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ABSTRACT

Deep network-based image and video Compressive Sens-

ing (CS) has attracted increasing attentions in recent years.

However, in the existing deep network-based CS methods,

a simple stacked convolutional network is usually adopted,

which not only weakens the perception of rich contextual

prior knowledge, but also limits the exploration of the cor-

relations between temporal video frames. In this paper, we

propose a novel Hierarchical InTeractive Video CS Recon-

struction Network(HIT-VCSNet), which can cooperatively

exploit the deep priors in both spatial and temporal domains

to improve the reconstruction quality. Specifically, in the spa-

tial domain, a novel hierarchical structure is designed, which

can hierarchically extract deep features from keyframes and

non-keyframes. In the temporal domain, a novel hierarchical

interaction mechanism is proposed, which can cooperatively

learn the correlations among different frames in the multi-

scale space. Extensive experiments manifest that the pro-

posed HIT-VCSNet outperforms the existing state-of-the-art

video and image CS methods in a large margin.

Index Terms— Image/video compressive sensing, video

reconstruction, deep learning, feature fusion, hierarchical in-

teraction, convolutional neural network(CNN)

1. INTRODUCTION

Compressive Sensing (CS) theory [2, 6] expounds that if a

signal is sparse in a certain domain, it can be recovered from

fewer measurements than prescribed by the Nyquist sampling

theorem. Mathematically, given the initial signal x ∈ R
N , the

CS measurement y ∈ R
M is obtained by:

y = Φx (1)

where Φ ∈ R
M×N is the sampling matrix and the sampling

ratio can be defined as M
N

(M ≪ N). CS is widely used in

magnetic resonance imaging(MRI) [9], snapshot compressive

imaging(SCI) [16] and image/video coding [3].

The core mission of CS is to accurately reconstruct the tar-

get signal x from the compressed measurements y. Recently,

many image CS methods are proposed, which can be roughly

categorized as the following two groups: optimization-based

methods and deep learning-based methods. Specifically, 1)

optimization-based methods aim to utilize iterative processes

to solve a regularized optimization problem:

min
x

1

2
‖Φx− y‖22 + λψ (x) (2)

where the former term 1
2‖Φx− y‖22 denotes the fidelity term

and the latter term ψ (x) comes from the prior knowledge, λ

is the regularization parameter. The widely used image pri-

ors include local smoothing [18], non-local self-similarity [4]

and sparsity [19]. Nevertheless, the high computational com-

plexity limits the practical applications of CS significantly.

2) Deep learning-based methods directly map the measure-

ments to the reconstructed images. However, these meth-

ods generally construct a black box network [11] which is

not interpretable. In recent years, some deep unfolding net-

works(DUN) [5, 17] try to embed deep neural networks into

optimization algorithms, such as HQS [17] and ISTA [1].

Recently, CS is successfully applied for the video signal.

Similar to image CS, video CS reconstruction can also be

divided into optimization-based methods and deep learning-

based methods. For the optimization-based methods, it can

be roughly divided into 3D-sparsity reconstruction [8] and

motion-compensation reconstruction [7, 10, 23]. The former

assumes joint sparsity in the 3D transform domain to recover

frames simultaneously. The latter reconstructs each frame in-

dependently by motion compensation. While the complex

computation restricts the practical application seriously. For

the deep learning-based methods, Shi et al. [14] present VC-

SNet based on CNN and explore both intraframe and inter-

frame correlations. It is noted that the existing image CS

methods can be directly used for video frame compression.

However, the existing deep learning-based video CS

methods still face the following problems: 1) The existing

CS networks use simple stacked CNNs, which can not per-

ceive rich spatial contextual prior information effectively. 2)

When the motion in the video is fast, it is difficult to capture

the temporal correlation efficiently.
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Fig. 1. The architecture of the HIT-VCSNet.

To overcome all these drawbacks, in this paper, we pro-

pose a novel Hierarchical InTeractive Video CS Reconstruc-

tion Network(HIT-VCSNet), which can exploit the deep

priors in both spatial and temporal domains. In the spa-

tial domain, we apply a Hierarchical Feature Fusion Mod-

ule(HFFM) to hierarchically perceive multi-scale contextual

priors. In the temporal domain, we propose a Hierarchical

Feature Interaction Module(HFIM) to automatically interact

hierarchical interframe information.

In summary, our main contributions are as followings: 1)

We present an end-to-end Hierarchical InTeractive Video CS

Reconstruction Network HIT-VCSNet, which can coopera-

tively exploit the deep priors in both spatial and temporal do-

mains. 2) In the spatial domain, a Hierarchical Feature Fusion

Module(HFFM) is presented to hierarchically perceive richer

contextual priors in the multi-scale space. 3) In the temporal

domain, a Hierarchical Feature Interaction Module(HFIM) is

developed to automatically learn the interframe correlations

in a hierarchical manner. 4) Extensive experiments manifest

that the proposed HIT-VCSNet outperforms the existing state-

of-the-art video and image CS networks in a large margin.

2. THE PROPOSED HIT-VCSNET

As showed in Fig.1, our HIT-VCSNet composes a hierarchi-

cal sampling subnet and a hierarchical interactive reconstruc-

tion subnet. Given the GOPs as the input of HIT-VCSNet, the

sampling subnet outputs the CS measurements of frames. The

initial reconstruction subnet recovers CS measurements into

multi-scale initial frames. The deep reconstruction subnet is

composed of a Multi-Scale Extraction Module(MSEM) and

a Multi-Scale Fusion Module(MSFM). Moreover, a HFIM is

applied to interact interframe information among keyframes

and non-keyframes. Ultimately, the outputs of MSFM pass a

convolutional layer to convert into final frames.

2.1. Hierarchical Sampling Subnet

As depicted in Fig.1, our sampling subnet has two model

settings, the high sampling rate mode for keyframes(i.e.,αk)

along with the low sampling rate mode for non-keyframes(i.e.,

esidual Block(RB)

Upsampl ownsampl Block

(a) Hierarchical Deep Reconstruction Subnet
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Fig. 2. The sub-modules of the deep reconsturction subnet.

αn). Therefore, the input frames in a GOP flow into corre-

sponding branches separately. We divide the input keyframes

Xk and non-keyframes Xn into certain numbers of non-

overlapping image blocks of size B × B. The CS sampling

process y = Φx can be simulated by convolution as follows:

Yk = Sk ∗Xk (3)

Yn = Sn ∗Xn (4)

whereSk and Sn hasαkB
2 andαnB

2 filters of sizeB×B. In

addition, there is no bias term, the stride is B and padding is 0.

The shape of Yk and Yn are h×w×αkB
2 and h×w×αnB

2.

2.2. Hierarchical Interactive Reconstruction Subnet

Initial reconstruction: The initial reconstruction network

consists of multiple branches, and each branch corresponds

to the frame of each scale. We set the scale as S. For each

branch of scale, the initial reconstruction includes three same

steps, namely up-sampling, reshape and concatenation:

I = cat(reshape(ΦBY)) (5)

We utilize a convolutional layer with B2 filters to learn the

up-sampling matrix ΦB , after which a series of vectors of



Table 1. Comparison with state-of-the-art video CS methods. The average results of PSNR in dB and SSIM on the first two

GOPs of six CIF video sequences with different CS ratios. Best results are in bold.

Sequence Ratio KTSLR [8] MC/ME [10] VideoMH [7] RRS [23] VCSNet2 [14] HIT-VCSNet

Akiyo

0.01

29.49/0.8836 27.15/0.8191 31.16/0.9161 25.09/0.7785 40.10/0.9834 41.59/0.9842

Coastguard 24.02/0.4902 21.65/0.4478 24.83/0.5536 22.25/0.4304 27.93/0.6775 30.75/0.8272

Foreman 24.29/0.7687 26.02/0.7504 27.84/0.8085 20.44/0.6471 28.89/0.8283 33.39/0.8949

Mother daughter 30.72/0.8592 29.29/0.8174 32.59/0.8780 25.36/0.7142 39.80/0.9602 42.18/0.9741

Paris 20.60/0.5957 21.55/0.6616 20.64/0.6044 17.10/0.4143 26.55/0.8668 29.06/0.9263

Silent 25.93/0.7179 28.55/0.8327 27.22/0.7316 22.91/0.5908 34.71/0.9331 34.27/0.9300

Average 25.84/0.7192 25.70/0.7215 27.38/ 0.7487 22.19/0.5959 33.00/0.8749 35.21/0.9245

Akiyo

0.1

33.50/0.9328 38.77/0.9657 39.48/0.9693 41.45/0.9816 41.47/0.9815 43.59/0.9904

Coastguard 26.33/0.6222 28.09/0.7370 28.89/0.7814 29.35/0.7843 30.24/0.7876 33.13/0.9412

Foreman 28.35/0.8372 32.64/0.8803 33.94/0.8995 35.50/0.9323 34.28/0.9222 37.96/0.9786

Mother daughter 33.82/0.9064 38.56/0.9449 38.93/0.9499 42.02/0.9719 41.43/0.9671 44.07/0.9879

Paris 23.04/0.7232 25.83/0.7778 25.58/0.7821 24.20/0.8213 28.23/0.9030 31.85/0.9819

Silent 29.22/0.8043 33.03/0.8841 32.69/0.8784 35.17/0.9162 36.44/0.9439 36.33/0.9428

Average 29.04/0.8043 32.82/0.8650 33.25/0.8767 34.61/0.9013 35.35/0.9176 37.82/0.9705

size 1×1×B2 are generated. Then a reshape layer is applied

to convert each vector to a B × B × 1 block. Ultimately, a

concatenation layer is applied to generate the whole frame.

Deep reconstruction: Our proposed framework jointly

extracts features in both spatial and temporal domains. As

depicted in Fig.2(a), MSEM extracts the multi-scale features

and MSFM outputs the fused multi-scale feature FMS . The

size of I1, I2 and I3 are 32 × 32, 16 × 16 and 8 × 8. F1,

F2 and F3 correspond to the features of three different scales

obtained after MSEM. Above all, a Feature Extraction Mod-

ule(FEM) composed of a convolutional layer is applied for

each branch to extract the features of the initial frames. Af-

terwards, numbers of Residual Blocks(RB) are employed to

extract depth features. Several up-sampling sub-modules con-

sist MSFM, which is composed of a deconvolution layer with

stride 2 as well as two sets of ReLU and convolutional layers.

In the spatial domain, a Hierarchical Feature Fusion Mod-

ule(HFFM) is implemented in MSEM to perceive richer con-

textual priors. As presented in Fig.2(b), for each fusion oper-

ation of HFFM at s − th scale, the fused feature Fj−1
s from

upper level and the feature Fj−1
os passed among each scale are

merged as Mj(j represents the level of RB). Moreover, up-

sampling and down-sampling blocks are implemented due to

the scale of the transmitting feature. The arrangement of the

sub-blocks is equal to RB, which involves a skip connection

consisting of convolutional layers with stride 1 and a ReLU

shown in Fig.2(c). Specifically, to obtain the keyframe fea-

ture F
j

(k,s) for inter-frame fusion, Mj will be passed to an

up-sampling block.

In the temporal domain, HFIM is applied to interact hier-

archical temporal information from keyframes in current and

adjacent GOPs with non-keyframes:

F
(i,j)
(n,s) = F

(1,j)
(k,s) + F

(2,j)
(k,s) +RB

(

F
(i,j−1)
(n,s)

)

(6)

VCSNet1 / 29.96 / 0.7692Original / PSNR / SSIM KTSLR/ 26.75 / 0.6832 MC/ME / 29.45 / 0.7227

HIT-VCSNet / 32.83 / 0.9396Video-MH / 28.92 / 0.6953 RRS/ 29.92 / 0.7687 VCSNet2 / 30.12 / 0.7944

Fig. 3. Visual comparison on the 16th frame of selected video

sequence Coastguard when the sampling ratio is 0.1.

2.3. Loss Function

Given the initial and deep reconstruction of the keyframe

and the non-keyframe Ik, Dk, In and Dn, the ground-truth

keyframe and non-keyframe Xk and Xn, we design the end-

to-end loss function for HIT-VCSNet as follows:

L =

N
∑

i=1
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where K refers to the total number of non-keyframes, and N

represents the number of GOPs in the training dataset.

3. EXPERIMENT RESULT

3.1. Dataset and Implementation Details

For fair comparison, we use HEVC test video sequences in

[14], which are divided into 128000 groups with data aug-

mentation. Our HIT-VCSNet is trained end-to-end and the

model training is performed on 4 GeForce RTX 3090 GPUs



Table 2. Comparison with deep learning-based image CS methods. The average results of PSNR in dB and SSIM on the first

two GOPs of six CIF video sequences(αn = 0.1). Best results are in bold.

Sequence ISTA-Net+ [20] CSNet+ [13] SCSNet [12] AMP-Net+ [22] OPINE-Net+ [21] HIT-VCSNet

Akiyo 34.83/0.9243 35.36/0.9463 35.56/0.9567 36.57/0.9758 36.83/0.9826 43.59/0.9904

Coastguard 27.23/0.6099 29.13/0.6946 29.33/0.7012 30.33/0.7251 30.61/0.7357 33.13/0.9412

Foreman 32.83/0.8795 32.38/0.9013 32.58/0.9121 33.56/0.9341 33.87/0.9461 37.96/0.9786

Mother daughter 35.54/0.8956 37.18/0.9251 37.31/0.9310 38.36/0.9547 38.63/0.9663 44.07/0.9879

Paris 24.07/0.6893 24.66/0.7831 24.89/0.7931 25.83/0.8012 26.01/0.8276 31.85/0.9819

Silent 30.23/0.7932 31.82/0.8366 32.07/0.8451 33.06/0.8761 33.39/0.8792 36.33/0.9428

Average 30.79/0.8286 31.76/0.8478 31.96/0.8565 32.95/0.8778 33.22/0.8896 37.82/0.9705

by PyTorch. We set block size B = 32, scale S = 3. The

GOP size and the batch size are set as 8 and 32 for 100 epochs.

Specifically, we use Adam optimizer with the initial learning

rate being 1 × 10−4, which is reduced by half after every 30

epochs. αk is set to 0.5, and αn is set to 0.01 and 0.1 re-

spectively. As for different sampling rates, the model of non-

keyframe is trained independently. With regards to testing, 6

groups of standard CIF vedio sequences1 Akiyo, Coastguard,

Foreman, Mother daughter, Paris, Silent are applied. We uti-

lize standard metrics (PSNR and SSIM [15]) for evaluation.

Particularly, we transform color frames into YCbCr space and

conduct operation merely for Y channel(i.e., luminance).

Table 3. The average results of PSNR on the first two GOPs

compared with image CS methods (αn = 0.01).

Sequence SCSNet [12] AMP-Net+ [22] OPINE-Net+ [21] HIT-VCSNet

Average 26.38 27.75 28.83 35.21

Table 4. The average results of PSNR on the non-keyframes

of the first two GOPs compared with image CS methods.

Ratio ISTA-Net+ [20] CSNet+ [13] VCSNet2 [14] HIT-VCSNet

0.01 20.14 24.14 31.95 33.95

0.1 29.34 30.53 34.63 36.56

3.2. Comparisons with State-of-the-Art Methods

We evaluate our HIT-VCSNet with state-of-the-art video CS

methods, including KTSLR [8], MC/ME [10], Video-MH [7],

RRS [23] and VCSNet2 [14]. Moreover, we compare five

deep learning-based image CS methods with HIT-VCSNet,

namely ISTA-Net [20], CSNet [13], SCSNet [12], AMPNet

[22] and OPINE-Net [21]. As reported in Table 1-Table 4

and Fig.3, one can see that our HIT-VCSNet outperforms all

the other methods. In particular, due to the tiny range of mo-

tion, the reconstruction effect of HIT-VCSNet is worse than

VCSNet2 on the silent sequence, while our model owns pre-

dominant performance for large scale motion. Moreover, the

1Test videos are available at https://media.xiph.org/video/derf/

corresponding number of network parameters and time con-

sumption of HIT-VCSNet are 4-5 times that of VCSNet2.

Table 5. Ablation study of HFIM and HFFM modules.

Ratio w/o HFIM w/o HFFM HIT-VCSNet

0.01 33.96/0.8917 32.99/0.8792 35.21/0.9240

0.1 36.53/0.9372 35.72/0.9267 37.82/0.9705

3.3. Ablation Study

We retrain our model without HFIM and HFFM respectively,

represented as “w/o HFIM” and “w/o HFFM”. We evaluate

the average PSNR and SSIM from the models for the first

two GOPs of the 6 test video sequences. As shown in Table 5,

HIT-VCSNet leads to a boost of 1.25dB and 2.22dB on PSNR

at the sampling ratio of 0.01 compared with “w/o HFIM” and

“w/o HFFM”, which reflects the effectiveness of exploiting

the deep priors in both spatial and temporal domains.

4. CONCLUSION

In this paper, we propose a novel Hierarchical InTeractive

Video CS Reconstruction Network HIT-VCSNet, which can

cooperatively exploit the deep priors in both spatial and tem-

poral domains. Moreover, the hierarchical structure enables

the proposed framework not only to hierarchically exploit

richer contextual priors, but also to capture the interframe

correlations more efficiently in the multi-scale space. Ex-

tensive experiments manifest that the proposed HIT-VCSNet

outperforms the existing state-of-the-art video and image CS

methods in a large margin.

Acknowledgments

This work is founded by National Natural Science Founda-

tion of China (No.62076080), Natural Science Foundation

of ChongQing CSTB2022NSCQ-MSX0922 and the Postdoc-

toral Science Foundation of Heilongjiang Province of China

(LBH-Z22175).



5. REFERENCES

[1] Amir Beck and Marc Teboulle. A fast iterative

shrinkage-thresholding algorithm with application to

wavelet-based image deblurring. In 2009 IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing, pages 693–696, 2009. 1

[2] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty

principles: exact signal reconstruction from highly in-

complete frequency information. IEEE Transactions on

Information Theory, 52(2):489–509, 2006. 1

[3] Wenxue Cui, Feng Jiang, Xinwei Gao, Shengping

Zhang, and Debin Zhao. An efficient deep quantized

compressed sensing coding framework of natural im-

ages. Proceedings of the 26th ACM international con-

ference on Multimedia, 2018. 1

[4] Wenxue Cui, Shaohui Liu, Feng Jiang, and Debin Zhao.

Image compressed sensing using non-local neural net-

work. IEEE Transactions on Multimedia, pages 1–1,

2021. 1

[5] Wenxue Cui, Shaohui Liu, and Debin Zhao. Fast hier-

archical deep unfolding network for image compressed

sensing. Proceedings of the 30th ACM International

Conference on Multimedia, 2022. 1

[6] D.L. Donoho. Compressed sensing. IEEE Transactions

on Information Theory, 52(4):1289–1306, 2006. 1

[7] Ewtje Fowler. Video compressed sensing with multihy-

pothesis. In Data Compression Conference, 2011. 1, 3,

4

[8] S. G. Lingala, H. Yue, E. Dibella, and M. Jacob. Ac-

celerated dynamic mri exploiting sparsity and low-rank

structure: k-t slr. IEEE Transactions on Medical Imag-

ing, 30(5):1042–1054, 2011. 1, 3, 4

[9] Michael Lustig, David L. Donoho, and John M. Pauly.

Sparse mri: The application of compressed sensing for

rapid mr imaging. Magnetic Resonance in Medicine, 58,

2007. 1

[10] S. Mun and J. E. Fowler. Residual reconstruction for

block-based compressed sensing of video. In Data Com-

pression Conference, 2011. 1, 3, 4

[11] F. Ren, X. Kai, and Z. Zhang. Lapran: A scalable

laplacian pyramid reconstructive adversarial network

for flexible compressive sensing reconstruction, 2020.

1

[12] Wuzhen Shi, Feng Jiang, Shaohui Liu, and Debin

Zhao. Scalable convolutional neural network for im-

age compressed sensing. In 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR),

pages 12282–12291, 2019. 4

[13] Wuzhen Shi, Feng Jiang, Shengping Zhang, and Debin

Zhao. Deep networks for compressed image sensing.

In 2017 IEEE International Conference on Multimedia

and Expo (ICME), pages 877–882, 2017. 4

[14] Wuzhen Shi, Shaohui Liu, Feng Jiang, and Debin Zhao.

Video compressed sensing using a convolutional neural

network. IEEE Transactions on Circuits and Systems

for Video Technology, 31, 2021. 1, 3, 4

[15] Z. Wang. Image quality assessment : From error visibil-

ity to structural similarity. IEEE Transactions on Image

Processing, 2004. 4

[16] Zhengjue Wang, Hao Zhang, Ziheng Cheng, Bo Chen,

and Xin Yuan. Metasci: Scalable and adaptive re-

construction for video compressive sensing. 2021

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2083–2092, 2021. 1

[17] Zhuoyuan Wu, Jian Zhang, and Chong Mou. Dense

deep unfolding network with 3d-cnn prior for snapshot

compressive imaging. 2021 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 4872–

4881, 2021. 1

[18] Jinjun Xu and Stanley Osher. Iterative regularization

and nonlinear inverse scale space applied to wavelet-

based denoising. IEEE Transactions on Image Process-

ing, 16(2):534–544, 2007. 1

[19] Jun Xu, Lei Zhang, and David Dian Zhang. A trilateral

weighted sparse coding scheme for real-world image de-

noising. ArXiv, abs/1807.04364, 2018. 1

[20] J. Zhang and B. Ghanem. Ista-net: Interpretable

optimization-inspired deep network for image compres-

sive sensing. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 4

[21] Jian Zhang, Chen Zhao, and Wen Gao. Optimization-

inspired compact deep compressive sensing. IEEE Jour-

nal of Selected Topics in Signal Processing, 14(4):765–

774, 2020. 4

[22] Zhonghao Zhang, Y. Liu, Jiani Liu, Fei Wen, and

Ce Zhu. Amp-net: Denoising-based deep unfolding for

compressive image sensing. IEEE Transactions on Im-

age Processing, 30:1487–1500, 2021. 4

[23] Chen Zhao, Siwei Ma, Jian Zhang, Ruiqin Xiong, and

Wen Gao. Video compressive sensing reconstruction

via reweighted residual sparsity. IEEE Transactions on

Circuits and Systems for Video Technology, 27(6):1–1,

2017. 1, 3, 4


