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ABSTRACT

Deep neural networks (DNN5s) for sound recognition learn to
categorize a barking sound as a ’dog” and a meowing sound
as a “cat” but do not exploit information inherent to the se-
mantic relations between classes (e.g., both are animal vo-
calisations). Cognitive neuroscience research, however, sug-
gests that human listeners automatically exploit higher-level
semantic information on the sources besides acoustic infor-
mation. Inspired by this notion, we introduce here a DNN that
learns to recognize sounds and simultaneously learns the se-
mantic relation between the sources (semDNN). Comparison
of semDNN with a homologous network trained with categor-
ical labels (catDNN) revealed that ssmDNN produces seman-
tically more accurate labelling than catDNN in sound recog-
nition tasks and that ssmDNN-embeddings preserve higher-
level semantic relations between sound sources. Importantly,
through a model-based analysis of human dissimilarity rat-
ings of natural sounds, we show that ssmDNN approximates
the behaviour of human listeners better than catDNN and sev-
eral other DNN and NLP comparison models.

Index Terms— natural sound recognition, deep neu-
ral networks, auditory semantics, semantic embeddings,
acoustic-to-semantic transformation

1. INTRODUCTION

Human sound recognition involves the transformation of
acoustic waveforms into meaningful representations of the
sound-producing source or event. Whereas this ability is
automatic and effortless in humans, engineering artificial
systems that reproduce human recognition performance has
proven challenging. In machine learning (ML), sound recog-
nition has been typically formulated as a classification prob-
lem, where sounds are assigned to predefined classes based
on the analysis of various features extracted from the input
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acoustic signal. Different ML approaches have been pro-
posed, showing promising results in several applications [1].
Recently, deep neural networks (DNNs) have been shown to
outperform other conventional ML algorithms. Mimicking
similar research on visual object recognition [2], sound-to-
event DNNs have been used for sound classification tasks [3],
[4], [5]. Trained on a large-scale dataset of human-labelled
sounds (Audioset, [6]), Google’s VGGish and Yamnet have
provided remarkable performances. These networks receive
spectrogram representations as input and can classify sounds
in up to 527 and 521 classes, for VGGish and Yamnet, re-
spectively. Although a taxonomic organization of labels has
been proposed (Audioset, [6]), in most cases the informa-
tion on the (hierarchical) relation between labels is not used
explicitly to train the networks (but see Jimenez et. al [7]).
Typically, labels are encoded as binary categorical variables,
using one-hot or multi-hot (in case of multiple simultaneous
labels) encoding; Fig. 1 (a,b).

Interestingly, recent cognitive neuroscience research has
shown that sound-to-event DNNs (including VGGish and
Yamnet) provide a good approximation of human listeners’
behaviour in several real-world auditory perception tasks
[8, 9]. Giordano et al. [9] considered behavioural data con-
sisting of perceived sound (dis)similarities, estimated with a
hierarchical sorting task [10] and examined to what extent
sound-to-event DNNs, and other acoustic, auditory percep-
tion and semantic (natural language processing, NLP) mod-
els could explain these behavioural data. Results not only
showed that sound-to-event DNNs outperformed all other
models in predicting human sound dissimilarity judgements
but also that NLP models, namely word2vec [11] and GloVe
[12], predicted variance of behavioural data that could not
be accounted for by sound-to-event DNNs trained using cat-
egorical labels. These findings suggest that, when listening
to (and comparing) real-world sounds, human listeners au-
tomatically exploit higher-level semantic information on the
sources besides acoustic information.

Inspired by these results, we sought to develop DNNs
that - mimicking human perception [13] - learn to recognize
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Fig. 1: Categorical vs Semantic label encoding (a) Label-
encoding step for the two approaches. (b,c) Example visual-
ization of one-hot vs word2vec spaces

sounds and simultaneously learn the semantic relation be-
tween the sources. To this aim, we formulated sound recog-
nition as a deep-learning regression problem of mapping
spectrograms onto a continuous, multidimensional space,
quantitatively capturing the semantic relations between sound
sources and events. In the present study, we obtained this
multidimensional space from the word2vec embeddings of
linguistic sound descriptions, Fig. 1 (a,c). To evaluate the
effect of semantics on sound recognition DNNs, we trained
two networks (semDNN and catDNN) with identical archi-
tecture (except for the output layer, see below) using, in one
case, 300-dimensional word2vec embeddings of the linguistic
sound description (semDNN; [11]), and categorical, one-hot
encoded single words in the other case (catDNN).

To avoid biases in the comparison, our DNNs were trained
from scratch, as all available pre-trained networks have been
trained using categorical coding. Furthermore, for training,
we curated a dataset of 388,211 sounds (2,584 hours), cov-
ering a broad range of real-world sounds (Super Hard Drive
Combo [14]), characterized by the rich semantic description
that we derived from the database metadata (see below).

Based on [9], we expected that ssmDNNs would better
approximate human behaviour in auditory cognitive tasks
than catDNNS, as the word2vec embeddings preserve the se-
mantic relation between sound sources, which are instead lost
with one-hot encoding, Fig. 1 (b,c).

Similar to our approach, other recent studies proposed to
combine sound-to-event DNNs with language embeddings.
Xie et al. [15] combined audio feature embeddings from VG-
Gish and semantic class label embeddings from word2vec at
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Fig. 2: Pre-processing and catDNN/semDNN’s architec-
ture. Note how the architectures differ only at the last dense
layer.

the output stage using a bilinear model. However, the audio
network was not explicitly trained to learn semantic embed-
dings in this case. Recently, Elizalde et al. [16] employed
contrastive learning to combine sentence embeddings (BERT,
[17]) with an audio encoder into a joint multimodal space.
Our present work, however, focuses on evaluating the effects
of semantic representation type (continuous vs categorical)
on sound-to-event DNNs and assessing networks’ ability to
predict human perceptions.

2. METHODS AND MATERIAL

2.1. Network Architecture

We developed two different networks: semDNN and catDNN
(Fig. 2). Both networks resemble VGGish (four main convo-
lutional blocks; 64, 128, 256, and 512 filters), including the
sound preprocessing and log-mel spectrogram input to the
network. Compared to VGGish, we added a dropout layer
(rate = 0.2; [18]) and a batch normalization layer [19] after
each downsampling operation, and after the fully connected
layers. We also applied global average pooling after the last
convolutional block to summarize the feature maps into a
fixed-length vector. The two networks differed only at the
output layer, where semDNN has a 300-units (N dimensions
of semantic embedding = 300) layer with linear activation,
and catDNN has a 9,960-units (N dictionary words = 9,960)
dense layer with sigmoid activation. We additionally trained
a convolutional autoencoder (CAE) to assess the network
behaviour with acoustic inputs only (no category/semantic
label task; same architecture as in Fig. 2 for the encoder
and reverted architecture for the decoder; see below for ad-
ditional control networks). The loss function was adapted to
the network task. We used binary cross entropy for catDNN
(multi-classification task), an angular distance for semDNN
(regression task), and mean square error for the CAE.
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Fig. 3: t-SNE visualization of 25 clusters of the seman-
tic space. Circle size indicates the number of occurrences of
each word.

2.2. Semantically balanced dataset for training, valida-
tion, internal and external evaluation

Networks were trained using sounds and labels from Super-
Hard Drive Combo [14], a collection of 388,211 variable-
length sounds (2,584 hrs) covering a wide range of sound
sources and events. We then used a natural language process-
ing pipeline to extract a dictionary of 9,960 sound-descriptive
words from the database metadata (median nb. words/sound=
3, range = 1-15).

The distribution of the word descriptors in the database
was unbalanced (Fig. 3). Thus, we created a semantically
balanced dataset based on a hierarchical clustering analysis of
the word2vec representations of the dictionary (input = pair-
wise cosine distance; ward-linkage). We considered a clus-
tering solution with K = 300 semantic word clusters (Fig.
3). The resulting balanced dataset included 273,940 sounds
(training set = 90% = 246,546 sounds; 1,366,848 frames; val-
idation set 5%; internal evaluation = 5%).

Without further training, the networks were validated on
four publicly-available external datasets: FSD50k [20], ESC-
50 [21], Urban Sound 8K [22] and MSOS [23].

2.3. Comparative networks evaluation

We compared semDNN and catDNN relative to two prediction-
accuracy metrics, one requiring the conversion of semDNN
word2vec embedding predictions onto word predictions
(Ranking score), and the other requiring the computation
of word2vec embeddings of catDNN word predictions (av-
erage maximum cosine similarity, see below). To obtain
single-word predictions for sesmDNN, we projected the pre-

dicted semantic embeddings, potentially reflecting a mixture
of words, onto the single-word embeddings in the dictionary
using non-negative least squares (NNLS) regression [24].

Ranking Score We first sorted the NNLS S-values (semDNN)
and the output probabilities (catDNN) in ascending order to
compare prediction accuracy. The ranking score was defined

as:
rank — 1

=1—- —- 1
m N1 ey
where N is the dictionary length and rank is the position of
Blprobability corresponding to the “true” label. When labels
included multiple words, we averaged the ranking score ob-
tained for every single word.

Average maximum cosine similarity score (AMCSS) For
each sound, we computed the cosine similarity between the
topN (5 < topN < 15) predicted words and a word in the
true label and then considered its maximum value. This op-
eration was repeated for each word in the label. The AMCSS
was obtained as the average of these values (e.g. if the true
label is 3 words long, 3 max values are obtained and then av-
eraged).

2.4. Prediction of human behavioural data

We evaluated to what extent layer-by-layer embeddings of
semDNN and catDNN, and of several control networks,
including the CAE, and of additional control models, ap-
proximated perceived dissimilarity judgements obtained with
humans ([10], Exp. 2, hierarchical sorting task; N sounds
= 80). We adopted a cross-validated representational simi-
larity analysis (RSA, [25, 9]), implying the comparison of
behavioural data and model representations in the distance
domain (model distance = cosine between-sound distances).
We considered as additional comparison models. First, two
NLP embeddings (word2vec and GloVe [11, 12]) to compare
our audio-based learning of semantic relations in semDNN
with text-based learning. Second, we considered three pre-
published categorical sound-to-event DNNs (Yamnet, VG-
Gish and Kell [4, 6, 8]), and three variants of the ssmDNN
network (semDNNyypa, trained with a randomly selected
semantically unbalanced dataset, semDNNgGjove, trained to
learn GloVe embeddings, and semDNN| qain, the random
initialization of an untrained semDNN network).

3. RESULTS

3.1. Internal and external network-prediction accuracy

Fig. 4 shows the ranking score and AMCSS for semDNN
vs catDNN, averaged over all evaluation sounds, for the in-
ternal (SuperHardDrive) and the four external datasets. In
all cases, the ranking score was higher for ssmDNN, which
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Fig. 4: Networks comparison, Sounds-averaged ranking
scores (left) and AMCSS (right) for semDNN and catDNN.
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indicates that training using semantic embeddings produces
more accurate predictions than categorical labels. AMCSS
was also higher for ssmDNN in all cases, indicating that Top-
N ranked words for semDNN predictions are more semanti-
cally related to the true labels than catDNN. This advantage
increases when a larger number of words is considered (Fig.
4, arrows).

A relevant hypothesis was that semDNN embeddings
would predict higher-order semantic relations between sounds
better than catDNN. We tested the MSOS dataset (see 2.2),
for which sounds are organized in five macro-classes (ef-
fects, human, music, nature, urban). For both semDNN and
catDNN, we computed the pairwise cosine distance between
sound embeddings in the last intermediate layer (Fig. 2, ar-
row). Fig. 5 shows that the ssmDNN embedding (middle
panel) reflects better the macro-class organization (left panel)
than the catDNN embedding (right panel; correlation with
True categorical model = 0.330 and 0.193 for semDNN and
catDNN, respectively).

3.2. Comparisons on human behavioural data

Fig. 6 shows the results of the RSA of human dissimilarity
ratings of natural sounds for SemDNN, catDNN and other

True

semDNN

effects . |effects

human ~ {human

. | .
music music
nature 1 nature

urban

Fig. 5: Dissimilarity matrices obtained from the embeddings
at the last common layer for semDNN (centre) and catDNN
(right). Matrix on the left reflects the true macro-classes
(min/max distance = blue/yellow).

compared models. SemDNN (R =0.371) outperformed
catDNN (R2, = 0.199) and other DNNs trained using cate-
gorical labels (VGGish, R%, = 0.226; Yamnet, R, = 0.302;
Kell, Rg\,: 0.179. Also, embeddings from SemDNN ex-
plained human behavioural data better than embeddings de-
rived by applying NLP models (word2vec (R34, = 0.211;
GloVe, R2, = 0.156) to sound descriptors. These results con-
firm our hypothesis that a network combining acoustic and
semantic information approximates human behaviour in au-
ditory cognitive tasks better than models considering acoustic
(categorical sound-to-event DNNs) or semantic (NLP) in-
formation alone. Finally, SemDNN outperformed several
other DNNs with the same architecture that we trained in
different configurations to evaluate the effects of individ-
ual factors: CAE (convolutional autoencoder, R%, = 0.090),
seMDNN |, otrain (random initialization for untrained sesmDNN,
R2, = 0.034), semDNNpa1 (semDNN trained on unbalanced
dataset, R2, = 0.265), and semDNNgjove (semDNN trained
to learn GloVe embeddings, RZ, = 0.191).
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Fig. 6: Behaviour prediction. SemDNN outperforms all
other models at predicting perceived sound dissimilarity.

4. CONCLUSIONS

We systematically investigated the effects of training DNNs
for sound recognition with continuous semantic embeddings
(word2vec) vs categorical labels (one-hot encoding). We
showed that training with continuous embeddings is bene-
ficial, as it produces semantically more accurate labelling
of sounds. Importantly, using human behavioural data, we
showed that DNNs trained with continuous semantic embed-
dings approximate human behaviour better than categorical
DNNs. Here, we considered word2vec embeddings of the
linguistic sound descriptions to retain information on the (lin-
guistic) semantic relations between the sound sources. In
the future, the same approach could be extended to different
types of semantic embeddings, for example, derived from
natural sound ontologies [26].
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