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ABSTRACT

We present a unified system to realize one-shot voice conversion
(VC) on the pitch, rhythm, and speaker attributes. Existing works
generally ignore the correlation between prosody and language con-
tent, leading to the degradation of naturalness in converted speech.
Additionally, the lack of proper language features prevents these
systems from accurately preserving language content after conver-
sion. To address these issues, we devise a cascaded modular system
leveraging self-supervised discrete speech units as language repre-
sentation. These discrete units provide duration information essen-
tial for rhythm modeling. Our system first extracts utterance-level
prosody and speaker representations from the raw waveform. Given
the prosody representation, a prosody predictor estimates pitch, en-
ergy, and duration for each discrete unit in the utterance. A syn-
thesizer further reconstructs speech based on the predicted prosody,
speaker representation, and discrete units. Experiments show that
our system outperforms previous approaches in naturalness, intel-
ligibility, speaker transferability, and prosody transferability. Code
and samples are publicly available.1

Index Terms— voice conversion, one-shot, prosody transfer,
disentangled speech representation, self-supervised representations

1. INTRODUCTION

Human speech carries different aspects of information, including
prosody, speaker traits, and language content. The objective of voice
conversion (VC) is to control individual speech attributes with lan-
guage content unchanged. In this paper, we focus on the conversion
of three main attributes: pitch-energy2, speaker traits, and rhythm.

One-shot voice conversion is challenging as the model can
only access source and target speech without speaker identities
given. Existing works mostly learned a speaker encoder jointly to
isolate speaker information from prosody and language content.
AutoVC [1] attempted to disentangle speaker traits from language
by a carefully designed autoencoder. To separate speaker timbre
from prosody, works [2] provided pitch contours explicitly to the
system. Several works [3, 4] further improved content separation
by learning representations with vector quantization. Additionally,
VQMIVC [5] proposed to minimize mutual information between
content, speaker, and pitch representations for better disentangle-
ment. The above methods, however, focused largely on speaker
conversion. In applications such as emotion style transfer, separate
control for prosody is desirable. Several works built upon AutoVC
attempted to control prosodic attributes of speech. AutoPST [6]
modeled rhythm by similarity-based re-sampling. SpeechSplit [7, 8]

1https://github.com/b04901014/UUVC
2Here we use the term “pitch-energy” to refer to only the pitch and en-

ergy variations, which is one aspect of prosody.

achieved rhythm and pitch conversion with multiple carefully de-
signed autoencoders. Leveraging these works, SRDVC [9] presented
a unified one-shot VC system that allows control over both prosody
and speaker attributes.

Despite their success, we found that improvements could be
made. Previous approaches often suffered from intelligibility degra-
dation after conversion due to the lack of disentangled language rep-
resentations. To address this, recent approaches began to explore
self-supervised speech representation [10, 11] (S3R) as a source of
language information. However, these works [12, 13] generally fo-
cus on continuous S3R and are limited to speaker conversion. In
contrast, we explore the use of discrete self-supervised speech units
on both speaker and prosody conversion. Compared to continuous
S3R, these discrete units formed from clustering naturally encode
duration via repeated tokens, which is crucial for rhythm modeling.

Furthermore, we adopt a different modeling approach for
prosodic features. In SRDVC, the pitch representation is directly
extracted from a given pitch contour without explicit access to
language information. However, as prosody is correlated with lan-
guage [14], it causes naturalness degradation of prosody-converted
samples (see Section 4.2). Energy and duration, although impor-
tant prosodic features, are also not explicitly modeled. To address
these issues, we propose a cascaded modular system that leverages
discrete speech units for language information. First, our system ex-
tracts prosody and speaker representations from the raw waveform.
Given the prosody representation, a prosody predictor estimates
the pitch, energy, and duration of each speech unit. In combina-
tion with the predicted prosody, a synthesizer reconstructs speech
based on speaker representation and discrete units. Empirical results
demonstrate that our system outperforms previous approaches in
intelligibility, naturalness, speaker and prosody transferability.

2. METHOD

2.1. Problem Formulation

Figure 1 presents an overview of the system. We now describe its
corresponding formulation and provide details for each component.
We use the notation (·)Ii=1 to denote a sequence of length I and
{·}Ii=1 to denote a set of I elements. Given a speech waveform
W = (wt ∈ R)Tt=1 and its log-scale mel-spectrogram X = (xn ∈
Rdx)Nn=1, we aim to extract different speech attribute representations
ai ∈ Rda from W, and re-synthesis X from ai. T and N are the
lengths of the waveform and log mel-spectrogram. dx is the number
of mel-frequency bands, and da is a hyper-parameter we choose as
the dimension of all ai. We focus on 3 attributes: i ∈ {p, r, s} cor-
responding to pitch-energy (ap), rhythm (ar), and speaker (as). We
define speech units in W as U = (uk ∈ U)Kk=1, and corresponding
duration as L = (lk ∈ N)Kk=1 (lk is the number of frames each uk
spans). K is the total number of units for a given utterance, and U is
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Fig. 1: Overview of our system. Attribute Encoders Eθi extract attribute representations ar,ap,as. Prosody predictorHφ estimates prosodic
features based on ar and ap. Synthesizer Gφ reconstructs speech from as and the estimated prosody.

the set of all possible speech units. We use (U,L) to denote a new
unit sequence formed with duplicating each uk by lk across time.
We use learnable embeddings to represent each speech unit in U as
a dense vector.

We further introduce three prosodic features P,V,Q that can
be directly inferred from the waveform W. The pitch variation se-
quence P = (pj ∈ R)Jj=1 is mean-normalized pitch in Hertz. For
the voicing sequence V = (vj ∈ {0, 1})Jj=1, 0 represents unvoiced
and 1 represents voiced. J is the total number of frames. We can
obtain P and V from pitch estimator such as CREPE [15]. We ob-
tain energy Q = (qn ∈ R)Nn=1 from the frame-wise L2 norm of
the linear spectrogram (the same resolution as X). Given these, our
framework can be initially represented by:

ai = Eθi(W) (1)

{P̃, Ṽ, Q̃, L̃} = Hφ(U,ap,ar) (2)

X̃ = Gφ(P̃, Ṽ, Q̃,U, L̃,as) (3)

whereEθi is the attribute encoder for each speech attribute, as shown
in the upper-left part of Figure 1. Hφ is our learnable prosody pre-
dictor used to estimate prosodic features given units U and prosodic
attributes ar,ap (corresponding to the middle part of Figure 1). We
use P̃, Ṽ, Q̃, L̃ to denote the network’s estimation of P,V,Q,L.
Gφ is the synthesizer that reconstructs the speech X given the units
U, the predicted prosodic features, and the speaker attribute repre-
sentation as. Our objective is designing Gφ and Hφ to make ai
(equivalently Eθi ) capture the desired speech attributes. As a conse-
quence, by changing ai we can manipulate different aspect of X̃.

2.2. Synthesizer Gφ and Speaker Attribute as

Inspired by [12], we follow the source-filter speech production
model [16] to decompose Gφ in Eq.3 into the addition of two
networks. We further model the energy separately3:

Gφ(P,V,Q,U,L,as)

= Sφs(P,V,as) + Fφf (U,L,as)⊕Mφm(Q) (4)

where Sφs , Fφf are source and filter networks that map the input
to the same shape as the mel-spectrogram X (sequence of length
N with dimension dx). Mφm is the energy network that outputs
a scalar sequence of length N . We use ⊕ to denote the broadcast
addition across dx. We now introduce each module in detail.

Filter Network. Speaker timbre is characterized by the speaker’s
static articulator shapes (e.g., vocal tract length). These articulator

3During inference, we pass P̃, Ṽ, Q̃, L̃ instead for Eq.4.

shapes further influence the phonation of linguistic units U. To
model this process, we fuse each embedded linguistic unit in (U,L)
with as before passing it to Fφf , as illustrated in the middle part
of Figure 1. The fusion is done simply with channel-wise con-
catenation followed by a linear layer. For the network architecture,
we adopted repeated residual blocks which consists of 1d-CNN,
ReLU activation, linear layer, residual connection and layer nor-
malization [17]. The same structure is also used for all networks
Fφf , Sφs ,Mφm , Nφp , Nφr . Since the length of (U,L) is differ-
ent from that of X (length N ), we use nearest interpolation on the
output of an intermediate block to align two time sequences.

Source Network. The source network Sφs processes the pitch
variation sequence P and voicing sequence V into an excitation
spectrogram. We first follow a similar procedure in [15] to process
pitch. Specifically, we first define B equal frequency bins Cp =
{ci = i`b + pmin}Bi=1. We choose the minimum normalized pitch
pmin = −250, and the bin width `b = 2.5. We then calculate
b(pj) = {bi(pj)}Bi=1, the bin weight of ci for pj by applying Gaus-
sian blur:

bi(pj) = exp

(
− (pj − ci)2

2σ2

)
(5)

We choose the blur standard deviation σ = 4, andB = 200. Finally,
we compute the dense representation of pj : o(b(pj),E

p) by the
weighted sum of a set of randomly initialized learnable embeddings
Ep = {epi ∈ Rde}Bi=1 with the bin weights b(pj):

o(b(pj),E
p) =

∑B
i=1 bi(pj)e

p
i∑B

i=1 bi(pj)
(6)

de is the dimension of the embedding. To include voicing infor-
mation V, we replace the unvoiced frames (j where vj = 0) of
o(b(pj),E

p) with another learnable embedding before further pro-
cessing. Similar to the filter network, we provide as to each time
frame of o(pj). However, as is now responsible for recovering the
average f0 discarded in mean normalization of P. Finally, we add
the output of the filter and source network (both the same shape as
X) and term the output as the prior mel-spectrogram. It carries most
of the information (P,U,L,as) needed to reconstruct the original
speech, except for energy.

Energy Network. Another attribute unrelated to speaker tim-
bre is energy. While directly adding energy Q to the prior mel-
spectrogram (Sφs + Fφf ) is feasible, this restricts the prior mel-
spectrogram to have equal spectral energy across time. Instead, we
train another network Mφm to process energy, as shown in Eq.4 and
the right part of Figure 1. We adopt a similar procedure of encoding



pitch P mentioned in the previous paragraph to encode energy Q.4

We denote the corresponding outcome of Eq.5 and Eq.6 as bi(qn)
and o(b(qn),E

q), where Eq = {eqi ∈ Rde}Bi=1 is the learnable
embedding for energy bins. Mφm then maps the encoded energy
sequence {o(b(qn),Eq)}Nn=1 to a scalar sequence of length N .

2.3. Prosody Predictor Hφ and Prosodic Attributes ap,ar

We now introduce the prosody predictor Hφ in Eq.2. We decom-
pose Hφ into the cascade of duration network Nφr and pitch-energy
network Nφp . We first model rhythm by duration prediction:

L̃ = Nφr (U,ar) (7)

The rhythm representation ar is trained to encode information useful
for recovering the duration L from unit U. For the prediction of
pitch, we condition on (U,L) and ap:

(P̃, Ṽ, Q̃) = Nφp(U,L,ap) (8)

We predict P̃, Ṽ, Q̃ jointly with ap as they are highly correlated.
We condition on (U,L) as prosody is correlated with language con-
tent [14]. For P̃ and Q̃, instead of predicting the scalar values, we
follow [15] to predict bin weights. We use b̃pj , b̃

q
n to denote the

network estimation of bin weights b(pj),b(qn) calculated by Eq.5.
Note that for the source and energy network, it is sufficient to pro-
vide bin weights to calculate encoded pitch and energy with Eq.6.

2.4. Attribute Encoders Eθi
Studies [18, 12] have found Wav2Vec 2.0 [10] useful for learning
utterance-level representation. Here we adopt pretrained5 Wav2vec
2.0 as our attribute encoders Eθi in Eq.1. Wav2Vec 2.0 consists of
a cascade of CNN feature extractor and transformer encoder blocks.
We only use its CNN feature extractor and the first layer of its trans-
former encoder. Specifically, we fixed the CNN feature extractor
untrained, and fine-tune the 1-layer transformer separately for each
Eθi . We then apply global average pooling on the output to collapse
the time dimension, followed by a linear layer to obtain ai.

2.5. Optimization

We adopt L1 loss for the reconstruction of X̃ and X. We further
apply commonly used adversarial loss to prevent over-smoothness of
X̃. We use least-squared adversarial loss [19] with the discriminator
architecture following [12]. To predict prosodic features with Hφ,
we minimize the binary cross entropy (BCE) between V and Ṽ. We
follow [20] to use mean squared error (MSE) as loss function on
log-scale duration for L̃. For P̃ and Q̃, we follow [15] to minimize
BCE between predicted and ground truth bin weights (e.g. b̃pj and
b(pj)). During training, we use the ground truth L,V as the input
to all networks. During inference, we pass the predicted L̃, Ṽ.

Joint optimization. During training, a reasonable choice is to
use the ground truth P,Q as the input to the synthesizerGφ in Eq.3.
However, this leaves no training signal between the synthesizer Gφ
and the prosody predictor Hφ in Eq.2. One would imagine that the
reconstruction and adversarial loss of X̃ can guide the pitch-energy
network Nφp to generate a perceptually natural pitch and energy
contour. One straightforward solution is to pass the estimated pitch

4We choose the minimum energy to be 0 and the energy bin width to be
1 for the calculation of energy bins Cq .

5https://huggingface.co/facebook/wav2vec2-base

(b̃pj ) and energy (b̃qn) to Gφ. Empirically, we found that this leads
to Gφ ignoring the given prosodic information. We attribute this to
the poor estimation in the early stage of training, which discourages
Gφ to consider prosodic information. We instead pass the average
of predicted and ground truth bin weights (e.g., 0.5(b(pj) + b̃pj ))
to Gφ during training. Additionally, we minimize the MSE loss be-
tween the predicted and ground truth encoded pitch (o(b(pj),Ep)
and o(b̃pj ,E

p)). This explicitly encourages Ep to have consistent
encoding between b(pj) and b̃pj . The same loss is applied to energy.

3. EXPERIMENTAL SETUP

We use 16 blocks for Fφf , Sφs , 4 blocks for Mφm , 2 blocks for
Nφr and 6 blocks for Nφp . The block is the residual block we in-
troduced in Section 2.2. We apply k-means clustering on the final
layer of HuBERT [21] with 200 clusters (|U| = 200) as our self-
supervised speech units. We use the textless-lib [22] to extract pitch
P, voicing V and the HuBERT units (U,L). We follow [23] to
deduplicate consecutive HuBERT units as U, and the number of du-
plicated frames form L. We adopt pretrained HiFi-GAN [24] for
mel-spectrogram inversions. We include detailed implementation in
the released code. Given a source speech and a target speech, we
evaluate our system with two settings: speaker conversion (transfer
as from target) and prosody conversion (transfer ar,ap from target).

Datasets. We follow previous approaches [1, 5, 9] to train on the
VCTK corpus [25]. VCTK consists of reading English with 400 sen-
tences each from 110 speakers. We randomly sample 5% utterances
for validation and the rest for training. To fully evaluate the one-
shot capability, we test on utterances from LibriTTS [26]. LibriTTS
is another reading English corpus with larger speaker and language
content coverage (over 2000 speakers), providing a more unbiased
evaluation. We randomly sample 1000 utterances each as the source
and target speech respectively for both speaker and prosody transfer.

Comparing Methods. AutoVC [1], SRDVC [9] are chosen as
competing methods for speaker conversion. We used the officially
released checkpoints and HiFi-GAN vocoder for these methods. For
prosody conversion, we compare our method with SRDVC. We fur-
ther evaluate two variants of our system. First, we replace the pre-
trained Wav2Vec 2.0 with random initialization (-W2V2 in the ta-
bles). Second, we evaluate the system without the joint optimization
losses we introduced in Section 2.5 (-Joint. Opt. in the tables).

Metrics. We report the character error rate (CER) of the syn-
theses to measure intelligibility [27]. We use google ASR API for
the transcription. For objective metrics of speaker conversion, we
report the cosine similarity between speaker embeddings of target
and converted speech. We term this speaker embedding similarity
(SES); its range is between [−1, 1]. Speaker embeddings are ex-
tracted with a pretrained speaker identification network6. Similarly,
we extract emotion embeddings from a pretrained dimensional emo-
tion classifier [28]. We again report the cosine similarity of emotion
embeddings (EES). For subjective measures, human evaluations are
conducted via Amazon Mechanical Turk. We randomly sampled 25
utterances from each method and assigned them to 10 workers. We
report both the 5-scale mean opinion score (MOS) and 95% confi-
dence interval (CI) on naturalness, speaker and prosody similarity.



Table 1: Evaluation results for unseen speaker transfer. The right
columns are naturalness and speaker similarity MOS with 95% CI.
GT stands for the ground truth speech.

Method CER ↓ SES ↑ Naturalness ↑ Similarity ↑

GT 5.5% n/a 3.95 ± 0.11 n/a

AutoVC 88.4% 0.14 2.58 ± 0.17 2.62 ± 0.15
SRDVC 34.7% 0.17 3.25 ± 0.15 2.56 ± 0.14

Ours 7.5% 0.34 3.50 ± 0.14 2.80 ± 0.14
(-W2V2) 7.8% 0.27 3.47 ± 0.13 2.62 ± 0.15
(-Joint Opt.) 7.3% 0.32 3.55 ± 0.14 2.68 ± 0.14

Table 2: Average Pearson correlation coefficients (PCC) of pitch
and energy between target and speaker-converted speech.

PCC AutoVC SRDVC Ours (P̃, Q̃) Ours (P,Q)

log f0 0.09 0.49 0.30 0.51
Energy 0.05 0.82 0.78 0.91

4. RESULTS

4.1. Speaker Conversion

Table 1 presents our experiment result on unseen speaker transfer.
First, compared to AutoVC and SRDVC, our system achieves much
higher intelligibility (lower CER) and naturalness. Apparently, the
discrete self-supervised units provide better language information.
For speaker transferability, our system achieves the highest similar-
ity MOS and SES. The similarity MOS noticeably drops if we do not
use pretrained Wav2Vec 2.0, suggesting that pretrained SSL mod-
els can capture more generalizable speaker characteristics. Without
the joint optimization losses, the system obtains distinctively worse
speaker similarity. For the synthesizer Gφ, joint optimization can be
interpreted as a means of data augmentation for the given prosody.
We conjecture that this encourages Gφ to learn more generalized as
for a wider variety of prosody patterns.

Disentanglement of speech attributes. Table 2 presents the
average Pearson correlation coefficients (PCC) of prosodic features
between target and speaker-converted speech. Higher PCC suggests
that the corresponding attribute is less affected following speaker
conversion. We analyze our system under two different condi-
tions: passing reconstructed P̃, Q̃, and passing the ground truth P,
Q. With the ground truth P, Q, our system achieves comparable
PCC on pitch and distinctively higher PCC on energy compared
to SRDVC.7 This shows the effectiveness of our energy modeling
approach to disentangle as and the energy contour (speaker conver-
sion will not affect energy). On the other hand, using P̃, Q̃ leads to
a lower PCC, suggesting that the pitch-energy reconstruction from
ar,ap is not perfect. Note that this is both reasonable and desirable;
our goal for ap is not to memorize the exact pitch (energy) contour
but to model the high-level speaking style of the utterance. The
mapping from speaking style to the pitch contour is one-to-many,
which naturally results in lower PCC.

Table 3: Evaluation results for prosody transfer. The right columns
are naturalness and prosody similarity MOS with 95% CI.

Method CER ↓ EES ↑ Naturalness ↑ Similarity ↑

GT 5.5% n/a 3.95 ± 0.11 n/a

SRDVC 49.9% 0.28 3.06 ± 0.16 2.58 ± 0.15

Ours 8.9% 0.42 3.49 ± 0.13 2.69 ± 0.14
(-W2V2) 10.1% 0.35 3.39 ± 0.14 2.57 ± 0.15
(-Joint Opt.) 9.0% 0.38 3.36 ± 0.14 2.50 ± 0.14

Fig. 2: Visualization of ap (pitch-energy) by running t-SNE on ESD.

4.2. Prosody Conversion

Table 3 shows the result for prosody conversion. We first observe
that SRDVC suffers from much higher CER and lower naturalness
MOS compared to its own performance in speaker conversion, sug-
gesting that it failed to generate natural prosody. We observe that
in many samples SRDVC directly transfers the pitch contour from
the target speech without considering phonetic content. Its high
similarity MOS (even higher than our ablated versions) but signif-
icantly lower naturalness further supports this claim. On the other
hand, compared to speaker conversion, our system shows a small in-
crease in CER and almost no difference in naturalness MOS. Since
our prosody prediction is conditioned on discrete speech units, con-
sistency between language content and prosody can be learned nat-
urally. Additionally, our system better transfers prosody, judging
from the highest EES score and similarity MOS. Table 3 also shows
that joint optimization noticeably increases prosody naturalness and
similarity. It suggests that the adversarial loss and reconstruction
loss indeed provide useful guidance to the prosody predictor Hφ.
All measures noticeably degrade without pretrained SSL models, in-
dicating its usefulness for extracting speaking styles.

4.3. Visualization of Prosody Representations.

We further visualize ap by running t-SNE [29] on the Emotional
Speech Database (ESD) [30]. ESD contains 350 English utterances
spoken by 10 speakers with 5 emotion categories. From Figure 2, we
observe that despite being trained on only reading speech (VCTK),
ap still forms clusters of emotions. In particular, sad and neutral
mostly covers the lower part while happy and surprise concentrate
on the upper part of Figure 2. This validates that ap indeed captures
high-level speaking style information.

6https://github.com/pyannote/pyannote-audio
7Note that SRDVC also accepts ground truth pitch contour as input.



5. CONCLUSION

We describe a unified system for one-shot prosody and speaker con-
version trained in an unsupervised manner. We evaluate the intelli-
gibility, naturalness, speaker and prosody transferability of synthetic
speech and show the superior performance of our approach. Our
work potentially benefits various downstream tasks including voice
conversion, emotion analysis, speech data augmentation, and expres-
sive speech synthesis. Based on this work, we intend to extend our
system to real-world speech, where background noise and recording
environments are additional attributes to consider. We also plan to
investigate the potential downstream applications of learned attribute
representations.
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