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ABSTRACT

Convolution neural networks (CNNs) have shown great success
in various applications. However, the computational complexity
and memory storage of CNNs is a bottleneck for their deployment
on resource-constrained devices. Recent efforts towards reducing
the computation cost and the memory overhead of CNNs involve
similarity-based passive filter pruning methods. Similarity-based
passive filter pruning methods compute a pairwise similarity ma-
trix for the filters and eliminate a few similar filters to obtain a
small pruned CNN. However, the computational complexity of
computing the pairwise similarity matrix is high, particularly when
a convolutional layer has many filters. To reduce the computational
complexity in obtaining the pairwise similarity matrix, we propose
to use an efficient method where the complete pairwise similarity
matrix is approximated from only a few of its columns by using a
Nyström approximation method. The proposed efficient similarity-
based passive filter pruning method is 3 times faster and gives same
accuracy at the same reduction in computations for CNNs com-
pared to that of the similarity-based pruning method that computes
a complete pairwise similarity matrix. Apart from this, the proposed
efficient similarity-based pruning method performs similarly or bet-
ter than the existing norm-based pruning methods. The efficacy of
the proposed pruning method is evaluated on CNNs such as DCASE
2021 Task 1A baseline network and a VGGish network designed for
acoustic scene classification.

Index Terms— Acoustic scene classification, pruning, VGGish,
DCASE.

1. INTRODUCTION

Compressing convolutional neural networks (CNNs) is crucial to re-
duce their computational complexity and memory storage for effi-
cient deployment on resource-constrained devices [1], despite state-
of-the-art performances of CNNs in various applications [2]. Typ-
ically, CNNs have redundant parameters such as weights or filters,
which yield only extra computations and storage without contribut-
ing much to the performance of the underlying task [3, 4]. For exam-
ple, Singh et al. [5, 6] found that 73% of the filters in SoundNet that
do not provide discriminative information across different acoustic
scene classes, and eliminating such filters gives similar performance
compared to that of using all filters in SoundNet. Thus, the com-
pression of CNNs has recently drawn significant attention from the
research community.

Recent efforts towards compressing CNNs involve filter pruning
methods [7, 8, 9] that eliminate some of the filters in CNNs based
on their importance. The importance of the CNN filters is measured
in an active or in a passive manner. Active filter pruning methods
involve a dataset. For example, some methods [7, 10, 11, 12, 13] use
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Fig. 1. An illustration of output produced in a convolution layer by
three CNN filters, F1, F2 and F3, with a convolution operation on
randomly generated data points, X ∈ R2×1000.

feature maps which are outputs produced by the filters correspond-
ing to a set of examples, and apply metrics such as entropy or the
average percentage of zeros on the feature maps to quantify the fil-
ter importance. On the other hand, passive filter pruning methods
[14, 15] use only parameters of the filters, such as an absolute sum
of the weights in the filters, to quantify the filter importance. The
passive filter pruning methods do not involve a dataset to measure
filter importance and therefore are easier to apply compared to ac-
tive filter pruning methods. After eliminating filters from the CNNs,
the pruned network is fine-tuned to regain some of the performance
lost due to the filter elimination.

Previously, passive filter pruning methods used norm-based met-
rics such as l1-norm [14], which is a sum of the absolute values of
each weight in the filter, or l2-distance of the filters from a geomet-
ric median of all filters [15] to quantify the importance of the filters.
These norm-based methods use a “smaller-norm-less-important” cri-
terion to eliminate filters. For example, a filter having a relatively
high l1-norm is considered more important than others. However,
while selecting relatively high-norm filters as important, norm-based
methods may ignore the redundancy among the high-norm filters. To
illustrate this, we show outputs produced by three filters in Figure 1.
Filters F1 and F3 have similar l1-norm and produce similar outputs.
However, selecting two important filters out of the three filters shown
in Figure 1, the norm-based method selects filters F1 and F3 as im-
portant due to their relatively high norm, despite producing similar
outputs, while it eliminates filter F2 that produces significantly dif-
ferent output than the other filters. Thus the diversity learned in the
network may be ignored.

To capture diversity in the network, similarity-based methods



are employed that eliminate similar filters with an assumption that
the similar filters produce similar or redundant outputs. For exam-
ple, Kim et al. [16] perform clustering on filters and selects a filter
from each cluster as important and eliminates the other filters. Singh
et al. [17] measure similarity between filters by computing a pair-
wise cosine distance for all filters and then eliminating a filter from a
pair of similar filters. Such similarity-based methods give better per-
formance compared to norm-based methods. However, similarity-
based pruning methods involve a similarity matrix that takes O(n2d)
computations to compute for n filters having d parameters. Due to
this, the computational complexity is high, particularly when there
is a large number of filters in the convolutional layer.

In this work, we propose passive filter pruning method for CNNs
to reduce their computational complexity and memory storage by
using a Nyström approximation [18] to approximate the similarity
matrix using only a few columns of the complete similarity matrix.
We evaluate the proposed pruning framework on acoustic scene clas-
sification using two CNNs, DCASE 2021 Task 1A baseline network
[1] and VGGish network [19].

The rest of this paper is organised as follows. Section 2 explains
efficient similarity-based passive filter pruning method. Experimen-
tal setup is included in Section 3. Section 4 presents results and
analysis. Finally, conclusion is included in Section 5.

2. EFFICIENT SIMILARITY-BASED PASSIVE FILTER
PRUNING METHOD

Consider a set of n filters, Fl, 1 ≤ l ≤ n each of size (w × h × c)
with w is a width, h is a height and c is the number of channels, in a
convolution layer of a CNN. Each filter is transformed to a 2D matrix
of size (d × c) without loss of generality with d = wh. Next, we
compute a Rank-1 approximation of the filter by performing singular
value decomposition (SVD) on the transformed 2D filter. Next, a
column ∈ Rd with unit norm from the Rank-1 approximation of Fl

is chosen as a representative of the corresponding filter. Let R ∈
Rd×n denotes the filter representative matrix which is constructed
by stacking the filter representatives of the n filters.

Given R, we identify a small set of important filters out of to-
tal n filters in a given convolutional layer based on the similarity
between the filters using the following two steps:
(Step 1) Approximating distance matrix: In the first step, we ap-
proximate the pairwise cosine distance matrix Z = 1 − S, where
S = RTR ∈ Rn×n denotes a pairwise similarity matrix for n fil-
ters.

We take a few columns of S to approximate the rest of the entries
of S by using a Nyström approximation method [18]. Without loss
of generality, the matrix S can be written as follows:

S =

[
W AT

A B

]
and C =

[
W
A

]
(1)

where W ∈ Rm×m, C ∈ Rn×m, A ∈ R(n−m)×m, and m << n.
The Nyström method approximates S by taking C, m columns

from S, generating a rank-k approximation S̃ of S given by,

S̃ = CW+
k C

T, (2)

where Wk is the best rank-k approximation of W for the Frobenius
norm with k ≤ rank(W) and W+

k =
∑k

j=1 σ−1
j UjUjT

denotes
the pseudo-inverse of Wk. W+

k is obtained by performing SVD
on W = UΣUT, where U is an orthonormal matrix, Uj is an
j th column of U and Σ = diag{σ1, σ2, . . . , σm} is a real diagonal
matrix with σ1 ≥ σ2, . . . , σm ≥ 0. The computational complexity

Algorithm 1: Efficient similarity-based pruning algorithm
to identify important filters in a convolution layer.

Data: Pair-wise similarity matrix of n filters with m filters,
C = [W A]T ∈ Rn×m, m << n.

Result: Indices of important filters (Imp list).
(Step 1): Obtaining distance matrix via approximating S
W = UΣUT,
W+

k =
∑k

j=1 σ−1
j UjUjT

,
S̃ = CW+

k C
T,

Z̃ = 1− S̃. %Distance matrix
(Step 2): Identify important filter indices
Q= [ ], Imp list =[ ], Red list = [ ]
for l ≤ n do

[q, D] = argmin{ Z̃[ l, : - {l}] } %Identify the closet
filter with index q to lth filter with their distance D

Q.append((l, q), D)
end
Q sort = Sort(Q) %Sort Q based on the distance D
for i ≤ len(Q) do

id imp = Q sort[i][0] %important filter index
id red = Q sort[i][1] %redundant filter index
if id imp /∈ Red list then

Imp list.append( id imp )
Red list.append( id red )

end
end

needed to obtain S̃ is O(m3+nmk). After obtaining S̃, we compute
Z̃ = 1− S̃, as an approximation of Z.
(Step 2) Obtaining important filters: Given Z̃, we identify the
closet filter corresponding to each filter. A filter from the closest
filter pairs is then considered redundant and eliminated from the un-
derlying convolution layer.

A summary of the overall framework is given in Algorithm 1.
Obtaining pruned network and performing fine-tuning: After
obtaining the important filters across different convolution layers us-
ing Algorithm 1, we retain the set of important filters and eliminate
the other filters from the unpruned CNN to obtain a pruned network.
Eliminating a filter from a given convolutional layer also removes the
corresponding feature map produced by the filter and the associated
channel of the filter in the following convolutional layer. Therefore,
the computations in the next convolutional layer are also reduced in
the pruned network.

After removing filters, we perform fine-tuning which involves
re-training of the pruned network to regain some of the lost per-
formance due to the removal of the connection from the unpruned
CNN. The codes for the proposed efficient pruning framework can
be found at the link1.

3. EXPERIMENTAL SETUP

We evaluate the proposed pruning framework on CNNs designed for
acoustic scene classification (ASC). An overview of the unpruned
CNNs is given below,

(a) DCASE21 Net: DCASE21 Net is a publicly available pre-
trained network designed for DCASE 2021 Task 1A that is trained

1https://github.com/Arshdeep-Singh-Boparai/
Efficient_similarity_Pruning_Algo.git



(a) DCASE21_Net

(b) VGGish_Net

Fig. 2. Approximation error (δ) when m columns are selected out of
n columns from the similarity matrix for different convolutional lay-
ers in (a) DCASE21 Net and (b) VGGish Net . Here, the similarity
matrix is computed using rank-k approximation with k = m.

using TAU Urban Acoustic Scenes 2020 Mobile development
dataset (we denote “DCASE-20”) to classify 10 different acous-
tic scenes [1]. The input to the network is a log-mel spectrogram of
size (40 × 500) corresponding to a 10s audio clip. DCASE21 Net
is trained using the Adam optimizer with cross-entropy loss func-
tion for 200 epochs. The trained network has 46,246 parameters
and requires approximately 287M multiply-accumulate operations
(MACs) during inference corresponding to 10-second-length audio
clip, and gives 48.58% accuracy on the DCASE-20 development
validation dataset. DCASE21 Net consists of three convolutional
layers (termed as C1 to C3) and one fully connected layer. C1 has
n1 = 16, C2 has n2 = 16 and C3 has n3 = 32 filters.

(b) VGGish Net: This is built using a publicly available pre-
trained VGGish network [19] followed by a dense and a classifi-
cation layer. We train VGGish Net on the TUT Urban Acoustic
Scenes 2018 development (“DCASE-18”) training dataset [20] to
classify 10 different acoustic scenes using Adam optimizer with
cross-entropy loss function for 200 epochs. The input to the VG-
Gish Net is a log-mel spectrogram of size (96 × 64) computed
corresponding to a 960ms audio segment from a whole 10s audio
scene. The VGGish Net has approximately 55.361M parameters
and requires 903M MACs during inference corresponding to an
audio clip of 960ms and gives 64.69% accuracy on 10s audio scene
for DCASE-18 development validation dataset. VGGish Net has
six convolution layers (termed as C1 to C6). The number of filters
in each convolutional layers are {64, 128, 256, 256, 512, 512}
respectively.

For ith convolutional layer, we approximate the distance matrix
Z̃mi,ki using first 1 to mi columns of the similarity matrix Si and
approximating the similarity matrix by rank-ki approximation where
1 ≤ ki ≤ mi. To measure the effectiveness of the approximation,
we compute an approximation error δi = ||Zi − Z̃mi,ki ||2 at differ-
ent values of mi and ki.

To obtain the pruned network, we identify a set of important
filters by computing Z̃mi,ki at mi and ki, where δi < 1. Fine-tuning
of the pruned network is performed with similar conditions such as
loss function, optimizer as used for training the unpruned network
except for 100 epochs.
Performance metrics: We analyse a total time required to obtain the
set of important filters for all convolutional layer. The total pruning
time is computed after running the pruning algorithm for 10K times

(a) DCASE21_Net

(b) VGGish_Net

Fig. 3. Approximation error (δ) when the similarity matrix is gen-
erated with rank-k approximation by varying k using fixed num-
ber of columns (m) across various convolutional layers for (a)
DCASE21 Net having m1 =12 for C1, m2 = 6 for C2 and m3 =21
for C3 and (b) VGGish Net where m = 9 for all C1 to C6 layers.

(a) DCASE21_Net

(b) VGGish_Net

Fig. 4. Total pruning time to obtain important set of filters using
Algorithm 1 for various convolutional layers, with and without ap-
proximating the distance matrix.

and an average of the total pruning time is reported. To measure
the performance of the pruned network, we compute accuracy, the
number of MACs per inference and the number of parameters. The
accuracy of the pruned network is computed after fine-tuning the
pruned network independently for 5 times and we report the average
accuracy.
Other methods for comparison: We compare the proposed Algo-
rithm 1 with existing norm-based pruning methods such as an l1-
norm [14] method and a geometric median (GM) method [15], fea-
ture map based active filter pruning methods such as HRank [7] and
Energy-aware [11], and a similarity-based pruning method [17] that
first computes complete cosine distance matrix, and then uses Step
2 of the Algorithm 1 to compute important set of filters for a given
convolutional layer.

4. RESULTS AND ANALYSIS

Figure 2 shows the approximation error when mi columns are se-
lected out of ni columns from the similarity matrix and the similar-
ity matrix is approximated using rank-ki approximation with ki =
mi for different convolutional layers in DCASE21 Net and VG-
Gish Net. We observe that selecting few columns from the similarity



Table 1. Comparison of accuracy, multiply-accumulate operations (MACs), parameters, pruning time to compute pruned network and mem-
ory required to store feature maps or filters to perform pruning. For HRank [7] and Energy-aware [11] pruning methods, we randomly selected
500 examples from the underlying dataset to generate feature maps and perform pruning.

Network Pruning Method Data & feature maps used in Pruning Pruning Time (Seconds) Feature map/filter storage Accuracy (%) Parameters MACs

DCASE21 Net No pruning (Baseline) - - 48.58 46246 286M
on HRank [7] ✓ 23 1.26GB 47.24 24056 139M

DCASE-20 Energy-aware [11] ✓ 21 1.26GB 47.00 —"— —"—
(Input: 40 × 500 × 1) l1-norm [14] ✕ 0.0072 0.15MB 44.42 —"— —"—

GM [15] ✕ 0.010 0.15MB 45.84 —"— —"—
Similarity-based [17] ✕ 0.063 0.15MB 45.54 —"— —"—

Proposed (Efficient similarity-based) ✕ 0.011 0.15MB 45.54 —"— —"—

VGGish Net No pruning (Baseline) - - - 64.69 55M 903M
on HRank [7] ✓ 53 1.6GB 63.22 42.89M 595M

DCASE-18 Energy-aware [11] ✓ 51 1.6GB 62.55 —"— —"—
(Input: 64 × 96 × 1) l1-norm [14] ✕ 0.21 17MB 60.02 —"— —"—

GM [15] ✕ 0.42 17MB 59.71 —"— —"—
Similarity-based [17] ✕ 34.80 17MB 62.00 —"— —"—

Proposed (Efficient similarity-based) ✕ 11.70 17MB 62.00 —"— —"—

matrix are sufficient to approximate the complete similarity matrix
with δi < 1. Also, the distance matrix (Z̃mi,mi ) approximated by
choosing mi columns of the similarity matrix that gives δi < 1 re-
sults in a same set of important filters as obtained using the complete
distance matrix (Zi).

For DCASE21 Net as shown in Figure 2(a), we find that choos-
ing m1 = 12 out of n1 = 16 columns for C1, m2 = 6 out of n2 = 16
columns for C2 and m3 = 21 out of n3 = 32 columns for C3 gives
Z̃mi,mi ≈ Zi. For VGGish Net as shown in Figure 2(b), we find
that choosing mi = 9 out of ni columns, where ni ∈ {64, 128, 256,
256, 512, 512} for C1 to C6 layers respectively, gives Z̃mi,mi ≈ Zi.

Next, Figure 3 shows the approximation error as ki varies from
1 to mi across different convolutional layers of (a) DCASE21 Net,
where m1 = 12, m2 = 6 and m3 = 21 for C1, C2 and C3 layers
respectively, and (b) VGGish Net, where mi = 9 across various
convolutional layers. We obtain the same set of important filters
using Z̃mi,ki as that of Zi with δi < 1 when k1 = 9 for C1, k2 = 6
for C2 and k3 = 13 for C3 layer in DCASE21 Net, and ki = 9 for
1 ≤ i ≤ 6 convolutional layers of VGGish Net.

Figure 4 compares the total pruning time computed for each con-
volutional layer, when the distance matrix (Z̃mi,kiwith δi < 1) is
approximated using Algorithm 1: Step 1, and when the complete
pairwise distance matrix (Zi) is computed without any approxima-
tion for (a) DCASE21 Net and (b) VGGish Net.

The total pruning time is reduced by approximating the distance
matrix compared to computing the complete pairwise distance ma-
trix for various convolution layers. When the number of filters is
large, for example, the C6 layer in VGGish Net has 512 filters, the
total pruning time reduces significantly with the distance matrix ap-
proximation to that of computing the complete distance matrix. On
the other hand, when the number of filters is smaller, for exam-
ple C1 layer of VGGish Net has 64 filters or all convolutional lay-
ers in DCASE21 Net has ni ≤ 32, the total pruning time reduces
marginally by approximating the distance matrix compared to that
of computing the complete distance matrix.

Table 1 compares the performance metrics with the other meth-
ods. For DCASE21 Net, the pruned network obtained using the pro-
posed pruning method reduces both the MACs and the parameters
by approximately 50% at 3 percentage points drop in accuracy com-
pared to the unpruned network. The total pruning time for l1-norm
method [14] is the smallest among other methods. However, the
accuracy obtained using the l1-norm method is 1 percentage points
lesser than that of the proposed pruning method. The accuracy and
the total pruning time for the geometrical median (GM) pruning
method [15] is marginally better than that of the proposed pruning

method. In contrast to the similarity-based pruning method [17], the
proposed efficient similarity-based pruning method takes less total
pruning time and gives similar accuracy.

For VGGish Net, the pruned network obtained using the pro-
posed pruning method reduces the MACs by 34%, and the parame-
ters are reduced by 23% at 2.7 percentage points drop in the accuracy
compared to that of the unpruned network. Even though the l1-norm
and the GM pruning methods take significantly less computations
than the proposed pruning method, the proposed pruning method
improves the accuracy of the pruned network by 2 percentage points
compared to that of the l1-norm and the GM pruning methods. In
contrast to the similarity-based pruning method, the proposed effi-
cient similarity-based pruning method is 3 times faster and gives the
same accuracy.

In comparison to the active filter pruning methods [7, 11], the
proposed pruning method requires significantly less memory storage
and at least 5 times less computational time in obtaining pruned net-
work at accuracy within 2 percentage points of accuracy as obtained
using the active filter pruning methods.

5. CONCLUSION

This paper presents an efficient similarity-based passive filter prun-
ing framework to reduce computational complexity and memory
storage in CNNs. We show that using only a few columns of the
similarity matrix is sufficient to approximate similarity matrix and is
3 times faster than computing the complete pairwise similarity ma-
trix with no loss in accuracy. The proposed pruning method yields
a pruned network that performs similarly or better than the existing
norm-based pruning methods.

In future, we would like to improve the performance of the
pruned network obtained using the proposed pruning framework
to achieve a similar performance as that of the unpruned network
by using better distance measures such as graph-based similarity
between the filters. Also, reducing the number of fine-tuning epochs
(e.g. < 100) to recover some of the performance lost due to filter
elimination is a future goal to reduce overall computations.
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