the personalized local training in terms of generalization
power and robustness compared to conventional settings and
baselines. We also explore the robustness performance of the
framework in the context of the noisy local data (i.e., part of
the local training data are annotated with wrong labels).

5.1. Experiment setup

We evaluate our framework on image classification tasks on
CIFAR-10/100 [20] with ResNet-18 and ResNet-34 [21], re-
spectively. Both IID and non-IID data settings are consid-
ered, in which the non-IID data partitions are implemented
with Dirichlet distribution and the identicalness of the distri-
butions could be controlled by the parameter α. Unless other-
wise specified, we use K = 100 for CIFAR-10, K = 50 for
CIFAR-100, and Rayleigh fading with average channel gain
µh = 1. We select λ from comparison experiments. The
federated label noise setting is the same as the [14]3.

5.2. Performance evaluation

We first compare the personalized models performance of our
proposed framework with generic global model from conven-
tional FL setup in Fig. 2 with IID local data partition, us-
ing the same configurations of A-OTA-FEEL system. The
two sub-figures demonstrate the consistent outperformance of
personalization training scheme. Specifically, increasing to-
tal number of clients in the system (i.e., a larger K) would
improve the system performance for both two settings in A-
OTA, and personalized training presents a more robust gener-
alization with diverse local data quality.

3For all label noise settings, we use lower bound 0.5 for local label noise
level. Details can be found in [14].
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Fig. 2. Performance comparison of the best test accuracy on
CIFAR-10 with IID data settings. (Left): Performance with
different total number of clients K. (Right): Performance
with different ratios of clients containing noisy local data.

Table 1. Average (3 trails) of the best test accuracy com-
parison on CIFAR-10/100 with real-world data settings. The
highest accuracy for each setting is boldfaced.

Methods CIFAR-10 CIFAR-100
α = 10 α = 1 α = 1

Clean

OTA-FedAvg 76.32 72.71 65.12
OTA-FedProx 76.45 72.90 66.35
OTA-FedRep 82.44 79.93 -
Ours 83.57 81.05 69.33

Noisy

OTA-FedAvg 70.51 67.15 58.81
OTA-FedProx 72.06 69.62 59.29
OTA-FedRep 77.09 74.23 -
Ours 78.74 75.31 63.30

To further demonstrate the outperformance of the pro-
posed framework, we provide the detailed best test accuracy
comparison in Tab. 1 on CIFAR-10/100 with non-IID data,
compared with FedAvg [1], FedProx [4] and FedRep [22]
with same OTA setup. In such context, our proposed person-
alzied training method achieves best test accuracies across all
settings, which shows the superiority with respect to the gen-
eralization and robustness.

6. CONCLUSION

In this paper, we proposed a personalized A-OTA-FEEL
framework that utilizes bi-level optimization and analog
transmissions to address the data heterogeneity and com-
munication efficiency challenges. Both the theoretical and
empirical results were provided to demonstrate the effec-
tiveness of the proposed framework. We highlighted the
robustness performance of the PFL in edge learning. To the
best of our knowledge, this is the first work that explores the
PFL model in A-OTA FEEL systems. We envision that PFL
could be a potential technique to provide customized services
in future intelligent networks.
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“Machine learning at the wireless edge: Distributed
stochastic gradient descent over-the-air,” IEEE Trans.
Signal Process., vol. 68, pp. 2155–2169, Mar. 2020.

[10] Tomer Sery and Kobi Cohen, “On analog gradient de-
scent learning over multiple access fading channels,”
IEEE Trans. Signal Process., vol. 68, pp. 2897–2911,
2020.

[11] Zihan Chen, Zeshen Li, and Jingyi Xu, “Analog over-
the-air federated learning with real-world data,” in IEEE
Int. Conf. on Sensing, Commun, and Netw. (SECON
Workshops). IEEE, 2022, pp. 31–36.

[12] Dongzhu Liu and Osvaldo Simeone, “Privacy for free:
Wireless federated learning via uncoded transmission
with adaptive power control,” IEEE J. Sel. Areas Com-
mun., vol. 39, no. 1, pp. 170–185, 2020.

[13] Guangxu Zhu, Jie Xu, Kaibin Huang, and Shuguang
Cui, “Over-the-air computing for wireless data aggre-
gation in massive iot,” IEEE Wireless Commun., vol.
28, no. 4, pp. 57–65, 2021.

[14] Jingyi Xu, Zihan Chen, Tony Q.S. Quek, and Kai
Fong Ernest Chong, “Fedcorr: Multi-stage federated
learning for label noise correction,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit., 2022.

[15] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang,
“Towards personalized federated learning,” IEEE Trans.
Neural Netw., 2022.

[16] Tian Li, Shengyuan Hu, Ahmad Beirami, and Vir-
ginia Smith, “Ditto: Fair and robust federated learn-
ing through personalization,” in Proc. Int. Conf. Mach.
Learn. PMLR, 2021, pp. 6357–6368.

[17] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and
Ameet S Talwalkar, “Federated multi-task learning,”
Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[18] Yiqing Zhou, Ling Liu, Lu Wang, Ning Hui, Xinyu
Cui, Jie Wu, Yan Peng, Yanli Qi, and Chengwen Xing,
“Service-aware 6g: An intelligent and open network
based on the convergence of communication, comput-
ing and caching,” Digit. Commun. Netw., vol. 6, no. 3,
pp. 253–260, 2020.

[19] Hao Tang, Zechao Li, Zhimao Peng, and Jinhui Tang,
“Blockmix: Meta regularization and self-calibrated in-
ference for metric-based meta-learning,” in ACM Multi-
media, 2020, pp. 610–618.

[20] Alex Krizhevsky and Geoffrey Hinton, “Learning mul-
tiple layers of features from tiny images,” Tech. Rep. 0,
University of Toronto, Toronto, Ontario, 2009.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[22] Liam Collins, Hamed Hassani, Aryan Mokhtari, and
Sanjay Shakkottai, “Exploiting shared representations
for personalized federated learning,” in Proc. Int. Conf.
Mach. Learn. PMLR, 2021, pp. 2089–2099.


	1  Introduction
	2  System model
	3   Model Training Procedure
	4  Convergence analysis
	5  Numerical results
	5.1  Experiment setup
	5.2  Performance evaluation

	6  Conclusion
	7  References

