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ABSTRACT
Despite the recent development of deep learning-based point
cloud upsampling, most MLP-based point cloud upsampling
methods have limitations in that it is difficult to train the local
and global structure of the point cloud at the same time. To
solve this problem, we present a combined graph convolution
and transformer for point cloud upsampling, denoted by PU-
EdgeFormer. The proposed method constructs EdgeFormer
unit that consists of graph convolution and multi-head self-
attention modules. We employ graph convolution using Edge-
Conv, which learns the local geometry and global structure
of point cloud better than existing point-to-feature method.
Through in-depth experiments, we confirmed that the pro-
posed method has better point cloud upsampling performance
than the existing state-of-the-art method in both subjective
and objective aspects. The code is available at https://
github.com/dohoon2045/PU-EdgeFormer.

Index Terms— Point cloud upsampling, neural networks,
graph convolution, vision transformer

1. INTRODUCTION

Point clouds are the most widely used representation of three-
dimensional (3D) data acquired with 3D sensors because they
use less memory and computational cost than meshes or vox-
els. In recent research, point cloud is used as input to various
3D applications such as autonomous driving, 3D reconstruc-
tion, virtual/augmented reality, and robotics. However, the
acquired point cloud is spatially sparse, and the coordinates
are noisy and non-uniform because of various 3D acquisition
problems including: i) occlusion, ii) light reflection, iii) lim-
ited hardware, and iv) computational cost. When this point
cloud is applied to 3D applications related to Neural Network
as it is, information cannot be clustered due to sparsity and
non-uniform characteristics. Therefore, it is very important
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to pre-process the raw point cloud because it causes perfor-
mance degradation by failing to learn the contextual manifold
of the local structure. Successful point cloud upsampling is
an important preprocessing process that can improve the per-
formance of various 3D tasks because it generates dense, uni-
form, and noise-free point clouds.

Early point cloud upsampling used optimization meth-
ods [1, 2]. After Qi et al. proposed PointNet, which success-
fully applied the deep learning method to the point cloud [3],
Yu et al. first proposed deep learning-based point cloud up-
sampling method called PU-Net [4]. Based on [3, 4], Yu et
al. proposed EC-Net to perform upsampling while preserving
the edge of the point cloud [5]. Yifan et al. proposed MPU
upsampling progressively for each point patch [6], and Li et
al. proposed PU-GAN to which GAN and attention unit were
applied [7]. Qian et al. proposed PUGeo-Net, which converts
samples in 2D domain into 3D by applying linear transforma-
tion [8], and Qian et al. suggested NodeShuffle to the point
shuffle process of the upsampling module to improve the
performance of PU-GCN [9].

Although the performance of deep learning-based point
cloud upsampling is continuously improving, the 2D convo-
lution operation used for feature extraction in most upsam-
pling methods does not reflect the geometric relationship of
the input point cloud because each point is learned indepen-
dently. To solve this problem, MPU and PU-GCN have pro-
posed methods of reflecting the local geometry of the input
point cloud as a point feature, but there is still a problem that
the global structure information of the input point cloud is not
reflected as a point feature.

In this paper, we propose a novel unit called EdgeFormer
that extracts features from point cloud for successful upsam-
pling. Using EdgeFormer we calculate the attention score
from the input point through the multi-head self-attention
of transformer [10], and designed the network to reflect the
global structure in the point feature and also the local geo-
metric structure through EdgeConv [11].

2. PROPOSED METHOD

Given a point cloud of N points, the point cloud upsam-
pling process with an upsampling ratio r produces a dense
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Fig. 1: Architecture of PU-EdgeFormer (top) and the encoder module (bottom)

point cloud Y ∈ RrN×3 based on the geometric information
of the sparse point cloud X ∈ RN×3. A well-generated
high-resolution (HR) point cloud Y should not simply have
increased number of points, but should have uniformly dis-
tributed points to have similar edge surface to the ground
truth. Since this upsampling process corresponds to a very
challenging ill-posed problem, in order to solve it with a deep
learning method, the point feature must well represent the ge-
ometry of the low-resolution (LR) point cloud X . Unlike the
existing upsampling method that extracts point features by
applying MLP to LR point cloud X , we calculate the point-
to-point score using the multi-head self-attention proposed
by transformer [10] with the point feature to make the point
cloud feature represent the global structure of the point cloud
well. However, the point features extracted using transformer
do not have the local geometric structure information of the
point cloud. To solve this problem, we applied EdgeConv
proposed in DGCNN [11] to multi-head self-attention oper-
ation. EdgeConv composes the local neighborhood graph of
the point cloud, performs a convolution operation on it, and
aggregates it so that the point feature represents the geometri-
cal relationship between points in the point cloud. As a result,
the proposed EdgeFormer calculates the entire relationship
of points through multi-head self-attention, so that the global
structure of X can be reflected in the point features. Also, it
is designed to reflect the local geometric information of X to
point features by applying EdgeConv.

2.1. Network Architecture

The proposed point cloud upsampling EdgeFormer (PU-
EdgeFormer) consists of: i) encoder, ii) feature extension,
and iii) coordinate reconstruction as shown in Fig. 1. Each
step of PU-EdgeFormer is described as follows:

Encoder Since an LR point cloud X is a structure in
which the coordinate values x, y, z of the three-dimensional
Euclidean space are simply arranged as row vectors, it is nec-

essary to convert it into a point feature, which is a point set of
the latent space. In this paper, we construct the module to ex-
tract the point feature F ∈ RN×C through MLP operation by
concatenating the LR point cloud through four EdgeFormers.
We will discuss about the EdgeFormer in section 2.2.

Feature Extension To upscale the extracted point feature
F , the feature extension module reshapes F to have a dimen-
sion rN × C/r using a shuffling operator, and then applies
the MLP operator, Φi(·; θi), for i = 1, · · · , n. A mathemati-
cal expression of this process is given as

Fi = Φi(Fi−1; θi), (1)

where θi denotes a learnable parameter that operated by input
point feature Fi−1. In this paper, we set n = 2, and used
256 and 32 as the output dimension of each MLP. Fn in (1)
becomes feature extension result F ′ ∈ RrN×C′

.
Coordinate Reconstruction This module generates HR

point cloud Y through the result of feature extension F ′ and
LR point cloud X . The module makes HR point cloud Y
through summation between final Point feature that reshaped
by MLP operator Φ(·; θ) on F ′ and X̃ ∈ RrN×3 that dupli-
cated r times on N points:

Y = X̃ + Φ(F ′; θ). (2)

As a result, point feature F ′ that added with duplicated
LR point cloud X̃ are important to upsample point cloud,
where F ′ is a point set of latent space obtained by the en-
coder module. Because good upsampling results can be de-
rived when the geometry of the LR point cloud is well re-
flected as a feature, the encoder plays a very important role in
the point cloud upsampling work.

2.2. EdgeFormer

The encoder shown in the bottom of Fig. 1 consists of four
EdgeFormer units. An EdgeFormer unit is shown in Fig. 2.



Fig. 2: Proposed EdgeFormer unit.

Unlike an MLP applied to the existing 2D image trans-
former, in the point cloud, each row vector appears as a point,
which is permutation invariance. So the input point set be-
comes a query, key, and value directly without going through
the positional encoding process. The EdgeConv operation is
applied to query, key, and value, and the results are divided
by the number of heads h. The query and key divided into
each head are matrix multiplied, and the attention score for
the current point set is calculated through SoftMax operation.
By multiplication of this value and matrix, point features are
derived in the direction where the value of attention score is
high. This operation is repeated for each head and all the
calculated results are concatenated. Finally, the output point
feature is derived through linear operation.

The proposed EdgeFormer replaces the linear operation
for query, key, and value with EdgeConv. After grouping
points using k-nearest neighbor (k-NN) operation, N (·; k),
EdgeConv performs convolution, ψ(·; θf ), of the grouping re-
sults and the learnable parameter θf , and then aggregates the
results using max pooling.

f ′ = MaxPool(ψ(N (f ; k); θf )), (3)

where f denotes each input of query, key, and value, and f ′

the result of EdgeConv. The EdgeConv operation in (3) can
solve the problem of losing local features when MLP is used.
We designed the EdgeFormer unit to not only represent the
local geometric structure of the input by applying the Edge-
Conv operation to each input, but also represent the global
structure through the multi-head self-attention operation.

3. EXPERIMENTS

3.1. Implementation Details

Datasets. We used PU1K dataset that includes large-scale ob-
jects with complex shapes provided with PU-GCN [9]. The
PU1K dataset was collected by PU-GAN [7] and ShapeNet-
Core [12]. We set the number of points in the LR point cloud
of the training dataset to 256 and the number of points in the
ground truth to 1024. We set the upsampling ratio as ×4 just
like the other existing methods.

Experimental Settings. Our experiments were run on the
tensorflow platform. As hyper-parameters of the experiment,
the batch size was set to 64, the training epochs were set to
100, the learning rate of Adam optimization was set to 0.001,
k = 16 of EdgeConv in the EdgeFormer unit, and the number
of heads h was set to 8. In addition, we performed data aug-
mentation such as rotation, scaling, random perturbations on
the training data to avoid overfitting.

Loss Functions To train our network, we used Chamfer
distance [4] that computes the distance between the two near-
est points in two point sets:

L(YPred,YGT ) =
1

|YPred|
∑

p∈YPred

min
q∈YGT

‖p− q‖22

+
1

|YGT |
∑

p∈YGT

min
q∈YPred

‖p− q‖22.
(4)

Evaluation Metrics. According to the quantitative exper-
imental results of recent papers on point cloud upsampling,
we use three metrics: Chamfer distance (CD) [4], Hausdorff
distance (HD) [13], and point-to-surface distance (P2F) [14].
For all of these metrics, lower values indicate better perfor-
mance.

3.2. Comparative Evaluation

Qualitative Results. Fig. 3 shows the subjective quality of
four different methods including ours. Compared with the
existing methods, we show that our method derives less noise
and generates HR point clouds with robust edges.

Quantitative Results. Table 1 compares the quantitative
experimental results. Our method shows good performance
in CD and HD, similar to state-of-the-art, but shows poor
performance in P2F. This is because the edge is excessively
smoothed by applying EdgeConv every time in EdgeFormer
of Encoder.

3.3. Robustness Test

A robustness test was performed to show that our method is
robust to sparse and noisy inputs.



(a) Input (b) GT (c) PU-Net (d) MPU (e) PU-GCN (f) Ours

Fig. 3: Qualitative upsampling results. We apply x4 upsampling in (a) input that consists of 2048 points. For precise comparison
with other methods, we zoom-in on local parts of point clouds in red boxes.

Table 1: Quantitative upsampling results. ↓ means lower
value denotes better performance.

Methods CD↓ (×10−3) HD↓ (×10−3) P2F↓ (×10−3)

PU-Net 1.155 15.170 4.834
MPU 0.935 13.327 3.551

PU-GCN 0.585 7.577 2.499
Ours 0.462 3.813 2.869

(a) Input (b) × 16 (c) × 256 (d) GT

Fig. 4: Sparsity robustness test.

Sparsity Robustness Test. For a sparse input consisting
of 256 points, we use upsampling 16 times and 256 times.
Fig. 4 is the visual experimental result, and it can be seen that
our method predicts the GT manifold well even when an input
is sparse.

Noise Robustness Test. We conducted a robustness test
by setting the Gaussian noise with standard deviation of 0.1,

Table 2: Quantitative results on noisy input. All values de-
note CD (×10−3).

Methods σ = 0.1 σ = 0.5 σ = 1 σ = 2

PU-Net 1.124 1.054 1.768 3.901
MPU 0.954 0.911 1.464 3.539

PU-GCN 0.632 0.809 1.416 3.410
Ours 0.589 0.720 1.202 2.880

0.5, 1, and 2 on the test dataset. Table 2 demonstrates that our
method yields robust results against noisy inputs.

4. CONCLUSION

We proposed EdgeFormer, a new method for extracting fea-
tures of point clouds. EdgeFormer allows the feature to have
a global structure through transformer and a local geometric
structure through EdgeConv instead of the MLP used when
extracting features from the existing point cloud upsampling.
In the experimental results, PU-EdgeFormer showed higher
performance than the existing state-of-the-art, but the edge
was excessively smoothed. To solve this problem, we will
study the method of estimating the manifold in the point cloud
and refine it based on this in the future.
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